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Abstract

In this paper, we consider the effect of viral diversity on the human immune
system with the frequency dependent proliferation rate of CTLs and elimination
rate of infected cells by CTLs. In the asymptomatic phase of HIV infection, it is said
that there is several thousand viral diversity. Our mathematical model suggests that
viral diversity and the frequency dependent rates result in the collapse of immune
system. The complex chaotic behavior is observed when two different virus are
incorporated.

1 Introduction

Today, there are still many problems on HIV infection which had not been elucidated
completely yet, in particular for viral diversity, so long asymptomatic phase and collapse
of immune system. In the acute phase of HIV infection, there is few viral diversity.
But in the asymptomatic phase, it is said that there is several thousand viral diversity.
Therefore we pay attention to viral diversity and the frequency that specific immune cells
encounter specific infected cells. Mathematical models for virus dynamics has contributed
to elucidate the mechanism of interactions between virus and immune system.

In our study, we propose a mathematical model in which CTL reactions (CTL prolifer-
ation and killed rate of infected cells by CTLs) depend on the frequency characterized by
the viral diversity which describes the probability that specific CTLs encounter to specific
infected cells. Let us define the collapse of immune system by the loss of regulation of
immune system. That is, as for the complicated behavior, we consider that the loss of
regulation of immune system is serious. The viral diversity and the frequency dependent
of CTL reactions are the main subject throughout this paper.

Without viral diversity, we show that the interior equilibrium of one-virus model can
be unstable. But our numerical simulations suggest that one-virus model has a stable
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limit cycle. Therefore, in this case, we can conclude that, in a point of view of “sta-
ble”, immune system is regulated if we do not consider viral diversity. However when we
incorporated viral diversity (i.e. two-virus model), the frequency due to the viral diver-
sity appeared conspicuously so that our numerical simulations suggested the existence of
strange attractors.

Consequently, our mathematical model suggests that viral diversity and the frequency
dependent proliferation and elimination of CTLs may lead the collapse of imnune system.

2 Model

In this section, we construct a mathematical model which describes viral diversity in
the asymptomatic phase of HIV infection. Our model is based on the immune model of
infectious disease, which is developed by Nowak and Bangham [8]. This model considers
viral diversity, too. There are many immune models elsewhere (see [4], [5], [6], [7], [13],
[15] $)$ . Nowak et al. incorporated the rate of specific CTLs $(Z_{j})$ proliferation in response
to specific infected cells $(I_{j})$ with the mass action law as $cI_{j}Z_{j}$ . However, in their model,
there is no interaction among different types of CTLs. In reality, there must be some
correlations among different types of specific CTLs $(Z_{j})$ , which is in turn reflected to the
rate of CTL proliferation. In this paper, we assume that the correlation is incorporated
as a frequency that the specific CTLs $(Z_{j})$ encounter to the specific infected cells $(I_{j})$ . In
the similar manner, we consider that the rate of elimination of specific infected cells $(I_{j})$

by the specific CTLs $(Z_{j})$ is proportional to this frequency. Our model is given as follows;

$T’= \lambda-dT-\sum_{j=1}^{n}\beta_{j}’TV_{j}$ ,

$I_{j}’=\beta_{j}’TV_{j}-aI_{j}-qZ_{j^{\frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}’}}}$

(1)

$V_{j}’=kaI_{j}-uV_{j}$ ,

$Z_{j}’=cZ_{j} \frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}}-\delta Z_{j}$ . $(j=1,2, \ldots, n)$

This model consists of $3n+1$-variables: $T$ denotes the population sizes of uninfected cells,
$I_{j}$ denotes infected ceUs with virus particle of type $j,$ $V_{j}$ denotes the free virus particle
of type $j$ , and $Z_{j}$ denotes the CTLs of type $j$ , respectively. These quantities can either
denote the total abundance in a host, or the abundance in a given volume of blood or
tissue. All parameters are positive. Remark we assume cell-to-hee virus spread of HIV
but Rebecca et al. assumed cell-to-cell spread of HIV (see [12]).

