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1 Introduction
The fundamental issue of study of passive scalar turbulence is to clarify the statistical nature of inter-
mittency in a scalar field. Passive scalar intermittency has been captured by the scaling laws of structure
function for the scalar increment $\delta\theta_{f}=\theta(\mathrm{x}+\mathrm{r})-\theta(\mathrm{x})$ in the inertiai convective range (ICR) as

( $(\delta\theta_{r})^{q}\rangle\sim r^{\zeta_{q}^{\theta}}$ $(\overline{\eta}<<r<<L)$ . (1)

Obukhov-Corrsin scaling law $\zeta_{q}^{\theta}=q/3$ was suggested by the dimensional arguments $[1, 2]$ . However many
experimental or numerical results do not follow it and shows the values smaller than $q/3$ , and so does
the velocity case $\zeta_{q}^{u}[3]$ .

A central importance of passive scalar intermittency is universality of $\zeta_{q}^{\theta}$ . In order to discuss this
problem more carefully, it is effective to change large scale conditions of the scalar alone while keeping
the turbulent velocity field the same and to see the difference in the scalar statistics. Recent DNS studies
in this direction lead to the remarkable results that $\zeta_{q}^{\theta}$ is insensitive to the variation of large scale injection
schemes, Gaussian white random source (case R) or uniform mean scalar gradient (case G), in the case
for $2\mathrm{D}$ passive scalar convected in the energy inverse cascadin$\mathrm{g}$ range $[5, 6]$ , while the case of $3\mathrm{D}$ is
dependent of the injection scheme for both cases $[7, 8]$ . The former is in favor of the predictions of the
Kraichnan model [9] in spite of the intrinsic differences in the correlation time of the velocity field, and
bears the expectation that $\zeta_{q}^{\theta}$ evaluated in the generic turbulent flow is universal $[10, 11]$ . However the
latter implies that universality based on the zero mode idea should be extrapolated to $3\mathrm{D}$ passive scalar
intermittency with some care [8]. Here we summarize the points raised in $3\mathrm{D}$ results [8] as follows.

1. $\zeta_{q}^{||}\simeq\zeta_{q}^{\perp}$ for case $\mathrm{G}$ (Fig. 1), where $||(\perp)$ denotes the parallel (perpendicular) component of structure
function to the direction of mean scalar gradient.

2. $\zeta_{q}^{G}$ ( $=\zeta_{q}^{\theta}$ for case G) and $\zeta_{q}^{R}$ (for case R) with large $q$ saturate about $\zeta_{\infty}^{\theta}=1.3$ and 1.5, respectively.
Then the PDF tails of the scalar increment is well fitted by the one point scalar PDF (Fig.2) as

$P(| \delta\theta|, r)=\frac{(r/L)^{\zeta^{\theta}}\infty}{\sqrt{2}}P_{\theta}(\frac{|\delta\theta|}{\sqrt{2}})$ $(|\delta\theta|>4\theta_{rm*})$ . (2)

3. $(_{\mathrm{q}}^{G}<\zeta_{q}^{R}$ (Fig.1), i.e. case $\mathrm{G}$ is more intermittent than case R.

The third point is in sharp contrast to the results by DNS in $2\mathrm{D}[5,6]$ and by the theoretical suggestion
$[10, 11]$ . What is the origin of this discrepancy? Although the possible reasons were discussed in [8], it
is very difficult to draw the definite conclusions from the present DNS resolution.

Saturation of $\zeta_{q}^{\theta}$ is regarded as the extreme case of intermittent nature of the dissipation field because
it is closely related to the ramp-cliff structures observed in the scalar field [3]. Relation (2) represents
that the high order statistics of $\delta\theta_{f}$ is dominated by the rare events encompassing the large jump of
$\theta$ (cliff) residing in small region. Then the prefactor $(r/L)^{\zeta_{\infty}^{\theta}}$ in eq.(2) means the probability to find
a cliff in separation distance $r$ . This is also explained in terms of the spatial distribution of cliff and
represented by its geometrical dimension $\mu$ as $(r/L)^{3arrow\mu}$ . That is, $\mu=3-\zeta_{\infty}^{\theta}$ . If the scaling exponent

$\zeta_{q}^{\theta}$ is dependent of the scalar injection mechanism at large scale, we expect that the geometric feature of
the scalar dissipation is also affected by the large scale conditions.

