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Cross-diffusion induced instability

and Turing’s diffusion induced instability

Masato lida*, Masayasu Mimurat and Hirokazu Ninomiyat

Abstract

The cross-diffusion competition systems were introduced by Shigesada ot al.
to describe the population pressure by other species. In this paper, intraducing
the densities of the active individuals and the less active ones, we show that the
cross-diffusion competition system can be approximated by the reaction-diffusion
system which only includes the linear diffusion. The linearized stahility around the
constant equilibrinm solution is also studied, which implies that the cross-diffusion
induced instability can be regarded as Turing’s instability of the corresponding
reaction-diffusion system.,

1 Introduction

Understanding of spatial and/or temporal behaviors of interacting species in ecolog-
ical systems is a central problem in population ecology. As one of several ecological
interactions of multi-species, competitive dynamics of interacting species have heen in-
vestigated from theoretical as well as field works. Various types of mathematical models
have heen proposed to study problems of coexistence or exclusion of competing specics.
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Among many mathematical models, reaction-diffusion systems have been used to un-
derstand the evolutional behavior of spatially segregating regions of competing species.
Let u;(¢, ) be the population density of the i-th species U; (i = 1,2, ..., M) at time t > 0
and the position 2 € €, where ) is a bounded domain in R?. The competition-diffusion

system of Lotka-Volterra-Gause type for u; (i = 1,2,..., M) is given by

M

Ui = diAu; + (r,- - Zai‘,uj) w, t>0,ref, (1)

J=1

where d; is the diffusion rate of u;, r; is the intrinsic growth rate, a;; and a;; (i # j) are
respectively the intra-specific and the inter-specific competition rates (i,7 = 1,2, ..., M).
All of the rates are positive constants. We impose the zero-flux boundary conditions

8’11,,' . .
5-—0, | t> 0,z € 09, (2)

on (1) where v is the outward normal unit vector on €. The initial conditions are
u;(0,7) = uoi(z) > 0, z €. (3)

The simplest system of (1) is the case when M = 2, that is,

I

{ up = diAu + (ry — a1uy — byug)uy, t>0,2e€q.

o daAus + (19 — bauy — agug ), t>0,z €Q, (4)

where 7, a;, b; (i = 1,2) are positive constants. With the similar boundary and iitial
conditions to (2) and (3), qualitative properties of non-negative solutions (u1,uy) of
the system (4) have been intensively studied in mathematical communities. The first
remark is that the stable attractors of (4) should be equilibrium solutions (|3]). This
information indicates that existence and stability of non-negative equilibrium solutions
is important for the study of asymptotic behavior of solutions. If the domain € is convex,
it is proved in [7] that any spatially non-constant equilibrium solutions are unstable,
even if they exist. This implies that solutions of (4) become spatially homogeneous
asymptotically, in other words, stable equilibrium solutions of the diffusion-less system
of (4)
{ Uyr = (7'1 — QiU — b1’llg’)'ul, t >0, (5)
Uy = (19— bouy — aqug)ug, t>0 :

are very important to know the asymptotic behavior of the solutions of (4) even if the
diffusion term is present. In fact, if we assume the situation where the inter-specific
competition is strong, that is,

ay < ™ by

— — 6
bg Ta < aq’ ( )

4
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stable spatially constant equilibrium solutions of (4) are (u;,us) = (r1/ay,0) and
{0,79/09). This means that one of the competing species survives and the other is
extinct. We can say ecologically that competitive exclusion occurs for two species, if
they are strongly competing.

On the other hand, it is observed in fields that individuals do not necessarily move
around randomly [6]. Among them, one example is that the movement depends on
the population pressures caused by interacting other species. This situation can not be
described by (4) any more. Along this line, one model for the competitive interaction
hetween two species is proposed in [15], which is given by

Ure
Ut

where «, 3 stand for the cross-diffusion pressures and are non-negative constants. We
simply call a and 3 cross-diffusion coefficients. From the nonlinearity viewpoint, (7)
falls into quasi-linear parabolic systems so that even the existence problem of solutions
is not trivial and has been investigated by several authors ( for instance |1, 10, 2] and the
references therein ). On the other hand, the stationary problem for (7) has been studied
from spatial-segregation viewpoints, for which three basically different approaches were
emploved:

Al(dy + aug)ug] + (r1 — @y — byug)uy, t>0,z€e, (M)
Al(da + BurYus] + (12 — bawy — aruz)us, t>0,r €}

i

(i) Bifurcation approach ([12]);
(ii) Singular perturbation approach ({13, 5, 9]);
(iii) Elliptic approach ([8]).