The parameter A is the rate at which new target cells are generated. Uninfected cells,
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infected cells, virus and CTLs, die at a rate $d,$ $a,$ $u$ and 6, respectively. Once cells are
infected, we assume that they produce $k$ new virus particles during their life, which on
average has length $1/a$ . Thus, on average, virus is produced at a rate $ka$ . Alternatively,
one can view virus as produced in a burst of $k$ particles when infected cell dies; thus
producing virus at a per capita rate is $ka$ .

CTL proliferation process in our model is given by $\frac{cZ_{\mathrm{j}}I_{j}}{T+\Sigma_{j=1}^{n}I_{j}}$: The frequency of $I_{j}$ to all
$\mathrm{T}$ cells $(T+ \sum_{j=1}^{n}I_{j})$ is described by $\frac{I_{j}}{T+\Sigma_{\mathrm{j}=1}^{n}I_{j}}$ . The parameter $c$ is a product of the CTL
responsiveness and the number of CTLs encountering to all $\mathrm{T}$ cells. The CTL responsive-
ness describes an average rate at which specific CTL proliferates after it encounters to
the specific infected cells. Therefore $\frac{cI_{\mathrm{j}}}{T+\Sigma_{j=1}^{n}I_{j}}$ is the rate of CTL proliferation per capita.

In the similar manner, the infected cells are killed by CTLs at the rate $\frac{qZ_{j}I_{\mathrm{j}}}{T+\Sigma_{\mathrm{j}=1}^{n}I_{j}}$. The
parameter $q$ is a product of the rate at which CTLs kill infected cells and the number of
CTLs encountering to all $\mathrm{T}$ cells. On the other hand, the rate of infected cell proliferation
in our model is given by $\beta_{j}’TV_{j}$ , and hence the decay rate of uninfected cells is given by
$\sum_{j=1}^{n}\beta_{j}’TV_{j}$ . The parameter $\beta_{j}’$ describes the efficacy of this process, which is the multi-
plication of the probabihty at which virus particles find uninfected cells, the rate of virus
entry, and the rate of successful infection.

In this $\mathrm{m}o\mathrm{d}\mathrm{e}\mathrm{l}$, we emphasize on the specificity for CTLs to encounter with the target
cells: we assume that CTLs are activated only if the specific infected cells are encountered
to. Without any help of cytokine signal transduction and so on, that is, there is no
particular mean of detection, the way of detection of CTLs would be in a random manner.
Then the probability that CTLs of typ$ej(Z_{j})$ encounter to the specific target cells $(I_{j})$

is given by $\frac{I_{\mathrm{J}}}{T+\Sigma_{\mathrm{j}=1}^{n}I_{j}}$ , reflecting the random search. As the viral diversity increases, it
would be expected that the dependence on the hequency of the random search relatively
increases. Thus in this model, the effect of viral diversity is reflected in the rate of CTL
proliferation and the elimination of infected cells. On the other hand, the healthy T-
cell remains as the only resource for all types of virus even if viral diversity increases.
As long as the resource is available, virus can increase in frequency independent simple
mass action. Note that the form of frequency dependent proliferation rate differs $h\mathrm{o}\mathrm{m}$

well-known functional response. CTL proliferation will take the form of Holling type II
functional response if the handling time during which CTLs are attaching to infected
cells is incorporated (see [1], [2], [3]). In our model, the effect of random search is not
represented as a handling time but as the probability that CTLs encounter to the specific
infected cells.