Main purpose of the present study is to clarify the three points raised above in terms of the dissipation
field statistics. The geometrical dimensions of intense structures of velocity and scalar gradient flelds are
computed from the DNS data, as done by Moisy and Jim\’enez [12]. We discuss the relation between the
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Figure 1: The scaling exponents for case $\mathrm{G}$ (circles;
$\zeta_{q}^{||}$ , squares; $\zeta_{q}^{\perp}$ ) and case $\mathrm{R}$ (plus signs; $\zeta_{q}^{R}$ in ICR,
crosses; $\zeta_{q}^{R}$ in VCPR), respectively.

Figure 2: Scaling plots of scalar increment PDFs
with $\zeta_{\infty}^{\alpha}=1.3$ for the PDFs of (a) parallel $|\delta_{||}\theta_{f}|$

and (b) perpendicular $|\delta_{\perp}\theta_{r}|$ components to mean
scalar gradient, respectively.

geometry of the field structure and the saturation of $\zeta_{q}^{\theta}$ . Moreover we analyse the effects of large scale
condition on the geometrical dimension and the intermittency exponents of the moment for the locally
averaged dissipation fields by performing the DNSs with the different scalar injection schemes. Several
results drawn from the present studies are discussed by comparing the preceding ones.

2 Direct numerical simulations
We numerically solve the passive scalar field $\theta(\mathrm{x}, t)$ in a periodic box with periodicity $2\pi$ which obeys the
advection diffusion equation convected by the velocity field of Navier-Stokes equation as

$(\partial_{t}+u_{j}\partial_{j}-\kappa\partial_{\mathrm{j}}^{2})\theta=f_{\theta},$ $(\partial_{t}+u_{j}\partial_{j}-\nu\partial_{j}^{2})u_{i}=-\partial:P+f_{i}$, (3)

where $f_{i}$ is the solenoidal random force, Gaussian white in time which is applied at low wavenumber band
[13]. Schmidt number $S_{c}=\nu/\kappa$ is fixed to be unity. The scalar source $f_{\theta}$ is a random Gaussian white
in time [7] (case R) or a uniform mean scalar gradient in the $x_{3}$ direction (case G), $f_{\theta}=-Gu_{3}[8,14]$ ,
where $G$ is a constant and fixed as $G=1$ . The detailed numerical scheme of DNS can be found in [7].
Here we show the results at $R_{\lambda}=427$ (case R) and $R_{\lambda}=468$ (case G) with $N^{3}=$ 10243 grid points.
Five (two) instantaneous fields recorded at intervals of 0.3 (0.15) $T_{eddy}$ were used to analyse the several
statistical quantities for case $\mathrm{G}$ (case R).

In order to discuss the scaling properties of dissipative quantities introduced later, it is useful to
determine the ICR in the present DNS. Figure 3 shows the behavior of each terms appeared in Yaglom’s
equation derived from eq.(3) [15] under the assumptions of statistical homogeneity and isotropy as,

$\frac{4}{3}\overline{\chi}r=-\langle\delta u_{r}\delta\theta^{2}\rangle+2\kappa\frac{d}{dr}\langle\delta\theta_{f}^{2}\rangle-\frac{2}{r^{2}}\int_{0}^{r}r^{\prime 2}G\langle\delta u_{3}\delta\theta\rangle dr’$. (4)

Relation (4) is well satisfied in the region $r/\overline{\eta}<200$ where the isotropy is satisfied very well. The 4/3
law is also observed in $20<r/\overline{\eta}<200$ which is dominated by the first term of right hand side of eq.(4).

3 Geometric features of intense structures
In this section, we discuss the geometric features of intense structure extracted from the derivative fields.
We define the norm of derivative fields (named by $\alpha$), vorticity $\omega$ , strain $s$ , scalar gradient $g$ , perpendicular
scalar gradient $g_{\mathrm{p}}$ , and normal scalar gradient $g_{n}$ , as follows.