Integrating the results above, it turns out that the structure of equilibrium solutions
of (7) with the boundary conditions similar to (2) sensitively depends on parameters
in the systems and is extremely complicated, even in one dimension. As a simplified
system of (7), let us consider the following system:

wp = Alld) + aws)uy] + (11 = 6y — bug)ug, t>0,z €, ®)
Uy = daAuy + (.‘I"_; — bauy — azu-z)ug, i t>0,z€ Q,
where we simply put 7 = 0. Suppose that

s T2 by’

for which, there is only one stable spatially constant equilibrium solutions (uj,u3) —
((agry = bim2) /(@16 — bybs), (=bar1 + a172)/ (@102 — b1bs)) while others (uy, u3) = (0,0),
(r1/a1,0) and (0,72/a2) are unstable when « is small enough. Mimura and Kawasaki
[12] reported that (u], u3) loses its stability as « increases (see also [11]). For example,
consider © to be one dimensional interval and fix a(= 3) and the values of the com-

petition rates to satisfy (9). Taking d = d, = da as the bifurcation parameter, we can

52



0.05 ; . . . . : y
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Figure 1: Bifurcation diagram for (8) when d;y = dy = d varies with r; = 5.0, a, =
3.0, &y = 1.0, 1y = 2.0, ay = 3.0, by = 1.0 and & = 3.0. The vertical axis indicates the
values of ug at @ = 0; the horizontal axis does the ones of d. The solid curves indicate
the branches of the stable equilibrium solutions and the dotted curves do the unstable
ones.

see the bifurcation diagram of equilibrium solutions in Fig. 1 where (u}, u}) is used as
the trivial solution. The local bifurcation theory with complementary numerics says
that there are stable non-constant equilibrium solutions which exhibit spatial segregat-
ing patterns between two competing species, depending on the values of parameters d
and a. This means that the spatially segregating coexistence of two competing species
occurs by the cross-diffusion effect, which is called cross-diffusion induced instability.
This result shows a remarkable contrast with the fact of (4) that (u}, u3) is always stable
under (9).
It is obvious that the cross-diffusion term in (8) is separated into two terms:

Upe = V[(dl + aus)Vu | +aV(u Vuy) + -+ .

One may interpret “each term” as follows: the first term of the right hand side looks
like “Fickian diffusion” where the rate depends on u,, while the second does “direct
movement” due to the gradient of us. Ecologically speaking, U/; moves to avoid the
congestion of Us. One knows that the second term is essential to generate cross-diffusion
induced instability. The question which we would like to address here is “Is the cross-
diffusion mechanism only one way to avoid the congestion of the other species ?”, in
other words, “Is a direct movement necessary to avoid the congestion of the others 7”
What we would like to discuss in this paper is to answer these questions.

In order to understand the meaning of cross-diffusion effect in (7) (or (8)), let us
consider the movement of a single species (say N) on the inhomogeneous medium which
is specified by the given function V(z). Suppose that the place z where V() is larger
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is more unfavorable for N. By replacing u, in (7) with V(z) and neglecting the growth
term, we obtain the following scalar linear diffusion equation for the population density
nof V:

ng = A [(d + aV(w))n} , t>0,z €, (10)
n(0, x) = no(z), xz €, (11)
on .

— 4 9
2 =0 t>0,z €09, (12)

(cf. [14] or [15]). We can ecologically say that the species avoids the unfavorable habitat
due to V(z).

We now consider the following situation on the movement of species: the species is
split into two types of the states; one is less active (resp. active) and the other is active
(resp. more active). The state of each individual can convert into the other depending
on the environmental inhomogeneity V(z).

We denote the population density of each type by n; and n; where n = n; +n,, and
suppose that they move randomly with the rates d or d + «. Thus the dynamics of n;
and ny can be described by

it

o dAn, + é[h(m)nz - k(z)m],

1 (13)
ny = (d+a)Any+ -[k(z)n — h(z)ng),

where 1/¢ is the conversion rate between n; and ng, which is a positive constant. The
non-negative functions h(z) and k(z) are specified later. Adding two equations, we
obtain

ny, = dAn+ aln,,
1 ,
Ny = (d+ @)Ang + =[k(z)n, — h(z)n,],

where n = ny +ny. Letting € — 4-0 in the second equation, one can formally expect
that

h(z)n, = k(z)n,.

This implies that

h(z) k(x)

MR k@ T R k)

Therefore, if we set h(z) = 1 — V(z) (we assume 0 < V(z) < 1) and k(z) = V(z) for
instance, it turns out that

ne = V(x)n
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and
ny = dAn + aA(V(z)n) = A [(d + (.ﬂ/"(:l?))n] ,

This formal discussion indicates that the direct movement can be represented by random
walking if individuals of the species possess the mechanism of switching from one type
of random walking to the other, depending on environmental inhomogeneity.