We can reduce this model to a simpler form, since the number of free virus particles
would change in shorter time-scale than the other variables in Eq.(l) (see [4], [5], [13]).
Practically, if the decay rate of free virus $u$ , is much larger than that of the infected
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cells $a$ , then we may introduce a good approximation that virus has already $\mathrm{b}ee\mathrm{n}$ in a
steady state (i.e. $V_{j}’=0$ ) and hence $V_{j}=kaI_{j}/u$ . This leads to the simplified system of
differential equations;

$T’= \lambda-dT-\sum_{j=1}^{n}\beta_{j}TI_{j}$ ,

$I_{j}’=\beta_{j}TI_{j}-aI_{j}-qZ_{j^{\frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}’}}}$ (2)

$Z_{j}’=cZ_{j} \frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}}-\delta Z_{j}$ . $(j=1,2, \ldots, n)$

Here we define $\beta_{j}=ka\beta_{j}’/u$ .
Moreover we can reduce this model to a simple form by scaling Eq.(2) (see [14]). We

introduce new variables
$S= \frac{dT}{\lambda}$ , $H_{j}= \frac{dI_{j}}{\lambda},$ $\mathrm{Y}_{j}=\frac{dZ_{j}}{\lambda}$ ,

and Eq.(2) takes the form

$S’=d-dS- \sum_{j=1}^{n}\frac{\lambda\beta_{j}}{d}SH_{j}$ ,

$H_{j}’= \frac{\lambda\beta_{j}}{d}SH_{j}-aH_{j}-q\mathrm{Y}_{j^{\frac{H_{j}}{S+\sum_{j=1}^{n}H_{j}’}}}$ (3)

$\mathrm{Y}_{j}’=c\mathrm{Y}_{j}\frac{H_{j}}{S+\sum_{j=1}^{n}H_{j}}-\delta Y_{j}$ . $(j=1,2, \ldots, n)$

Finally, we redefine

$\beta_{j}rightarrow\frac{\lambda\beta_{j}}{d^{2}},$
$a \mapsto\frac{a}{d},$ $q \mapsto\frac{q}{d},$ $c rightarrow\frac{c}{d},$ $\delta\mapsto\frac{\delta}{d}$ ,

and also scale time and introduce new time

$\tau=dt$ .

Since
$/= \frac{d}{dt}=\frac{d\tau}{dt}\frac{d}{d\tau}=d\frac{d}{d\tau}$ ,

we obtain the following system;

$T’=1-T- \sum_{j=1}^{n}\beta_{j}TI_{j}$ .

$I_{j}’=\beta_{j}TI_{j}-aI_{j}-qZ_{j^{\frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}’}}}$ (4)

$Z_{j}’=cZ_{j} \frac{I_{j}}{T+\sum_{j=1}^{n}I_{j}}-\delta Z_{j}$ , $(j=1,2, \ldots, n)$
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Here we use original notations for the convenience. In the remainder of this paper, we will
study Eq.(4). This system describes qualitative dynamics of asymptomatic phase of HIV
infection. Note that, as sam$e$ as system (1), the interactions between specific infected cells
and specific CTLs depend on the frequency that specific CTLs encounter to the specific
infected cells, but the interactions between uninfected cells and specific infected cells are
not frequency dependent.

3 Analysis

In this section, we investigate the stability of equilibria for one-virus model (that is,
the model without viral diversity), which is given by the following system of differential
equations;

$T’=1-T-\beta_{1}TI_{1}$ ,

$I_{1}’= \beta_{1}TI_{1}-aI_{1}-\frac{qZ_{1}I_{1}}{T+I_{1}}$ , (5)

$Z_{1}’= \frac{cZ_{1}I_{1}}{T+I_{1}}-\delta Z_{1}$ .

This system describes the situation where virus has not mutated yet. Iwasa et al. [4] have
proved that an interior equilibrium is globally stable, if tfe terms associated with immune
reactions are given by $cZ_{1}I_{1}$ and $qZ_{1}I_{1}$ instead of $\wedge \mathrm{c}ZI1T+I_{1}$ and $\frac{qZ_{1}I_{1}}{T+I_{1}}$ in Eq.(5). However, we
show that the interior equilibrium of one-virus mod$e1(5)$ can be unstable. Also our
numerical simulations suggest that our model (without viral diversity) has a stable limit
cycle. Therefore, in this case, we can conclude that, in a point of view of stability, immune
syst$e\mathrm{m}$ is regulated (or is not collapsed) if we don’t consider viral diversity.

