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This is a summary of the joint work [5] with J.-P. Brasselet and J. Seade.
There have been many works on vector fields on singular varieties and various notions

of indices have been introduced and used for the study of singular varieties. Recently the
attention is drawn to the corresponding notions in the case of l-forms.

M.-H. Schwartz in $[19, 20]$ introduced the technique of radial extension of stratified
vector fields and frames on singular varieties, and used this to construct cocycles repre-
senting classes in the relative cohomology $H^{*}(M, M\backslash V)$ , where $V$ is a singular variety
embedded in a complex manifold $M$ . These are nowadays called the Schwartz classes of
V. R. $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{P}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}$ in [17] introduced the notion of local Euler obstruction, an invariant
defined at each point of a singular variety using an index of an appropriate radial l-form,
and used this to construct the homology Chern classes of singular varieties. Brasselet and
Schwartz in [3] proved that the Alexander isomorphism $H^{*}(M, M\backslash V)\simeq H_{*}(V)$ carries
the Schwartz classes into the $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{P}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}$ classes. A key ingredient for this proof is their
proportionality theorem relating the Schwartz index and the local Euler obstruction.

These were the first indices of vector fields and 1-forms on singular spaces in the
literature. Later in [10] was introduced another index for vector fields on isolated hyper-
surface singularities, and this definition was extended in [22] to vector fields on complete
intersection germs. This is known as the GSV index. The definition of this index was
recently extended in [4] for vector fields with isolated singularities on hypersurface germs
with non-isolated singularities, and it was proved that this index satisfies a proportional-
ity property analogous to the one proved in [3], the proportionality factor being now the
Euler-Poincar\’e characteristic of a local Milnor fiber.

In [7] W. Ebeling and S. Gusein-Zade observed that when dealing with singular va-
rieties, 1-forms have certain advantages over vector fields, as for instance the fact that
for a vector field on the ambient space, the condition of being tangent to a stratified
singular subvariety is very stringent, while every 1-form on the ambient space defines, by
restriction, one on the singular variety. They adapted the definition of the GSV index
to 1-forms on complete intersection germs with isolated singularities, and proved a very
nice formula for it in the case where the form is holomorphic, generalizing the well-known
formula of L\^e-Greuel for the Milnor number of a function.

This article is about 1-forms on complex analytic varieties and it is particularly
relevant when the variety has non-isolated singularities. We recall, in Section 2, how
$\mathrm{M}\mathrm{a}c$Pherson’s local Euler obstruction can be adapted to 1-forms in general. We show,
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in Section 3, how the radial extension techiique of M.-H. Schwartz can bc performed in
the case of 1-forms. This allows us to define the Schwartz index of 1-forms with isolated
singularities on singular varieties. Then we give a proportionality theorem (Theorem
3.3), analogous to the one in [3] for vector fields, relating these indices.

We then extend, in Section 4, the definition of the $\mathrm{G}\mathrm{S}\mathrm{V}-\dot{\mathrm{i}}$ dex to 1-forms with isolated
singularities on complete intersections with non-isolated singularities that satisfy the
Thom $a_{f}$-condition, which is always satisfied if the variety is a hypersurface, and we
give the corresponding proportionality theorem for this index. When the form is the
differential of a holomorphic function $h$ , this index measures the number of critical points
of a generic perturbation of $h$ on a local Milnor fiber, so it is analogous to invariants
studied by a number of authors (see for instance [11, 13, 21]). Section 1 includes a review
of well-known facts about real and complex l-forms.

The radial extension of 1-forms can be made global on compact varieties, and it can
also be made for frames of 1-forms. We obtain in this way the dual Schwartz classes
of singular varieties, which equal the usual ones up to sign. We also have the dual
Chern-Mather classes of $V$ , already envisaged in [18], and the proportionality formula in
Theorem 3.3 can be used as in [3] to express the dual Chern-Mather classes as “weighted”
dual Schwartz classes, the weights been given by the local Euler obstruction. Similarly,
in analogy with Theorem 1.1 in [4], the corresponding GSV-index and the proportional-
ity Theorem 4.3 extend to frames and can be used to express the dual Fhlton-Johnson
classes of singular hypersurfaces embedded with trivial normal bundle in compact com-
plex manifolds, as “weighted” dual Schwartz classes, the weights been now given by the
Euler-Poincar\’e characteristic of the local Milnor fiber. These expressions give a precise
combinatorial expression of the Milnor classes of singular varieties as above (cf. [4, 1]).