We now apply this limiting procedure as = — +0 to (8) where one species U, is
split into two types and each individual of U; converts its state into the other state,
depending on the spatial distribution of the competitor U, at x. We denote by v (¢, z)
and v,(t, z) the population densities of the two types of U, and rewrite the population
density of the species U as v3{t, ). We will construct the reaction-diffusion system for
(v1,va, v3), which approximates bounded solutions (uy,us) in Q x [0,7], and thus we
assume

0<u(t,z) My, O0<Lwu(t,z)< M, on{0,T]xQ. (14)

Following the discussion above, the population dynamics of I/y and /3 can be formally
described by the following three component reaction-diffusion system

(v = diAvy + (1 —ay (v + 1) — bvs)n |
2 (v — k(ua)ra),  i>0zeq

{ vy = (d: + aMy)Avy + (ry — ay{vy + v2) = byuz)vs (15)
+"}:{k(1’3)’”1 — h{vs)w.], t>0, z€Q,

[ e T dzZ\‘l’:s + (ra = ba(vy +v2) — aavs)us, t>0, €,

where we regard h and k as certain functions of v3(t,2). We impose the boundary
conditions

o
—_— 1=1.2 A T
o 0 (¢=1,2,3), t>0, zed (16)
and the initial conditions
'UQ'(O_., .'17) = 'UQ,‘(.T) 2 0 ('I = l 2, 3), T € Q (17)

which will be determined later. Setting p = 1 + 2, we rewrite (15) as

r

o = QAp+ aMyAvy + (ry —ayp — byvs)p,
vy = (di +aMa)Avs + (1) — a1p — bivs)vs

1 . .
i +3 [k('"a)ﬂ - (h('lt’a) + k('us))'vg],
daAvs + (r2 — bap — aavs)vs.

t

'1_13' ==
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We can expect that v, converges to k{vs)p/(h(vs) + k(vs)) as £ — 40 from the second
equation of (18). Replacing v in the first equation of (18) by this limit, we formally
get a cross-diffusion system (8), provided that

k(sz( )+ks)) )

for s > 0. As the simplest example of h and k, we can take

s R S

h(.‘:’n‘) =1- —A-/Z';’ ’\(6) = 7‘:72'

We will discuss other examples in §5. Our result is as follows:

Theorem 1 Let (uy,u2) = (ui(t, ), us(t,z)) be the solution of (8),(2),(3). Supposc
that (u1,up) 18 sufficiently smooth on [0,T] x Q and satisfies (14) for some positive
numbers T, My and My with M, > r3/ay. Choose smooth functions h and k satisfying
(19) and

h(s) >0 on [0, M, (20)
k(s) 20 on[0,00), (21)
h(s)+k(s)>0 on|0,). (22)

Determine the initial datum (voy, Vo2, Vo3) by

. uoa(w A
v () = {1 - 0;4(:)}%1(1:),

UOZ(T) (}é L)‘ll/m_ ((L),

v03(%) = Uoa(z)

over ). Let (vy,va,v3) = (v1(t, x;2), va(t, ; £), vs(t, ;) be the solution of (15),(16),(17)
depending on o positive number €. Suppose that there erists positive numbers = and
M, satisfying

ot ;)| + |valt, ;€)| + |us(t, z;8)] < Mo (24)

for (t,x) € [0,T] x Q and ¢ € (0,50]. Then the difference between (v; + v4,vs) and
(w1, ug) is estimated to be

sup ”'vl(tv S ) + U?(tv ) )_ u‘l( )”Lz(ﬂ S ('57

teloT] (25)
sup [lva(t, ;) — ua(t, )|lL3(e) < Cs

t<|0,T)

for £ € (0,20]. Here C' = C(uy, U2, 50, Mo, T) is a positive constant independent of <.
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This theorem shows that the solutions of (8) can be approximated by those of (15)
in a finite time interval if the solutions are bounded. We will prove this theorem in §4.

As the next problem, we address the question on the asymptotic behavior of solu-
tions. In the successive sections we consider the stationary problems of (8) and (15)
and numerically discuss the resemblance between the mathematical structure of the
equilibrium solutions of (8) and that of (15) as ¢ — +0.

2 Stationary problem

In the previous section, we showed that for fixed T' > 0, solutions of the cross-diffusion
system (8) can he approximated by those of the reaction-diffusion system (15) for 0 <
t < T if < is sufficiently small. However, this result does not give any information on the
equilibrium solutions of (8) and (15). In this section we consider the one-dimensional
stationary problem of (8) and (15) with the zero-flux boundary conditions, assuming
the weak competition condition (9).

Take d as a bifurcation parameter (0.005 < d < 0.0351) with « == 3. The global
structure of equilibrium solutions to (8) is already demonstrated in Fig. 1. Here we
numerically show the global structures of equilibrium solutions to (15). The interval of
d which is computed is the same as in Fig. 1. For ¢ = 0.01, the structure of equilibrium
solution to (15) is demonstrated in Fig. 2. It is obvious to see that two structures in
Figs. 1 and 2 are quantitatively different. However, it is surprising that these seem to
he qualitatively similar. In fact, noting Fig. 3 (¢ = 0.001) and Fig. 4 (¢ = 0.0001),
the global structure of equilibrium solutions seems to converge to the one in Fig. 1 as
¢ becomes smaller. These results strongly support that the stationary problem to (8)
is also approximated by the one to (15) if < is sufficiently small.