$\omega=|\omega:\omega_{||^{1/2}},$ $s=|S_{i\mathrm{j}}S_{j}.,|^{1/2},$ $g=|\nabla\theta|,$ $g_{\mathrm{p}}=|\nabla_{||}\theta|,$ $g_{n}=|\nabla_{\perp}\theta|$ , (5)
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Figure 3: Variation of terms appeared in the Ya- Figure 4: One point PDFs for several derivative
glom’s equation against $r/\tilde{\eta}$ . fields defined in eq.(5)

Flgure $0$ : Variations ot box number tor covering level set ot $\omega$ (lett), 8 (center) and 9 (right) tor $\tau=1\sim$ lb

against the box size $r$ normalized by $\overline{\eta}$ .

where $S_{1j}=(\partial_{j}u:+\partial_{i}u_{j})/2$ and $\omega_{i}=(\nabla\cross \mathrm{u})_{i}$ are the rate of strain tensor and vorticity vector,
resPectively. $\mathrm{F}\mathrm{i}_{1}\mathrm{r}\mathrm{e}4$ shows the one point PDFs for derivative fields in eq.(5)normalized as $z=\alpha/\alpha_{rm\epsilon}$

for case G. We can see that the PDF tail of $g$ has a large probability than that for $\omega$ and $s$ , i.e. the scalar
gradient field $g$ is more intermittent than that of vorticity $\omega$ or strain $s$ . Moreover it should be noted
that the behavior for $g_{p}$ and $g_{n}$ is almost same for the whole intensity of fluctuations.

In order to characterize the geometric feature of the above-mentioned derivative fields, we investigate
the box counting dimension (BCD) $D_{0}$ for the level set of intense structures extracted from the derivative
fields. Scheme for performing this analysis is summarized as follows.

1. Extracting the level set from the whole domain in $3\mathrm{D}$ satisfying the condition $\alpha\geq\tau\alpha_{rms},$ $\tau$ being
the level parameter we control.

2. The box size $r=l\Delta x,(\Delta x=2\pi/N, l=1,2, \cdots, N)$ is chosen to satisfy the condition $\mathrm{m}\mathrm{o}\mathrm{d} (N+$

$m,$ $l)=0$ for integer $m$ with $0\leq m\leq 3$ . This condition is due to the requirement for obtaining the
smooth curves to determine $D_{0}$ more than the usual case as $r=2^{n}\Delta x[12]$ .

3. Counting the box numbers $N_{\alpha}(r, \tau)$ to be needed to cover level set extracted in procedure 1. for
each $r$ and $\tau$ , in which we expect the scaling behavior $N_{\alpha}(r, \tau)\sim r^{-D_{0}}$ .

Figure 5 shows the variation of $N_{\alpha}(r, \tau)$ for $a=\omega,$ $s$ and $g$ against the box size $r$ normalized by
Kolmogorov scale $\overline{\eta}$ for each $\tau$ . We can see the trivial scaling $N_{a}(r, \tau)\sim r^{-3}$ at larger box sizes, where
the region scaled by $r^{-3}$ decreases with increase of $\tau$ . Behavior is almost same for $\omega,$ $s$ and $g$ for smaller
$\tau$ , while that for larger 7, the scaling behavior is clearly different for each fields, in which N. has a
smaller exponent than the others. This fact corresponds to the PDF behavior shown in Fig.4. In order
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Figure 7: Comparison of local BCD for $\tau=1$ (up- Figure 8: Variation of minimum values of local
per curves) and 6 (lower curves). BCDs against the level set parameter $\tau$ .

to search the scaling region and to determine $D_{0}$ , we compute the local BCD defined by $D_{\alpha}(r, \tau)=$

$-d\log N_{\alpha}(r, \tau)/d\log r$ . Curves for $D_{\alpha}(r,\tau)$ corresponding to Fig.5 are shown in Fig.6. Clear plateaus are
not observed for all case of $\alpha$ except the trivial scaling $D_{\alpha}(r, \tau)=3$ at larger $r$ . Trends of behavior for
$\omega$ and 8 are totally same as those by Moisy&Jim\’enez [12]. The behavior of $D_{g}$ is clearly different from
that of $D_{\epsilon,\omega}$ . For $\omega$ and $s$ , it is found that there is a local minimum which decreases with increase of $\tau$ ,
while the case for $g$ , the local slopes gradually decrease as $r$ decreases and there is no local minimum.