This system describes a situation where virus has not mutated yet and, therefore,
describes the dynamics between the acute phase and the early stage of the asymptomatic
phase of HIV infection because we don’t consider viral diversity.

We will investigate the stability of equilibria. System (5) has three equilibria. The
first one is $E_{H}=(1,0,0)$ which represents a state where infected cells are absent.

The second equilibrium $E_{I}$ represents a state where infected cells are present, while
CTLs are absent. Since the $Z$-component of $E_{I}$ is $0$ , the components $\tau*$ and $I_{1}^{*}$ for
$E_{I}=$ $(T”, I_{1}^{*}, 0)$ are given as follows;

$T^{*}= \frac{a}{\beta_{1}},$ $I_{1}^{*}= \frac{1}{a}-\frac{1}{\beta_{1}}$ .

If $R_{1}>1$ , then $E_{I}$ exists in $\mathbb{R}_{+}^{3}$ .
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The third equilibrium $E_{C}$ can be an interior equilibrium, which represents a state
in which both infected cells and CTLs are present. Here the interior equilibrium $E_{C}=$

$(\hat{T},\hat{I}_{1},\hat{Z}_{1})$ is represented by the following form;

$\hat{T}=\frac{-1+\sqrt{1+4\hat{\beta}}}{2\hat{\beta}}$

, $\hat{I}_{1}=\frac{\delta}{c-\delta}\hat{T}$ , $\hat{Z}_{1}=\frac{c\hat{T}}{q(c-\delta)}(\beta_{1}\hat{T}-a)$

where $\hat{\beta}=\delta\beta_{1}/(c-\delta)$ . Here we always assume that $c$ is larger than $\delta$ i.e. $c>\delta$ in the
following. Note that $Z_{1}’<0$ if $c\leq\delta$ .

We will consider the local stability of these equilibria. The Jacobian matrix for (5) is;

$J=$ ( $\beta_{1}T-\frac{TqZ_{1}T}{I_{1})^{2}\}^{T+I_{1})^{2}}}\frac{a--\beta_{1}cZ_{1}}{(T+}$ $\frac{-cI}{T}\delta\frac{qI_{1}0}{+I_{1}\tau_{1}+I_{1}-}$).
First, we prove the situation wher$e$ CTLs are absent in a steady state.

Theorem 3.1. If $R_{1}<1$ , then $E_{H}$ is $LAS$. If $1<R_{1}< \frac{a\delta}{c-\delta}+1,$ $thenE_{I}$ is $LAS$ and
$a\delta$

$E_{H}$ is unstable. Moreover if $R_{1}>\overline{c-\delta}+1$ , then $E_{H}$ and $E_{I}$ are unstable.

Second, we consider the situation where CTLs are present in a steady state. If we
assume $c>\delta$ , we can show that the interior equilibrium is LAS under a certain condition.

Theorem 3.2. Suppose that $c>\delta.$ If $\frac{a\delta}{c-\delta}+1<R_{1}<\frac{a\delta}{\mathrm{c}-\delta}+1+\epsilon$ or $\frac{a\delta}{c-\delta}+1\ll R_{1}$ ,
then $E_{C}$ is $LAS$. Here $\epsilon$ is a sufficiently small positive constant.

Next, let us show that $E_{C}$ becomes unstable under feasible conditions. The character-
istic equation is obtained from $\det(p\mathrm{I}\mathrm{d}-J_{E_{C}})=0$, where Id is the $3\mathrm{x}$ -identity matrix.
Expanding $\det(p\mathrm{I}\mathrm{d}-J_{E_{C}})=0$ gives the characteristic equation $p^{3}+a_{1}p^{2}+a_{2}p+a_{3}=0$ .
Set $s=\delta/c$ . Then

$a_{1}=1+as+ \frac{s^{2}}{1-s}(\theta+a)$ ,

$a_{2}= \delta\theta(1-s)+s\theta\{-1+\frac{1-2s}{1-s}(\theta+a)\}+\frac{s}{1-s}(\theta+a)^{2}$,

$a_{3}=\delta\theta(1-s)+2s\theta\delta(\theta+a)$ .