3 Turing’s instability and cross-diffusion induced in-
stability

One of the most important mechanisms of pattern formation is Turing’s instability or
diffusion-induced instability in short range activator-long range inhibitor type reaction-
diffusion systems ([16]). This phenomenon occurs under the situation where the in-
hibitor diffuses faster than the activator. If the activator increases locally, then it
generates the inhibitor at the same time. Because of the large diffusivity, the inhibitor
also increases outside of its neighborhood of the high concentration of the activator.
This keeps the activator below outside and the inhomogeneity of the distribution of
the activator forms. Mathematically speaking, the stable equilibrium points of some
ordinary differential equations become unstable by adding the diffusion. Consider the
competition-diffusion system (4) under the weak competition condition (9). As was
seen in §1, the diffusion-less system (5) has the stable equilibrium point (], u3). For
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Figure 2: Bifurcation diagram for (15) when dy == dy = d varies with £ = 0.01 and the
other parameters as in Fig. 1. The vertical axis indicates the value of v3 at £ = 0; the
horizontal axis does that of d.
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Figure 4: Bifurcation diagram for (15) when d; == d, = d varies with ¢ = 0.0001 and
the other parameters as in Fig. 1. '

the corresponding competition-diffusion system (4), it is well known that Turing’s in-
stability never occurs, that is, the spatially constant equilibrium solution (uf,u}) is
always stable. Actually the comparison principle directly implies that all the solutions
converge to the constant solution (u},u3) when both components of initial data are
positive. On the other hand, as was seen in §2, stable non-constant stationary solutions
of the cross-diffusion system (8) bifurcate from the stable constant solution (uj,u3) un-
der the weak competition condition. In this section we will make clear the relationship
between Turing’s instability and the cross-diffusion induced instability for (8).

First we consider the linearized stability of the constant stationary solution (uj, u3)
for (8) with a > 0. For simplicity of notation, we set

fluguz) = (ry — gy — byug)uy, (26)
glur, ug) = (ry — batuy — agun)us. )

Then the linearized operator for the right hand side of (8) in a neighborhood of (u7, u3)
is

( 1A + aulA + fo, (uf, u3) auiA + fu, (ui, ul) )
Guy (45, u3) A2 + guy (U7, 03) )

Thus the eigenvalues p of the linearized operator are characterized by P(ju) = 0 where
Pu) =

and o is one of the eigenvalues of —A with the Neumann boundary condition (2).
Next we consider the reaction-diffusion system (15). Here we also define

—dyo — auso + fu (uf,u3) — p —ouio + fu,(ul, u3)
Guy (Ul u3) ~d30 + Gu, (U3, u3) —

bl

f1(1’1, g, ‘L’:s) = [7‘1 — vy + 1"2) - bl’Us]’l"h
(v, vg,03) = [ry—ai(vy +vg) = by 3]va,
fa(vr,v2,03) = [rg = ba(vr + v2) — avs|vs.
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It is easily seen that

[ flnt+m,us) = filvn, vy, 03) + fo(vy,v2,03),

g(vy + v, v3) fa(vr,ve,13),
Ju (U +v3,18) = fra,(v1,09,v3) + fau (v, v,v3) (i=1,2),
fua (V1 + 2, 03) S0 (V1,02,V3) + fo 05 (v1, V2, v3),
Guy (vl + g, ‘U:;) = f3ﬂ’i ('Ul, Va, 1’3) (l‘ = 1a 2)1
\ G (1',1 + g, 1’3) = f3,va (1’13 (%] 1"3)' .

il

f

Recall that (15) can be rewritten into (18) with p = v; + vo. We see from this and (19)

that (18) also possesses the constant equilibrium (p*, v}, v3) where p* = u}, v§ = u$ and

k(v3)p* v w .
nx s ——————————————— T — * T e ‘* 9
R IO O B Y A A (28)

and that (15) possesses the equilibrium solution (v},v3,v3) = (p* — v3,05,v3). The
linearized eigenvalue problem for (15) around (v}, v, v3) is reduced to Q(u) = 0 where

) &1 §12 13
Q = & ﬁzz 523 '
-f“;yﬂl ('U;, '7.’;, 'U;) f3,'02 ('l’;, U;’ lU:;) _d20 + f3,'us ('U*.s 'U;, U;) bl ¥
. 1
€ = —dio+ fi,(V],v3,03) — ~k(v3) — 1,
» 1
§12 s fl,'uz ('U:, ’U;, 'U;) + Eh((’;)s
1 .
£I3A = fl,'ua (1’;7 ‘Usv ’U;) + ;(h’(’l);)'l); - kl(v; )’UI),
* * i *
§n = fau (o], 03,03) + —k(v3),
. 1
L2 = —(di +aM3)a + fou, (0], 03, 03) — Zh(v3) — b,
A 1 ) K *
Sz 1= fau, (], v3,03) + ;(k"(v;)vf — I (v3)v3).
Using (27), we see
fll + £21 = —dIU + ful (u;’u;) - M,
Eia+&n = —(di+aM)o+ fu (ul,u3) —u,

§iat & = fur(ui,up).