Figure 7 shows the comparison of $D_{\alpha}(r, \tau)$ for five derivative fields defined in eq. (5) at $\tau=1$ and
6. In the case of $\tau=1,$ $D_{\alpha}(r, \tau)$ curves are almost same irrespective of $\alpha$ at $r/\overline{\eta}>10$ . This implies
that the geometric feature of level set for the intensity of fluctuation larger than the average value is
independent of the kind of field. In contrast for $\tau=6$ , we can see that the behavior is divided int$\mathit{0}$ two
groups as the scalar gradient fields or the vorticity and strain ones, where the scalar gradient fields are
more space filling than the vorticity and strain ones. In the range around $r/\overline{\eta}=50$ , it is estimated that
$D_{\omega,t}(\simeq 1)<D_{g,g_{p},g_{n}}(\simeq 1.5)$ . This fact is also consistent with the observation of Fig.4 or $\zeta_{q}^{\theta}<\zeta_{q}^{u}[7]$ .

Although $D_{\alpha}(r,\tau)$ curves have no plateau except $D_{\alpha}(r, \tau)=3$ at larger $r$ , the geometric feature of
derivative field can be characterized by estimating the lower bound of $D_{0}$ from the curves of $D_{\alpha}(r, \tau)$ .
We evaluate minimum values of $D_{\alpha}(r, \tau),$ $D_{\alpha}(\tau)$ , at $r/\overline{\eta}>10$ and discuss its $\tau$-dependences, as done
by Moisy&Jim\’enez [12]. The limitation $r/\overline{\eta}>10$ is due to the fact that the statistics at $r/\overline{\eta}<10$

is contaminated by the insufficient DNS grid size to resolve the derivative field accurately [17]. Results
are shown in Fig.8. As shown in Fig.7, we can clearly recognize that $D_{\omega,s}^{*}(\tau)<D_{g}^{*}(\tau)$ at $\tau>2$ , i.e.
the scalar gradient fields are more space filling than those of velocity derivatives. While the case for
$\tau<2,$ $D_{\alpha}^{*}$ has the values between 2 and 3 independent of $\alpha$ . The smaller $\tau$ structures have the larger
probability, as we can see in Fig.4, the BCDs for contributing the global dissipation of the energy and
scalar variance are predominated by them. Moisy&Jim\’enez [12] estimated $\langle D_{\omega}^{*}\rangle\simeq 2.5$ and $\langle D_{l}^{*}\rangle\simeq 2.6$

by $\langle D_{\alpha}^{*}\rangle=\int_{0}^{\infty}P(\tau)D_{\alpha}^{*}(\tau)d\tau$ . Evaluation of them by the present results are not made because we have
no accurate data for smaller $\tau$ . It should be noticed that the curve for $g_{\mathrm{p}}$ and $g_{n}$ almost collapses for all
region of $\tau$ . This implies that the geometric feature of scalar gradient is insensitive to the direction of
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mean scalar gradient and supports the observation $\zeta_{q}^{||}\simeq\zeta_{q}^{\perp}$ stated in Sec. 1.
Let us now discuss the relation between saturation of $\zeta_{q}^{\theta}$ and the geometrical dimensions shown in

Fig.8. As stated in Sec. 1, the saturating value $\zeta_{\infty}^{\theta}$ is related to the geometrical dimension $\mu$ of the support
of spatial distribution of cliffs as $\mu=3-\zeta_{\infty}^{\theta}$ . How strong intensity of fluctuation does contribute to the
saturating phenomenon? As stated in Sec.1, the large jump of scalar corresponds to the rare event of
scalar gradient fluctuation which may be bounded by the scalar increment encompassing a mean cliff
width $\Delta$ as $|\partial_{z}\theta|>|\delta\theta_{r}|/\Delta$ with $r\geq\Delta$ . Mean cliff width $\Delta$ is experimentally evaluated by $\Delta=(13\pm 3)\overline{\eta}$

[16] which is almost same as the Taylor microscale of scalar field defined by $\lambda_{\theta}=\theta_{rm\epsilon}/\langle(\partial_{z}\theta)^{2}\rangle^{1/2}=20\overline{\eta}$

from the present DNS. Moreover the asymptotic scaling law of PDF $(\mathrm{e}\mathrm{q}.(2))$ leading to the saturation of
$(_{q}^{\theta}$ is observed in their rare events with $|\delta\theta_{r}|>4\theta_{\mathrm{r}m\epsilon}$ . Therefore we guess the inequality

$|\partial_{\sim}.\theta|>|\delta\theta_{r}|/\lambda_{\theta}>4\theta_{rm*}/\lambda_{\theta}=4\sigma_{\partial\theta}$ (6)

determines $\tau\simeq 4$ to discuss the relation between the saturation of scaling exponent and geometric
feature of intense structures contributing the saturating phenomenon. From Fig.8, the lower bound of
BCD contributing to the saturation is estimated by $D_{g}^{*}(4)\simeq 1.7$, which is quite in good agreement with
the estimation $(_{\infty}^{\theta}=3-1.7=1.3$ in the second observation in Sec. 1.