Note that for sufficiently small $s,$ $1/(1-s)=1+S+O(s^{2})$ , where $O(s^{2})/sarrow 0$ as $sarrow \mathrm{O}$ .
Moreover

$T= \frac{-1+\sqrt{1+4\beta\frac{s}{1-s}}}{2\beta\frac{s}{1-s}}=\frac{2}{1+\sqrt{1+4\beta\frac{s}{1-s}}}=1-\beta s+O(s^{2})$.
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Then $\theta+a=\beta T=\beta-\beta^{2}s+O(s^{2})$ and $\theta=(\beta-a)-\beta^{2}s+O(s^{2})$ . Direct calculation
yields that

$a_{1}=1+as+O(s^{2})$ ,

$a_{2}=\delta(\beta-a)+\{\beta^{2}+\beta(\beta-a)-(\beta-a)-\beta^{2}\delta-(\beta-a)\delta\}s+O(s^{2})$,

$a_{3}=\delta(\beta-a)+\{2\beta\delta(\beta-a)-(\beta-a)\delta-\beta^{2}\delta\}s+O(s^{2})$ .

Hence we have

$a_{1}a_{2}-a_{3}=\{2(1-\delta)\beta^{2}+(3a\delta-a-1)\beta+a(1-a\delta)\}s+O(s^{2})$ .

For sufficiently small $s$ , the sign of $a_{1}a_{2}-a_{3}$ is determined by the sign of the following
quadratic function

$2(1-\delta)\beta^{2}+(3a\delta-a-1)\beta+a(1-a\delta)$

with respect to $\beta$ .

Theorem 3.3. Suppose that $\delta>1$ . For sufficiently large $\beta$ and $c,$ $E_{C}$ is unstable.

For instance, assume that $a=\delta>1$ . Then $a_{1}a_{2}-a_{3}<0$ if $\beta>(3\delta^{2}-\delta-1)/2(\delta-1)$ .
Figure 1 illustrates a solution of (5) on $I_{1}-Z_{1}$ -plane. The stable limit cycle is observed

Figure 1: A periodic orbit in $I_{1}-Z_{1}$ phase.

for $\beta=10’.a=\delta=2$ and $c=q=40$. Not$e$ that for relatively large $\beta$ , a limit cycle
generically exists. This implies that an interior equilibrium point of system (5) is likely
to be unstable for relatively large $\beta$ and large $c$. In other words, if both HIV and immune
system are relatively active, then the disease state can be periodic. It is important to
note that the solution seems to converge to a stable periodic orbit even when the interior
equilibrium point is unstable.
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4 Numerical simulations
In this section, we study a two-virus model by simulations. If we do not consider viral
diversity (i.e. one-virus model), then the interior equilibrium $E_{C}$ is LAS or there exists
a stable limit cycle. It will be shown for the model with two virus that immune system
loses its regulation and the solution behaves chaotically. Two-virus model is given by the
following system of differential equations;

$T’=1-T-\beta_{1}TI_{1}-\beta_{2}TI_{2}$ ,

$I_{1}’= \beta_{1}TI_{1}-aI_{1}-\frac{qZ_{1}I_{1}}{T+I_{1}+I_{2}}$ ,

$I_{2}’= \ TI_{2}-aI_{2}-\frac{qZ_{2}I_{2}}{T+I_{1}+I_{2}}$ , (6)

$Z_{1}’= \frac{cZ_{1}I_{1}}{T+I_{1}+I_{2}}-\delta Z_{1}$ ,

$Z_{2}’= \frac{cZ_{2}I_{2}}{T+I_{1}+I_{2}}-\delta Z_{2}$ .