Then, adding the second row of Q° to the first one and subtracting the first column
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from the second one, we have

_ &1+ & Eia+ & E13 + &3
Q = & &2 &3
Guy (utv u;) gut(u;v uE) _d2U + Guq ('U/I, u;) -l
Eu+én  Cut+én—E&—E&n 13 + Ea3

= a1 € —E&n a3
Guy (u‘{, ’U;) 0 —dso + guz(“;: ’U«;) — 4
~tho + fu, (U7, u3) — —aMo Juy (Ui, u3)

= §n En —&n §a3

Guy (u;’ u3) 0 =20 + Gu, (U7, u;) — M

We note that the last determinant corresponds to the eigenvalue problem of (18). We
can rewrite it as follows:

1 =10 + fu (U], u3) — p » -—QZWQU ‘ Jur (ui, u3)
¢ =1 ko) ) - k() K)ot — B (ues
- Guy (‘MT, u;) 0 —dyo + Gz (U’L u‘;) — K

+0(1)

as £ — +0. By (19), we have

K(s) = (K(s) 4 K(s) == + ﬂi)_t’:if’_’ k(s) + h(s) _ k(‘b')

My ' M, M, s
and then
! * * * * * * ut * ¥ ut *
K(eil — W (vi)vs = K (u}) (u1 - I’FI%""‘) — h'(uz)}‘/T';u,
h(us) + k(u3) . k(u3)ui
1\{2 ! u;l '
The principal part of Q° can be reduced to
—d1(7 + fu1 (’U/;, u;) — U _a""IQU fua (u;’ u;)
1 k (ﬂé)» _ Mzkﬁuf}) k(ug*)-u.{
& 'U/z 'u:z
Juy (’UI, u;) 0 —dqyo + Gus (“';' u;) —H

Multiplying the second row by -—aou}/k(u}) and adding the product to the first one,
we can calculate the principal part as follows:

—(dy + au)o + fu, (U, u}) — p 0 —qou + fu (U], u3)
1 ‘ M. b k(ud)us
: k(?l;) _ 2’k£u2) (’2‘) 1
£ Uq u,

Guy (U, 13) 0 —tyo + gu, (Ui, u3) — p



Thus we obtain

A Lok(ul) ut) + k(ud
@) = - PG+ R - - by L R, (29

where R(p) is independent of €. It is easy to see that
P(u)=p*+O0(u),  R(u)=—p*+0@?)

as |4/ — oo, which together with (22), implies that the eigenvalues of the linearized
operator of (15) converges to those of (8) in a half plane {u € C | Re 4 > —4} for an
arbitrary positive number y. Thus, one finds that cross-diffusion induced instability of
{8) can be regarded as Turing’s instability of (15) if ¢ tends to zero.

More precisely speaking to the cross-diffusion system (8), we can say that in the
approximating reaction-diffusion system (15), vs plays a role of activator, while v» does
a role of inhibitor. Since (v{+v3,v3) is a stable equilibrium point of (8) and (29) implies
that two roots of Q*(u) = 0 are close to those of P(u) = 0 and that the other is negative,
the spatially constant equilibrium point (vf, v, v}) is stable if a vanishes. However, if
is large, then P(u) = O possesses a positive root because of the cross-diffusion induced
instability, which implies that the equilibrium point of (15) destabilizes for suitably
small £ when the diffusivity of one inhibitor v, is large enough. Thus it turns out that
the reaction-diffusion system (15) includes the framework of short range activator-long
range inhibitor reaction-diffusion system for (vs, v;) and that the cross-diffusion induced
instability of (8) can be regarded as Turing’s instability of (15).