There is an unsolved important problem why the scalar gradient field is more space filling than the
vorticity and strain fields. As shown in Fig.8, $D_{g}^{*}-D_{\omega}^{*}\simeq 0.7$ at larger $\tau$ . This difference may be explained
by the detailed analysis of the eigenvalue of the rate of strain tensor $S_{ij}$ . We can derive the equations of
motion for $\omega^{2}/2,$ $g^{2}/2$ , and $\omega_{i}g_{i}$ in the inviscid and force free cases as

$\frac{D}{Dt}\frac{\omega^{2}}{2}=\omega_{*}S_{ij}\omega_{\mathrm{j}}$ , $\frac{D}{Dt}\frac{g^{2}}{2}=g:(-S_{ij})g_{j}$ , $\frac{D}{Dt}\omega:g:=0$ . (7)

The mechanism for amplification of $\omega^{2}$ and $\mathit{9}^{2}$ are determined by the detailed natures of $S_{1j}$ . Important
point is that when the vorticity is amplified by the local strain, then the scalar gradient is also amplified
in the direction perpendicular to the vorticity vector at the same time [18]. As expected from eq.(7),
the formation mechanism of intense structures is governed by the eigenvalues of $S_{ij}$ and the alignment
between the eigenvectors and $\omega_{i}$ or 9: [19]. It is very interesting to clarify the relation between the spatial
distributions for the intense structures of $\omega$ and 9 and the eigenvalue distributions with the alignment
statistics. This is the future subject of the present study.

4 Examination of scalar source dependence
In this section, we investigate how the scalar injection scheme at large scale affects the geometric feature
of scalar gradient field or scaling behavior of moment of the locally averaged scalar dissipation field.

4.1 Box counting dimension
We compute the BCD for case $\mathrm{R}$ as carried out for case $\mathrm{G}$ in the previous section and compare them
to those by case G. Comparisons between case $\mathrm{G}$ and $\mathrm{R}$ for $N_{g}(\mathrm{r}.\tau)$ and $D_{g}(r, \tau)$ curves are shown in
Figs.9 and 10, respectively. For small $\tau$ up to $\tau=2$ , the behavior of case $\mathrm{G}$ are almost same as those of
case $\mathrm{R}$ in the whole scale, which implies that the geometric feature of the scalar gradient field with small
intensity of fluctuations are almost independent of the large scale injection mechanism. In contrast for
$\tau>2$ , the local BCDs for case $\mathrm{G}$ deviate from those for case R. In the ICR of $60<r/\overline{\eta}<200$ , we can
see $D_{g}^{R}(r.\tau)<D_{g}^{G}(r, \tau)$ , which implies the scalar gradient field for case $\mathrm{G}$ is more intermittent than that
for case R. This fact is consistent with the third observation of $\zeta_{q}^{R}>\zeta_{q}^{G}$ stated in Sec.1.

It is very interesting to attempt to explain the important problem; why does the geometry of intense
structures of scalar gradient field depend on the large scale injection scheme? It seems to be so difficult
to draw the definite conclusion for this problem at the present. Here we point out several important facts
giving the hints for the further understanding of this problem, as follows.. As shown in Fig.2, the strong intermittency of scalar increment in the ICR scale is due to the

existence of cliffs or fronts, and closely related to the high intensity of fluctuation of $\theta$ . If the spatial
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Figure 9: Comparison of $N_{g}(r, \tau)$ curves compen-
sated by $r^{3}$ obtained by case $\mathrm{G}$ and $\mathrm{R}$ at $\tau=1\sim 8$ .