This system describes a situation where virus has already mutated and, therefore, de-
scribes the dynamics in the asymptomatic phase of HIV infection. Although several
thousand kinds of virus are observed in the asymptomatic phase, here we consider the
case where two kinds of virus are present. We carry out a simulation of solutions of (6)
with parameters $\beta_{1}=10,$ $\beta_{2}=7,$ $a=1.55,$ $\delta=1.5$ and $c=q=40$.

Temporal concentration of total infected cells is given by Figure 2. This figure shows
$\prime \mathrm{r}9*\cdot 1\mathrm{l}\mathrm{n}\mathrm{e}\cdot\Leftrightarrow \mathrm{t}\cdot \mathrm{d}$ cell $\cdot$

$0*\dagger.’ \text{ト}$

$0.\epsilon\vdash$

$0\cdot\vdash!;$

.

$\mathrm{F}\mathrm{i}_{1}\mathrm{r}\mathrm{e}2$ : Total infected cells (time is scaled).

that virus load is in a chaotic state and is kept at a low level. Moreover we can choose
parameters to make virus load be a periodic state. Since we observe usuaUy discrete
clinical data, it may look as if the data is constant. This simulation may warn that virus
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load may not be in a steady state but be in a periodic or chaotic state. It is important
for us to understand correct virus load in order to make an effective HIV therapeutic
strat $e\mathrm{g}\mathrm{y}$ .

An example of strange attractors is drawn in Figure 3. Numerical simulations support

CTL 1

Figure 3: A strange attractor in $Z_{1}-Z_{2}-I_{1}$ phase.

that the system exhibits a chaotic behavior and system (6) has a strange attractor in
Int $\mathbb{R}_{+}^{5}$ . If the terms associated with immune response change are given by $cZ_{*}.I_{i}$ and
$qZ_{i}I_{i}$ , instead of $\frac{\mathrm{c}ZI}{T+I_{1}+T_{2}}$ and $\frac{qZI:}{T+I+T_{2}}\mathrm{i}(i=1_{!}2)$ , then the interior equilibrium is GAS
$(\mathrm{s}e\mathrm{e}[4])$ . However our system (6) has strange attractors. Intuitively, the reason why the
chaotic behavior occurs is explained as follows: Since immune reactions (CTL proliferation
and elimination rate of infected cells by CTLs) depend on the frequency that the specific
CTLs encounter to the specific infected cells, initially immune system $(Z_{1})$ attacks strongly
specific infected cells $(I_{1})$ with higher frequency of encountering than the other. Therefore
$I_{1}$ decreases and the other specific infected cells $(I_{2})$ may increase, because the rate of
CTL proliferation is proportional with the frequency. Note that CTL proliferation rate,
$cZ_{2}I_{2}/(T+I_{1}+I_{2})$ , will increase with the decrease of $I_{1}$ . As a result, the corresponding
CTLs $(Z_{2})$ increases and $Z_{1}$ may decrease. We conclude that this continuous alternative
irregular change of the dominant specific infected cells may induce chaotic behaviors.

The relationship between concentrations of infected cells of typ$e1(I_{1})$ and $\dot{\mathrm{C}}\mathrm{T}\mathrm{L}$ of
type 1 $(Z_{1})$ is characterized in Figure 4. Compared Figure 4 with Figure 1, it is clear
that the stability of system is lost by viral diversity. In Figure 1, numerical simulations
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Figure 4: A strange attractor in $I_{1}-Z_{1}$ phase.

support that system has a stable limit cycle. On the other hand, in Figure 4, numerical
simulations support that system does not have a stable limit cycle.