4 RD-approximation to cross-diffusion systems
To prove Theorem 1 in §1, we consider an auxiliary problem in this section:
uy = dyAu + @Aw + f(u,v) +mn, v, w), t>0, reQ,
v = daAv + g(u, v) + (U, v, w), t>0, z€, (30)
1
w, = (& + &)Aw + m(u, v, w) + —k(u,v,w), >0, x€Q

to approximate a cross-cliffusion system
iy = Al(dy + ag(v))u] + f(@,0), t>0, z€Q, (31)
Wy = dy AT + g(d. ‘E’), t>0, zel )

For simplicity we assume that the functions &, f, g, 7, 7, 73 and k allow all
nonnegative numbers as their independent variables. We impose on (31) the boundary
condition

612—@—0 t>0, zedd (32)
v v ' -
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and the initial condition
(0, 2) = uo(x), ¢(0,2) = vy(x), x e, (33)
where we assume
up(x) 20, wp(z) >0 on Q.
On (30) we impose the boundary condition

Ou Ov  Ow _
v v v

and the initial condition

0, t>0, z€d0 (34)

w(0,2) = up(x), v(0,2)=1w(z), w(0,z)=d(vo(x))uo(z), z € (35)

We will deduce Theorem 1 at the end of this section from some a priori estimates for
the difference between the solutions of (30), (34). (35) and those of (31), (32), (33).

Theorem 2 Let dy, ds, & be positive numbers and let ¢, f. g, m, 12, Ns and k be
smooth functions satisfying

¢(s2) 2 0, (36)
n(s1, 82, O(82)81) = Ma(81, 2. 9($2)81) = K(51, 82, P(82)81) = 0, (37)
Ku(51, 82,53) > 0, (38)
K',w(81,-5‘2. s3) <0, ' (~39)
Kuw($1,52,83) =0 (40)

for (s1,$2,83) € [0,00)%. Denote by (i,d) = (a(t. z),5(t.x)) the solution of (31), (32),
(33), and by (u,v,w) = (u(t,z;2),v(t,x;2),w(t,z;2)) the solution of (30), (34), (35)
parametrized by a positive number z. Suppose that (4, ) is nonnegative and sufficiently
smooth. at least on |0, T) x Q, where T is a positive number. Also suppose the existence
of positive numbers <y and My satisfying the following: (u,v,w) s sufficiently smooth
and '

(u(t, ), vit,z;e), w(t,x:€)) € [0, Mp]® (41)

on [0, T) x 2 for s € (0,0). Then the difference between (u,v,w) and (i, ) is estimated
- to be

sup “fu(t7 ’;’S) - a(ta ')”L?‘(Q) < CE,

1<[0,T)

sup ||lv(t, ;) — (¢, M2 < Ce,

Sup llo(t, -52) — o(t. M 2y | (42)
sup ”'w(.t: HE)— d)(f’(t: )ult, ')”LZ(Q) <Ce

t{0,T}

for = € (0,20]. Here C = C(i1, 0. 20, Mo, T) is a positive constant independent of ¢.

63



64

A similar theorem is shown in [4], where the convergence in H}(Q1) as ¢ — 40 is
proved instead of (42), while x,, is assumed to be a negative constant. However, since
this assumption is quite strong, we extend this result to Theorem 2 for more general
systems (30) which include 7y, 7. and kK where &, is not assumed to be a constant.

Proof.  Fix a positive number T satisfying the assumption in the theorem. Due to
(41) we may assume that f, g, m, 72, 13, K, ¢ and their derivatives appearing in this
proof are uniformly bounded independently of (¢, z) and in particular . (For a preciser
argument we need suitable truncation of f, g, etc. around [0, M]3, See, e.g., §2 of
[4].) We denote the positive constants independent of ¢ and (t,z) by ¢; (1 = 1,2,---).
Moreover it follows from (39) that

Ko = inf {~Kw($1,82,83)} > 0. (43)

(s1 ,sg,ss)(f[ﬂ,h}o]:’

Set

W= ()i, U=u—1a, Vi=v—=0, W:=w—-¢(0)i=w-—u.

Using n, (@, ©, @) = no(4, ¥, W) = k(&, ¥, w) = 0 which follows from (37), we have
(U, = AU +aAW + f(a+ U, 9+ V) - f(&,9)

+m(a+ U, 0+ V, 0+ W) —m(a,d,0),
Vi = dAV +g(a+ T, 1 +V)— g(a,v)

+me(t+ U, o+ V,w + W) — p(a, 0,9),
¢ W/l, = (dl + d)A"‘/ (44)
-ié{n(ﬁ. + U2+ Vo +W)—xk(a+U v+ V,d)}

1 |
= {k(d+ U, 0+ V,w) - k(4 0, w)}
L +ng(@ + U, 0 4 Vo + W) — iy + (dy + @)AW

for t > 0 and = € Q. The difference (U, V, W) also satisfies the boundary condition

= e 22 e 2 () t>0, zedfd
w o o €
and the initial condition
U(0,z) = V(0,z) = W(0,z) =0, xz € Q.