1 Preliminaries

1.1 Complex and real l-forms
Let $M$ be a complex manifold of dimension $m$ and $TM$ its holomorphic tangent bundle.
By the Cauchy-Riemann equation, as a real bundle, $TM$ is canonically isomorphic to
the real tangent bundle $T_{\mathbb{R}}M$ of $M$ . In this article, a complex 1-form means a section
of $T^{*}M$ , the complex dual of $TM$ , and a real l-form a section of $T_{\mathrm{R}}^{*}M,$

$\mathrm{t}\mathrm{I}\mathrm{l}\mathrm{e}$ real dual of
$T_{\mathrm{R}}M$ . As an oriented real bundle, $T^{*}M$ is not canonically isomophic to $T_{\mathrm{R}}^{*}M$ . However,
there is a one to one correspondence between the complex and real forms as explained
below. Note that, choosing a Riemannian metric, $T_{\mathrm{R}}^{*}M$ is isomorphic to $T_{\mathrm{R}}M$ .

Let $\omega$ be a complex 1-form and decompose it into the real and imaginary parts:
$\omega={\rm Re}(\omega)+\sqrt{-1}{\rm Im}(\omega)$ . Both Re(w) and Im(w) are real 1-forms, and the complex
linearity of $\omega$ implies that, for each tangent vector $v$ , we have

${\rm Im}(\omega)(v)=-{\rm Re}(\omega)(\sqrt{-1}v)$ .

Thus the form $\omega$ is determined by its real part and we have a one to one correspondence
between the complex and real forms, assigning to each complex form its real part, and con-
versely, to each real 1-form $\eta$ the complex form $\omega$ defined by $\omega(v)=\eta(v)-\sqrt{-1}\eta(\sqrt{-1}v)$ .
If $(z_{1}, \ldots, z_{m})$ is a local coordinate system on $M$ and if we write
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$\omega=\sum_{i=1}^{m}a_{i}dz_{i}$ (1.1)

locally, we have

${\rm Re}( \omega)=\sum_{i=1}^{m}(u_{i}dx_{i}-v_{i}dy_{i})$ and ${\rm Im}( \omega)=\sum_{i=1}^{m}(v_{i}dx_{i}+u_{i}dy_{i})$ , (1.2)

where $u_{i}$ and $v_{i}$ are the real and the imaginary parts of $a_{i}$ , respectively.

1.2 Characteristic classes
The Euler classes of the real vector bundles and the top Chern classes of the complex
vector bundles which appeared above are related by

$e(T_{\mathrm{R}}^{*}M)=e(T_{\mathrm{R}}M)=c_{m}(TM)=(-1)^{m}c_{m}(T^{*}M)$ .

1.3 Localization
For a complex 1-form $\omega$ with an isolated singularity (i.e., zero) at $p$ , we have the Poincar\’e-
Hopf index $\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega,p)$ as the locatization of $c_{m}(T^{*}M)$ by $\omega$ at $p$ . In the local expression
(1.1), it is the mapping degree of $(a_{1}, \ldots, a_{m})$ on a small sphere aroumd $p$ . For a real
1-form $\eta$ with an isolated singularity at $p$ , we have the Poincar\’e-Hopf index $\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\eta, p)$

as the locatization of $e(T_{\mathbb{R}}^{*}M)$ by $\eta$ at $p$ . For a complex form $\omega,$ $\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}({\rm Re}(\omega),p)$ is the
mapping degree of $(u_{1}, -v_{1}, \ldots, u_{m}, -v_{m})$ , in the local expression (1.2), and thus we have

$\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega,p)=(-1)^{m}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}({\rm Re}(\omega),p)$ .

