RESIDUE OF CODIMENSION 1 SINGULAR HOLOMORPHIC DISTRIBUTIONS

伊澤 毅 (Takeshi Izawa) 北海道大学 理

1

The aim of this note is to describe the residue formula for singular holomorphic distribution in terms of the conormal sheaf G in codimension 1 case.

We also prove the Baum-Bott type residue formula for singular distributions. If we define the tangent sheaf of the distribution F by taking the annihilator of G by the dual coupling, we will show that the residue formula for G deduce the Baum-Bott type residue formula for the top Chern class of the normal sheaf N_F. If we assume the Frobenius integrability condition for G, we have the Baum-Bott residue formula

$$\int_X \varphi(N_F) = \text{Res}_\varphi(N_F, S(F))$$

for n-th symmetric polynomial φ. In this case, the Baum-Bott residue formula for $\varphi = c_n$ is equivalent to the formula we will prove, which means that the Bott vanishing theorem based on the involutivity of F is not necessary for the top Chern class $c_n(N_F)$.

As an application of our results, we will give a residue formula for the non-transversality of a holomorphic map $F : X \rightarrow Y$ to a non-singular distribution on Y.

2. SINGULAR HOLOMORPHIC DISTRIBUTION

2.1. Singular holomorphic distribution. Let X be a complex manifold. We define a singular holomorphic distribution F on X to be a coherent subsheaf of the tangent sheaf Θ_X. We call F the tangent sheaf of the distribution. We say F is dimension p if a generic stalk of F is rank p free O_X-module. We also define the normal sheaf N_F of F by the exact sequence

$$0 \rightarrow F \rightarrow \Theta_X \rightarrow N_F \rightarrow 0.$$

The singular set $S(F)$ of F is defined by $S(F) = \{ p \in X | N_{F,p} \text{ is not } O_p \text{-free} \}$.

We can also give a definition of a singular holomorphic distribution G on X to be a coherent subsheaf of the cotangent sheaf Ω_X. We call G the conormal sheaf of the distribution. We also say G is codimension q if the generic rank is q. We also define the cotangent sheaf Ω_G of G by the exact sequence

$$0 \rightarrow G \rightarrow \Omega_X \rightarrow \Omega_G \rightarrow 0.$$

The singular set $S(G)$ of G is also defined by $S(G) = \{ p \in X | \Omega_{G,p} \text{ is not } O_p \text{-free} \}$.

2.2. **Codimension 1 case.** We give more simple descriptions for codimension 1 singular distributions. A codimension 1 locally free singular holomorphic distribution is given by a collection of 1-forms $\omega = (\omega_\alpha, U_\alpha)$ for an open covering $\{U_\alpha\}$ of X which has the transition relations $\omega_\beta = g_{\alpha\beta}\omega_\alpha$ on the intersection $U_\alpha \cap U_\beta$ with $g_{\alpha\beta} \in \mathcal{O}^*(U_\alpha \cap U_\beta)$. Then the cocycle $(g_{\alpha\beta})$ defines a line bundle G. Generically at p, the covector ω_p gives an embedding of the fiber G_p into T_p^*X by $f_p \in G_p \mapsto f_p\omega_p \in T_p^*X$. Thus G is regarded as a subbundle of T^*X without on the zero loci of ω. Since the map of germs of sections $(f)_p \in \mathcal{O}_X(G)_p \mapsto (f\omega)_p \in \Omega_{X,p}$ are injective for all $p \in X$, the sheaf $\mathcal{G} = \mathcal{O}_X(G)$ gives the subsheaf of Ω_X in the above sense in 1.2. Since the quotient sheaf Ω_X is not \mathcal{O}-free on the zero loci of ω on which we can not define the quotient bundle T^*X/G, we see the singular set of \mathcal{G} is $S(\mathcal{G}) = \{ p | \omega(p) = 0 \}$.

3. **Residue of codimension 1 distribution**

3.1. **Localization of the top Chern class.** We determine the dual homology class of $c_n(\Omega_X \otimes \mathcal{G}^\vee)$. Our main tool is the Čech-de Rham techniques. For generalities on the integration and the Chern-Weil theory on the Čech-de Rham cohomology, see [S3] or [IS]. We set for an analytic set S, $U_0 = X \setminus S$, U_1 is a regular neighborhood of S, and $U_{01} = U_0 \cap U_1$. For a covering $U = \{U_0, U_1\}$ of X, the Čech-de Rham cohomology group $H^{2\mathfrak{n}}(\mathcal{A}^*(U))$ is represented by the group of cocycles of the type $(\sigma_0, \sigma_1, \sigma_{01})$ for $\sigma_0 \in Z^{2\mathfrak{n}}(U_0)$, $\sigma_1 \in Z^{2\mathfrak{n}}(U_1)$, and $\sigma_{01} \in A^{2\mathfrak{n}-1}(U_{01})$ with $d\sigma_{01} = \sigma_1 - \sigma_0$. We note that the Čech-de Rham cohomology can be regarded as the hypercohomology of the de Rham complex (\mathcal{A}^*, d). By usual spectral sequence arguments for double complexes, we see that the Čech-de Rham cohomology group is canonically isomorphic to the de Rham cohomology group. If we take the subgroup $H^{2\mathfrak{n}}(\mathcal{A}^*(U, U_0))$ of cocycles of the form $(0, \sigma_1, \sigma_{01})$, then this is also isomorphic to the relative cohomology group $H^{2\mathfrak{n}}(X, X \setminus S; \mathcal{G})$.