We denote a primitive function of «(u,»,w) with respect to u by

u
K(u,v; @) ::/ K(s,v,w)ds,
0
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where we regard K as a function of (u, v) € [0, 00)? parametrized by @ € [0, o0). Using
K, we define a quadratic form E(t; ) of (U(t,-;£), V(¢ ;) in L3(Q) by

E(t) = E(t;z) := /Q {K(ﬂ + U5+ Vw) — K — KU - f{vv} dz,

where we abbreviate K (i, #;), K, (i, 7;%), ete. to K, K,, etc.; hereafter we often use
similar abbreviation for simplicity of notation. We denote the standard norm and inner
product in L2(Q) by || - || and (-, ). Differentiating E{t) in ¢, we have

dE

— (a T 5 eah) — Y T e &
= = (K@t U+ Vi) = Ky = Kl = KoV, )

( (G+ U, 5+ V) = Ko — Kuoll — KoV, m)
+(1{ (44U, +V;0) — Ko = Kual — KoV, w,)
+( @+ U5+ Vi) — K, Ut)
+(Kel@+ U5+ Vi) - Ko, Vi)

a(lUl® +IvVIE + 1w )?)
+(f<a 4+ U, v+ V.w) — kK, AU + &AW)

IA

+(K,(G+U,5+ V@) — Ko, quv)
Observe that
(Kv(ﬂ + U+ V30) - K, (lgAV)
= —dy [({K,,,,(u F U+ V@) — K}V, vv)
+({Km,('12 YU D+ Vi) — Koo} VD, vv)
+ ({Kl,,;.('& + 0,5+ V;i0) — Rog} Vi, V)
+ (Kw('ﬂ +U, 5+ V@)V, vV)

+(Ku(@+ U5+ V;0)VV, WV
< (Ul + VI + VU] +IIVVIDIV VI
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and that
(m(a LU+ V@) -, dlAU>
= —d [({nu(-ﬂ U5+ V1) — R}V, VU)
+ ({m('& +U, 5+ V) — R}V, VU)
+({rul@+ U0+ V,5) - Ra}VE, vu)
+ (K(u LU+ V@)V, VU) + (k@ + 0,5 +V,0)9V, vu)|

~dy (ol -+ 0,5+ V@) VU, VU ) + eo(|U] + IV + IVVIDIVU]
es(+ VI + I9VIDIeUl,

IA A

where we used (38). Thus we obtain

{E |
= < a(n(ﬂ +U, 0+ V, ) - &, AW) +a (U + V2 + IW]?)

dt
+e(|UN + IV + VU + IVVIDIVV
+es(|U1 -+ (VI IVVIDIVULL (45)
Recalling (40), we have
Ko(l+ U, 04+ Vi + W) ~ k(i + U, 3+ V, ) = 0.

Multiply the third equation of (44) by —AW and integrate it by parts over . Then
we can derive

1d 2 ,
szl VWIF = (W, —AW)

= —(di + @) AW
o1 (nw(‘& YU, 5+ V, @+ W)VW, vw)

+- ({n,,(ﬁ LU B+ Va0 + W) = k(G + U, 5+ V, ®)}(Vi + VV), vw)
+ ({nw(ﬁ YU T+ V4 W) — k@ + U, 0+ V, @)}V, vw)
- (m(& +U,5+V,5) — &, AW)

m(i+ U, T+ V, %+ W) — 15, AW)

V{(d, + &)AD — @ + 7is}, VW)

+

AN TN | s O) | Ty | ©
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< —(dl ta qunﬁ (s U5+ Vi) - 5 AW)
NVWW (UWH +IVVID) llVWH

+(s(l|("| + IIVH +{WINIAWY + el

"";|VW||2 ( (a4 U, +V, @) — &, Aw)

IA

tere + (U + VI + 1) + :;(NWH2 +HIVVIP), (46)

where we used (43). On the other hand, it follows from the first and second equations
of (44) that

Sl = ~&lIVU - a(vw,v0) + (£ +U,0+V) = £, V)

+(n1(a+ U, + Vo + W) — 1, U)

< HV’ II° + IIVW’H + e(IUN + VI + W IDIU T (47)
1d L
sEIVIE = =@l VVIP+ (glar U5+ V) -5, V)
+(ng(ﬂ+U, P+ V0 + W) — i, v)
< =dIVVIE +en(lUI+ VI W DIV (48)

Similarly, with the aid of (43), we can deduce from the third equation of (44) that

1d
2dt

W2 = —(di+ &) |VW? + 1 (/cw(ﬁ+ U, o4V, @+ 0W)W, W)
+:1€-(n(ﬂ +UT+V, @) — &, W)
+ (ng(ﬁ FUB+V, @+ W) + (d + ) A0, W)
=S2IWIP + ez + (VI + VI, (49)

where the function 6 = 6(t, z; =) satisfies 6 € (0, 1). Choose positive numbers v, y; and
w3 satisfying

(l1 Ko

—_,

Ti &
1 (C) + (‘3) 3
g 2 — — e
14 2(cy + co@ + caidep)

Y3 2
Ko ’

IA
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and combine (45), (46), (47), (48) and (49). Then we find