1.4 Singularities in the stratified sense
Note that, if $\omega$ is a complex 1-form, for a point $p$ in $\lambda f$ , we have

$\mathrm{K}\mathrm{e}\mathrm{r}\omega(p)=\mathrm{K}\mathrm{e}\mathrm{r}{\rm Re}(\omega)(p)\cap \mathrm{K}\mathrm{e}\mathrm{r}{\rm Im}(\omega)(p)$.
Now let $M$ be a complex manifold and $V$ a subvariety of $\Lambda f$ of pure dimension $n$ .

We take a Whitney stratification $\{V_{\alpha}\}$ adapted to $V$ , i.e., $V$ is a union of strata. The
following definition is an immediate extension for 1-forms of the corresponding (standard)
definition for functions on stratified spaces in terms of its differential $(\mathrm{c}.\mathrm{f}. [8,9,14])$ .
Definition 1.3. Let $\omega$ be a real or complex 1-form on $V$ , i.e., a continuous section of
$T_{\mathrm{R}}^{*}M|_{V}$ or of $T^{*}M|_{V}$ . A point $p$ in $V$ is a singular point of $\omega$ in the stratified sense, if
$\mathrm{K}\mathrm{e}\mathrm{r}\omega(p)$ contain$\mathrm{s}$ the tangent space $T_{p}V_{\alpha}$ of the stratum $V_{\alpha}$ through $p$ .

This means that the pull-back of $\omega$ to $V_{\alpha}$ vanishes at $p$ . Note that if a stratum
consisting of a point, the point is always a singular point.
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2 Local Euler obstructions
Let $M$ and $V$ as in Section 1. We denote by Sing(V) the singular set of $V$ and by
$V_{\mathrm{r}\mathrm{e}\mathrm{g}}=V\backslash \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(V)$ the regular part.

The Nash modification of $V$ is constructed as follows. Let $G_{n}(TM)$ be the Grassmann
bundle over $M$ of $n$-planes in $TM$ and $\sigma$ : $V_{\mathrm{r}\mathrm{e}\mathrm{g}}arrow G_{n}(TM)$ the mapping given by
$p\mapsto T_{p}V_{\mathrm{r}\mathrm{e}\mathrm{g}}$ . The Nash modification $\tilde{V}$ of $V$ is the closure of the image of $\sigma$ . We denote
by $\nu$ : $\tilde{V}arrow V$ the restriction to $\tilde{V}$ of the projection $G_{n}(TM)arrow M$ . The Nash bundle
$\tilde{T}arrow\tilde{V}$ is the restriction to $\tilde{V}$ of the tautological bundle over $G_{n}(TM)$ . Note that a point
in $\tilde{V}$ is an $n$-plane $P$ in $T_{p}M,$ $p=\nu(P)$ , and the fiber of $\overline{T}$ over the point $P$ is $P$ as an
$n$-plane. We denote by $\tilde{T}^{*}$ and $\tilde{T}_{\mathrm{R}}^{*}$ , respectively, the complex dual and the real dual of $\tilde{T}$ .
Since $\tilde{T}$ is a subbundle of $\nu^{*}TM$ , we have the projections

$\nu^{*}T^{*}Marrow\tilde{T}^{*}$ and $\nu^{*}T_{\mathrm{R}}^{*}Marrow\tilde{T}_{\mathrm{R}}^{*}$,

both of which are denoted $\mathrm{b}_{\sim}\mathrm{y}\pi$ . For a 1-form $\omega$ , we call $\pi\nu^{*}\omega$ the lifting of $\omega$ and denote
it by $\tilde{\omega}$ . It is a section of $\tau*$ or of $\tilde{T}_{\mathrm{R}}^{*}$ . The following lemma follows from the Whitney
(a) condition.

Lemma 2.1. Let $A$ be a subset in V. If $a$ 1-form $\omega$ has no singularities in $A$ in the
stratified sense, then the lifting di is non-vanishing on $\nu^{-1}A$ .