$\mathrm{F}^{\backslash }11^{\mathrm{r}\mathrm{e}}1\mathrm{U}$ : Comparison of local BCDs evaluated by
Fig.9.

distributions of rare events of scalar is strongly dependent of the statistical details of external source,
it is plausible that those of intense structures also depend on it.. We should notice the theoretical and numerical facts that the passive scalar transfer is more non-
local than that for energy [20]. This supports the idea that the small scale statistics of passive
scalar is sensitive to the variation of large scale condition more than that of energy.. It has been pointed out that the sheetlike structures (fronts) formed in the scalar dissipation field in
$3\mathrm{D}$ domain are unstable to the perturbation such as the external source [21], in which it is observed
that instantaneous $\zeta_{q}^{R}$ at high order strongly varies with the temporal evolution. This implies that
the life time of structures like the cliffs or fronts is a key to understand the different global structure
between case $\mathrm{G}$ and R.

4.2 Intermittency exponents
We investigate the scaling of moment for the locally averaged dissipation field to get the further insight
into the results shown in the previous subsection, where our analysis is restricted to the second order
moment of them because the accuracy of statistics of the dissipation field obtained by the present DNS
is ensured for their low order moments [17]. Kinetic energy dissipations based on the strain $\epsilon$ or vorticity
$\Omega$ and the scalar variance dissipation $\chi$ are defined by

$\epsilon(\mathrm{x}, i)=2\nu \mathit{8}^{2}$ , $\Omega(\mathrm{x}, t)=\nu\omega^{2}$ , $\chi(\mathrm{x}, t)=\kappa g^{2}$ , (8)

where $\overline{\epsilon}=\overline{\Omega}$ for homogeneous turbulence. We consider the scaling behavior of the moment of the locally
averaged dissipation field with volume $V_{r}=r^{3}$ defined by

$S_{q}^{z}(r)=\langle z_{r}^{q}\rangle$ , $z_{f}( \mathrm{x})=V_{r}^{-1}\int_{V_{\mathrm{r}}}z(\mathrm{x}+\mathrm{x}’)d\mathrm{x}’$ , (9)

where $z$ denotes $z=\epsilon$ , St, or $\chi$ . Figure 11 shows $S_{2}^{z}(r)/S_{1}^{z}(r)^{2}$ curves for $\epsilon,\Omega$ , and $\chi$ by cases $\mathrm{G}$ and $\mathrm{R}$

compensated by $r^{\mu_{z}}$ , where $\mu_{z}$ is called the intermittency exponent which is chosen to observe the wider
plateau in the scaling range of $S_{q}^{z}(r\rangle$ by eye. Observations yield the values of $\mu_{z}$ as

$\mu_{\epsilon}\simeq\mu_{\Omega}\simeq 0.15$, $\mu_{\chi}^{R}\simeq 0.27$ , $\mu_{\chi}^{G}\simeq 0.33$ . (10)

From the results of Fig.11, we observe two facts that, i) the plateau is observed for $\chi$ clearer than those
for $\epsilon$ and St with $\mu\epsilon.\Omega<\mu_{\chi},$

$\mathrm{i}\mathrm{i}$ ) $\mu_{\chi}^{R}<\mu_{\chi}^{G}$ , that is, the scalar dissipation for case $\mathrm{G}$ is more intermittent
than that for case $\mathrm{R}$ as well as the scaling exponent of scalar structure function in ICR (see Fig.1).
Observation i) is also comparable to the fact that the scalar structure function has the wider scaling
range than that for velocity increment. Moreover observation ii) is consistent with the previous results
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Figure 11: Comparison of the scaling behavior of Figure 12: Comparison of local scaling exponents
compensated $S_{2}^{z}(r)/S_{1}^{z}(r)^{2}$ for the locally averaged for scalar variance transfer flux between case $\mathrm{G}$

dissipation fields. and R.

that the intense structure of scalar gradient for case $\mathrm{G}$ is more space filling (more intermittent) than that
for case R. One should note that the values in eq.(10) are close to the experimental values $\mu_{\epsilon}\simeq 0.20\pm 0.05$

and $\mu_{\chi}\simeq 0.34\pm 0.05[22]$ .
How are the values of $\mu_{\sim}$, related to the scaling exponents of ICR statistics? We consider the scaling