{E<t>+ e+ 2gvie + 2wy + "'uvwn?}

_Omo 11d1

< THIVUIR = vadal| WV = B2

Ivwi?* -

/1(¥

(U IVIEHIVUL+ IVVDIvv)

+03(l|’—' I+ 1V + IVVIDIVU + ca(IVVI? + W)
e +es@) (U] +IVI2 + W)
HmewllUl +r2enlVIDAUN + IVIE+ W)
eV + V1) + €2(erG + v3e12)
< eV + IVIP) + eise? (50)

for £ € (0,20). On the other hand, it follows from (38) that

2

B0 2 ~llUNV] = eV 1P 2 =20 = (a4 ) e

Thus, by taking 7, so large as

2
4t 1
7»gzz(c1,~+ﬁ) + 1
. f)/l 2

(if necessary), we obtain
E(t)+ SIUI* + ZIVIE > 2Ol + v i) (51)

Therefore, we can deduce from (50) and Gronwall’s inequality that

E(t;<) IIU et + 2 IIV(t» 5 < creg®
for t € [0, T). This inequality and (51) imply that

UG5 + IV sl < 2222
Applying this result to the right-hand side of (49), we find
ST+ WP S e

Hence

W, - 2)|f? < 2262,
Ko



the proof is completed. 0 Proof of Theorem 1 It follows from (20) and (21) that

(r1 = ay(vy + va) — byws)vy + é[h(l}g)’b‘g —kvs)v,] 20

ifo, =0, 1>0, 0<uvs< My
(’r1 -1 (‘Ul -+ ’Uz) - bﬂ’:;)'l"g + %[k’(l!g)‘l)]_ - h(l’;;)'l)z] > 0

if, >0, v2=0, 0<vs <M,
(ra —ba{vr +v2) —@gus)v3 20 ifv; 20, v, 20, v3=0;
(ra = ba(vy + 1) — aou3)vs <0 ifvy >0, 1320, vs= M.

Hence the region [0,00) x [0,00) x [0, My] for (vy,v2,v3) is positively invariant in the
reaction-diffusion system (15). In other words, (14) and (23) imply

v (t,T;e) 20, w(t.a;2) >0, 0<ws(t,2;¢) < M.

Rewrite (u;, us) and (v +vs, vs, ¥;) as (@, ) and (u, v, w) respectively. Set & := aM
and

@(s3) == A

7]1(81,-92,-5‘3)- = fi(s1 — 83, S3, 82) + fo(s1 — 83, 83, 52) — f(51,%2),
N2(S1, 82, 83) := fa(81 — 53, 83, 92) — g(51,52),

n3(s1, 52, 83) := fa(s1 — 83, $3, 82),

K(s1,52,53) := k(sa)s1 — {h(s2) + k(s2)}s3

for (s1,%2,53) € [0,00)3. Here f, g, f1, f2 and f; are the functions defined in §3. Due
to (19), (21), (22) and (27), the assumptions of Theorem 2 are fulfilled. Therefore we
obtain not only (25) but also

sup ||oa(t, ;) — {1 - “2—]&—3} wt)|| <
t¢:[0,T} o 2 L3(R)
sup ‘ vt €) — E%,Ejgilzzl(t, ) <Ce
10,1} 2 L3()
for < € (0, £a). 0

5 Concluding remarks

In this paper, it is shown that the cross-diffusion system (8) can be approximated by the
reaction-diffusion system (15) by introducing the active state and the less active one.
This approximation also reveals the relationship between the cross-diffusion induced
instability of (8) and Turing’s instability of (15).

69



70

Finally we remark that Theorem 2 is applicable to more general systems, e.g.

{ uy, = Al(dy + @d(ua))uq] + (1 — g — byug)uy,

(52)
Uyy == dgA’Urz + (T‘g - bg’Uq - ag‘ug)uz,

than (8) if we rewrite (u;,us) as (&, 7). We also remark that there are several choices of

the reaction-diffusion systems (15) which converge to the specific cross-diffusion system

(52). For an example of ¢ in (52), h and k in (15) are not uniquely determined but

there are other choices. In fact, we can choose

1 = .y_'?_ i | = e (419 ppoecy —’U—3
d)(u’z) T A"Iz’ h’(v3) : 11 I"(Ud) N A/[‘Z — ‘1)3’
though we chose
. v ‘ 2,
h(va) :=1-— Ms;, k{vg) := 7[:;
in §1. If we choose
h(vs) =1, k(vs) := p(v3)
or
\ ) p(v3)
I P2 (D e— { ) ITE me————
l(’&) 1 + (/7('1"3), k\,“a) 1+ 97(1’3)

in {15), then the corresponding cross-diffusion system is formally (52) with

oy Plue)
M) = T )

This is justified by Theorem 2, as long as (14) with M, > r2/as, (23) and
w(s) 20 for s € [0,M,)
hold true. In (15), there are also several choices of replacements of fi, f; and f3 defined
in §3.
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