Let $\omega$ be a 1-form with an isolated singularity at $p$ in $V$ in the stratified sense. We
take a small ball $B$ in $M$ around $p$ and set $S=\partial B$ . By the above lemma, di is non-
vanishing as a section of $\tilde{\tau}*$ or of $\tilde{T}_{\mathbb{R}}^{*}$ on $\nu^{-1}(S\cap V)$ . Let $o(\tilde{\omega})$ denote the obstruction
to extending di as a non-vanishing section over $\nu^{-1}(B\cap V)$ , which is in the relative
cohomology $H^{2n}(\nu^{-1}(B\cap V), \nu^{-1}(S\cap V))$ . Then we define $(\mathrm{c}.\mathrm{f}. [2,8])$ :

Definition 2.2. The locd Euler obstruction Eu$(\omega, V;p)$ of $\omega$ at $p$ the integer obtained
by evaluating $o(\omega)$ on the fundamental cycle $[\nu^{-1}(B\cap V), \nu^{-1}(S\cap V)]$ .

Remark 2.3. 1. If $\omega$ is a complex 1-form, we have

Eu$(\omega, V;p)=(-1)^{n}\mathrm{E}\mathrm{u}({\rm Re}(\omega), V;p)$.

2. If we denote by $\rho$ the squre of the function giving the distance from $p$ (with respect to
some metric), then Eu$(d\rho, V;p)=\mathrm{E}\mathrm{u}(V,p)$ is the local Euler obstruction of $\mathrm{M}\mathrm{a}c$ Pherson
[17].

3 Schwartz index
It is possible to make for 1-forms the classical construction of radial extension $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{c}\succ$

duced by M.-H. Schwartz in $[19, 20]$ for stratified vector fields and frames. Locally, the
construction can be described as follows.

Let $M,$ $V$ and $\{V_{\alpha}\}$ be as in the previous sections. Let $\omega_{\alpha}$ be a 1-form on a stratum
$V_{\alpha}$ of dimension $s$ with an isolated singularity at $p$ in $V_{\alpha}$ . We take a small neighborhood
$U_{\alpha}$ of $p$ in $V_{\alpha}$ and a small disk $D$ of complex dimension $m-s$ with center at $p$ which is
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transverse to $V_{\alpha}$ . Let $B=U_{\alpha}\cross D$ with two projections $\pi_{1}$ : $Barrow U_{\alpha}$ and $\pi_{2}$ : $Barrow D$ .
The radial extension $\omega_{\alpha}’$ of $\omega_{\alpha}$ is defined by

$\omega_{\alpha}’=\{$

$\pi_{1}^{*}\omega_{\alpha}+\pi_{2}^{*}\underline{d\rho_{D}}$ , if $\omega$ is real,
$\pi_{1}^{*}\omega_{\alpha}+\pi_{2}^{*}d\rho_{D}$ , if $\omega$ is complex,

where $\rho_{D}$ is the squre of the function on $D$ giving the distance from $p$ and $\overline{d\rho_{D}}$ the
complex form such that $\ (\overline{d\rho_{D}})=d\rho_{D}$ .

Lemma 3.1. $Let\omega_{\alpha}$ be as above and $\omega=\omega_{\alpha}’$ its radial extension. Then we have
$\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$ $=\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$ , if $\omega$ is real,

$(-1)^{m}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$ $=(-1)^{s}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$ , if $\omega$ is complex.

Definition 3.2. Let $\omega_{\alpha}$ and $\omega=\omega_{\alpha}’$ be as in Lemma 3.1. The Schwartz index of $\omega$ at $p$

in $V$ is defined by

$\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{c}\mathrm{h}}(\omega, V;p)$ $=\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$ , if $\omega$ is real,
$(-1)^{n}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{c}\mathrm{h}}(\omega, V;p)$ $=(-1)^{m}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{P}\mathrm{H}}(\omega, M;p)$, if $\omega$ is complex.

Theorem 3.3 (Proportionality Theorem). For a radial extension $\omega$ as above, $we$

have
Eu$(\omega, V;p)=\mathrm{E}\mathrm{u}(V;p)\cdot \mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{c}\mathrm{h}}(\omega, V;p)$ .

For the proof (as well as that of Theorem 4.3 below), we refer to [5]. A similar line
of proof works for the case of vector fields and frames of vector fields and it significantly
simplifies the original proof of the proportionality theorem in [3] (see [6]).