The relationship between concentrations of CTL of type 1 $(Z_{1})$ and type 2 $(Z_{2})$ is
characterized in Figure 5. This figure suggests the collapse of immune system in terms

Figure 5: A strange attractor in $Z_{1}-Z_{2}$ phase.

of the loss of regulation. Each concentration of CTLs of type 1 and type 2 varies neither
in a steady nor a periodic state, but rather in a chaotic stat$e$ . Thus CTLs can not be
controlled by immune system if the viral diversity is taken into account. In system (5),
CTLs can be controlled by immune system in a sense that the solution settles in a steady
or a stable limit cycle. On the other hand, in system (6), the immune system has lost
its regulation of virus, and the system exhibits a complicated behavior. Therefore viral
diversity takes away a regulatory function of immune system.
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Consequently, our mathematical model suggests that the effect of viral diversity and
the frequency dependence that the specific CTLs encounter to the specific infected cells
result in the collapse of immune system and make the behavior of system dynamics be
complex.

5 Conclusion
We showed that the interior equilibrium of the one-virus model can become unstable
because of the frequency dependence. But our numerical simulation suggested that only
a stable limit cycle exists when the equilibrium is unstable. Therefore in this situation,
the disease state of patient may be periodic. The interior equilibrium can also become
stable so that the disease state may be stable. In both cases, we can conclude that, in our
definition of “regularity”, immune system remains regulated if we do not consider viral
diversity.

On the other hand, our numerical simulations suggested the existence of strange at-
tractors. When we incorporate viral diversity (i.e. two-virus model), the effect of the
frequency dependence due to the viral diversity appears conspicuously. We observe con-
tinuous alternative immunodominant changes irregularly when the behaviors of two-virus
model are chaotic. Therefore in this situation, the disease state of patients is unpre-
dictable and chaotic. Moreover their immune response oscillates irregularly and their
disease progression may be faster. Our numerical simulations suggest that viral diversity
can cause the collapse of immune system with an emergence of”chaotic behavior”.

Finally we conclude this paper with an interesting observation. We will see that syst$e\mathrm{m}$

(6) clearly shows a property of destabilization of system as viral diversity increases. For
example, we carry out a simulation for the solution of system (6) with parameters $\beta_{1}=10$ ,
&=8.5, $a=1,$ $\delta=1$ and $c=q=40$. For each positively invariant subsystem of type 1
(system (6) with $I_{2}=Z_{2}=0$) and type 2 (system (6) with $I_{1}=Z_{1}=0$), Note that each
corresponding interior equilibria of the subsystems are LAS. However, Figure 6 shows that
system (6) has a periodic attractor in $\mathrm{I}\mathrm{n}\mathrm{t}\mathbb{R}_{+}^{5}$. To investigate this property in detail, let us
notice that the transversal eigenvalues are given by $\partial\dot{I}_{2}/\partial I_{2}=\beta_{2}\tilde{T}_{1}-a$ for the subsystem
of type 1 and $\partial\dot{I}_{1}/\partial I_{1}=\beta_{1}\tilde{T}_{2}-a$ for the subsystem of type 2. Her$e\overline{T}_{1}$ and $\tilde{T}_{2}$ denote
the $T$-component of the interior equilibria of subsyst$e\mathrm{m}$ of type 1 and 2, respectively. In
this case, $\ \tilde{T}_{1}-a\approx 6.0153>0$ and $\beta_{1}\tilde{T}_{2}-a\approx 7.44546>0$ . In other words, both
boundary equilibria of entire system (6) are not saturated (see $[9]-[11]$ ). Since system (6)
is dissipative, periodic attractors can exist even though the interior equilibrium of each
subsystem is LAS. Thus stable state of disease can become periodic suddenly as viral
diversity increases. This suggests that viral diversity expresses the collapse of immune
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$\{_{-}^{\neg}\mathrm{T}\mathrm{T}$ . $\rceil$

$\mathrm{F}\mathrm{i}_{1}\mathrm{r}\mathrm{e}6$ : A periodic attractor in $Z_{1}-Z_{2}-I_{1}$ phase.

system conspicuously.
Consequently, in both cases, our mathematical model suggests that viral diversity and

the ffequency dependent proliferation of CTLs and elimination of the infected cells may
lead the collapse of immune $\mathrm{s}\}^{r}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}$.
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