law obtained by the refined similarity hypothesis of the energy cascade process [23] applied to the passive
scalar transport. Cascading picture of the passive scalar analogous to the Kolmogorov theory implies that
the fluctuation of $\chi_{r}$ is related to that of the transfer flux $\Pi_{r}^{\theta}$ in ICR as Xr $\sim\Pi_{r}^{\theta}$ . Surrogate representation
of $\Pi_{r}^{\theta}$ is given by using the velocity and scalar increments as $\Pi_{r}^{\theta}\wedge\sim-\delta u_{r}\delta\theta_{r}^{2}/r$ . So we expect that the
scaling behavior of ( $(\delta u_{f}\delta\theta_{r}^{2})^{2}\rangle/\mathrm{r}^{2}$ is same as that of $\langle\chi_{r}^{2}\rangle$ . To follow this, we compute the mixed velocity
scalar structure function and examine the scaling behavior by its local slopes. Results are shown in
Fig.12. This clearly stands for $\langle(\Pi_{r}^{\theta})^{2}\rangle\wedge\sim r^{-\mu_{f}}$ with $\mu_{f}^{R}\simeq 0.45$ for case $\mathrm{R}$ and $\mu_{j}^{G}\simeq 0.55$ for case $\mathrm{G}$ ,
suggesting $\mu_{f}>\mu_{\chi}$ , i.e. the scaling behavior of $\langle(\Pi_{r}^{\theta})^{2}\rangle\wedge$ is clearly different from that of dissipation field.
Similar trend is also observed in the relation between $\epsilon_{r}$ and $\hat{\Pi}_{r}^{u}\sim-\delta u_{r}^{3}/r$ .

It is interesting to discuss the another relation between the intermittency exponents and the scal-
ing exponents of the fourth order scalar structure function. It is expected that the locally averaged
scalar dissipation is dimensionally evaluated by $\chi_{f}\sim\kappa(\delta\theta_{r}/r)^{2}$ at smaller $r$ . This implies the relation
$\langle\chi_{r}^{2}\rangle/\langle\chi_{r}\rangle^{2}\sim\langle\delta\theta_{r}^{4}\rangle/\langle\delta\theta_{r}^{2}\rangle^{2}$. That is, the scaling relation $\mu_{\chi}=2\zeta_{2}^{\theta}-\zeta_{4}^{\theta}$ is suggested from the dimensional
arguments. From the DNS data for the scaling exponent of scalar structure functions $[7, 8]$ , we can obtain
$2\zeta_{2}^{\theta}-\zeta_{4}^{\theta}=0.28$ for case $\mathrm{R}$ and 0.33 for case G. These are in good agreement with the estimations of
intermittency exponent in eq. (10). This scaling relation has been clarified in the case for the Kraichnan
model [24] and generalized to the q-th order moments as $\mu_{q}=q\zeta_{2}-\zeta_{2q}$ , which is also derived from it
with $d>>1[25]$ .

5 Conclusion
We discussed the geometric features of the vorticity, strain and scalar gradient fields by investigating
the box counting dimensions of the level set of intense structures for them. Although the clear scaling
behavior for evaluating $D_{0}$ is not observed for all cases of level set, the different behavior of the local
BCDs suggest the existence of different geometry of intense structures among each fields. We found
that the scalar gradient field is more space filling than the vorticity and strain fields at high intensity of
fluctuation. This is consistent with the observation that the passive scalar field is more intermittent than
the velocity one. Moreover the saturation of the scaling exponent of the scalar structure function for case
$\mathrm{G}$ was explained in terms of the geometric feature of the intense structures of the scalar gradient field,
where it was shown that the lower bound of BCDs is related to the saturation value of $\zeta_{q}^{G}$ at high order.

Influence of the large scale condition on the scalar dissipation statistics was also investigated by
comparing the results for both cases $\mathrm{G}$ and R. We showed that the geometrical dimension of the intense
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structure of scalar gradient is dependent of the scalar injection scheme, where it was obtained that the
level set by case $\mathrm{G}$ is more space filling than that of case R. This fact implies that case $\mathrm{G}$ is more
intermittent than case $\mathrm{R}$ , as shown in Fig.1. Further analysis was carried out by investigating the scaling
behavior of locally averaged dissipation statistics. We showed that the intermittency exponent of scalar
dissipation evaluated by case $\mathrm{G}$ is larger than that by case $\mathrm{R}$ , suggesting the stronger intermittency of
case $\mathrm{G}$ than that of case R. These results are everything consistent with the third observation in Sec.1.
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