4 GSV-index
We recall $([10_{J}.22])$ that the GSV index of a vector field $v$ on a complete intersection $V$

with an isolated singularity can be defined to be the Poincar\’e-Hopf index of an extension
of $v$ to a Milnor fiber $F$ . Similarly, the GSV index of a 1-form $\omega$ on $V$ can be defined
to be the Poincar\’e-Hopf index of the form on $F$ , i.e., the number of singularities of $\omega$

in $F$ coumted with multiplicities [7]. If $V$ has non-isolated singularities we may not have
a Milnor fibration in general, but we do if $V$ admits a Whitney stratification with the
Thom $a_{f}$-condition, $f=(f_{1}, \cdots, f_{k})$ being the functions defining $V(\mathrm{c}.\mathrm{f}. [15,16,4])$ .

Let (V, $p$) be a complete intersection of dimension $n$ in a neighborhood $U$ of the origin
$0$ in $\mathbb{C}^{m}$ , defined by functions $f=(f_{1}, \cdots, f_{k}),$ $k=m-n$, and assume $p(=0)$ is a
singular point of $V$ (not necessarily an isolated singularity). As before, we endow $U$ with
a Whitney stratification adapted to $V$ , and we assume that it satisfies the $a_{f}$-condition
of Thom (see, e.g., [16]). In particular we always have such a stratification if $k=1$ , by
[12].

Let $\omega$ be as before, a real or complex 1-form on $U$ , and assume that its restriction to
$V$ has an isolated singularity at $p$ in the stratified sense. Now let $F$ be a Milnor fiber of
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$V$ , i.e., $F=f^{-1}(t)\cap B$ , where $B$ is a small ball in $U$ around $p$ and $t\in \mathbb{C}^{k}$ is a regular
value of $f$ with $||t||$ sufficiently small. From the Thom $a_{f}$-condition, we have

Lemma 4.1. The pull-back of $\omega$ to a Milnor fikr $F$ is a section of $T_{\mathrm{R}}^{*}F$ or of $T^{*}F$ which
is non-vanishing near the boundary $\partial F=f^{-1}(t)\cap S,$ $S=\partial B$ .

Let $o(\omega)$ denote the obstruction to extending cu as a non-vanishing section of $T_{\mathbb{R}}^{*}F$ or
of $T^{*}F$ over $F$ , which is in the relative cohomology $H^{2n}(F, \partial F)$ .

Definition 4.2. The $GSV$ index $\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{G}\mathrm{S}\mathrm{V}}(\omega,p)$ of $\omega$ at $p$ the integer obtained by evaluating
$o(\omega)$ on the fundamental cycle $[F, \partial F]$ .

For a complex 1-form $\omega$ , we have

$\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{G}\mathrm{S}\mathrm{V}}(\omega,p)=(-1)^{n}\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{G}\mathrm{S}\mathrm{V}}(\mathrm{R}\mathrm{c}(\omega),p)$.

We remark that if $V$ has an isolated singularity at $p$ , this coincides the index intro-
duced in [7], i.e., the degree of the map from the link of $V$ into the Stiefel manifold of
complex $(k+1)$-frames in $\mathbb{C}^{m}$ given by the map $(\omega, df_{1}, \cdots, df_{k})$ . Also notice that this
index is somehow dual to the index defined in [4] for vector fields, which is related to the
top Fulton-Johnson class of singular hypersurfaces.

Theorem 4.3 (Proportionality Theorem). Let $\omega_{\alpha}$ be a real or complex 1-form on
the stratum $V_{\alpha}$ through $p$ as above. Suppose that $p$ is an isolated singularity of $\omega_{\alpha}$ in the
stratified sense and let $\omega=\omega_{\alpha}’$ be its radial extension. Then we have

$\mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{G}\mathrm{S}\mathrm{V}}(\omega,p)=\chi(F)\cdot \mathrm{I}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{c}\mathrm{h}}(\omega, V;p)$ ,

where $\chi(F)$ denotes the Euler-Poincar\’e characteristic of a Milnor fiber $F$ .
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