In the above settings, the top Chern class $c_n(E)$ of a vector bundle E of rank n is given by the cocycle in $H^{2\mathfrak{n}}(\mathcal{A}^*(U))$ as follows. For $i = 0, 1$, let ∇_i be a connection for E on U_i and $c_n(\nabla_i)$ the n-th Chern form of ∇_i. We also write by $c_n(\nabla_0, \nabla_1)$ the transgression form of $c_n(\nabla_i)$'s on U_{01}. Then $c_n(E)$ is represented by

$$(c_n(\nabla_1), c_n(\nabla_1), c_n(\nabla_0, \nabla_1)).$$

If E has a global section s with zero loci S, then we take ∇_0 as the s-trivial connection such that we have $c_n(\nabla_0) = 0$. Thus we can define the localized Chern class at p in $H^{2\mathfrak{n}}(X, X \setminus S; \mathcal{G})$ by a Čech-de Rham cocycle $(0, c_n(\nabla_1), c_n(\nabla_0, \nabla_1))$.

The integration of $c_n(E) = (0, c_n(\nabla_1), c_n(\nabla_0, \nabla_1))$ is defined by

$$\int_X c_n(E) = \int_R c_n(\nabla_1) - \int_{\partial R} c_n(\nabla_0, \nabla_1)$$

for a tubular neighbourhood $R \subset U_1$ of S.

3.2. **Residue of codimension 1 distributions.** Now we apply the above arguments to our situations. Let \mathcal{G} be a codimension 1 locally free distribution with the zero loci $S(\mathcal{G})$ and we suppose that $S(\mathcal{G})$ has connected components S_j. We set $U_0 = X \setminus S(\mathcal{G})$ and U_j is a regular neighbourhood of S_j. We consider the localized class of $c_n(\Omega_X \otimes \mathcal{G}^\vee)$ in the Čech-de Rham cohomology group for the covering $U = \{U_0, U_1, \ldots, U_j\}$. Since the collection ω of 1-forms ω_α defines the global section of $\Omega_X \otimes \mathcal{G}^\vee$, we can take ∇_0 as the ω-trivial connection such that $c_n(\nabla_0) = 0$.
as we discussed above. For all $j = 1, \ldots, k$, we can also take ∇_j as an arbitrary connection on U_j. So we have

$$c_n(\Omega_X \otimes G^\vee) = (0, \{c_n(\nabla_j)\}_{j=1,\ldots,k}, \{c_n(\nabla_0, \nabla_j)\}_{j=1,\ldots,k}) \in H^{2n}(X, X \setminus S(G); \mathbb{C}).$$

We denote by R_j a tubular neighbourhood of S_j in U_j. We give the following definition of residue.

Definition 3.1. The residue of G at S_j is defined by

$$\text{Res}(G, S_j) = \int_{R_j} c_n(\nabla_j) - \int_{\partial R_j} c_n(\nabla_0, \nabla_j).$$

We can describe the residue into precise form in isolated singular cases. Here we refer the result in [S3] of Theorem 5.5.

Theorem 3.2. Let s be a regular section of E with isolated zero \{p\} and s is locally given by (f_1, \ldots, f_n) near p. Then we have

$$\text{Res}(G, p) = \text{Res}_p[df_1 \wedge f_2 \wedge \cdots \wedge df_n]$$

where $\text{Res}_p[df_1 \wedge f_2 \wedge \cdots \wedge df_n]$ is the Grothendick residue of (f_1, \ldots, f_n).

The dual correspondence in the Alexander duality

$$AL : H^{2n}(X, X \setminus S(G); \mathbb{C}) \cong \bigoplus_{j} H_0(S_j; \mathbb{C})$$

is given by

$$AL(c_n(\Omega_X \otimes G^\vee)) = \sum_j \text{Res}(G, S_j).$$

Now we have the residue formula for isolated singular cases as,

Theorem 3.3 (The residue formula for isolated singularities). Let ω be a codimension 1 singular holomorphic distribution with the cotangent sheaf G and $(f_1^{(j)}, \ldots, f_n^{(j)})$ a local expression of $\omega \in H^0(X, \Omega_X \otimes G^\vee)$ near p_j.

$$\int_X c_n(\Omega_X \otimes G^\vee) = \sum_{j=1}^k \text{Res}_{p_j}[df_1^{(j)} \wedge \cdots \wedge df_n^{(j)}].$$

4. **Baum-Bott type residue formula**

4.1. **Koszul resolution.** First let us remember the definition of the Koszul complex. (See [FG], Chapter 4 or [GH], Chapter 5.) Let E be a locally free O-module of rank n and $d : E \rightarrow O$ an O-homomorphism. Then the Koszul complex of sheaves

$$0 \rightarrow \wedge^n E \rightarrow \wedge^{n-1} E \rightarrow \cdots \rightarrow \wedge^1 E \rightarrow O \rightarrow 0$$

is defined by the boundary operator

$$d_p(\epsilon_1 \wedge \cdots \wedge \epsilon_p) = \sum_{i=1}^p (-1)^{i-1} d(\epsilon_i) \epsilon_1 \wedge \cdots \wedge \hat{\epsilon_i} \wedge \cdots \wedge \epsilon_p.$$

This complex is exact expect for the last term. If the image I_d of d is regular ideal, the complex

$$0 \rightarrow \wedge^n E \rightarrow \wedge^{n-1} E \rightarrow \cdots \rightarrow \wedge^1 E \rightarrow O \rightarrow I_d/O \rightarrow 0$$

is defined by the boundary operator

$$d_p(\epsilon_1 \wedge \cdots \wedge \epsilon_p) = \sum_{i=1}^p (-1)^{i-1} d(\epsilon_i) \epsilon_1 \wedge \cdots \wedge \hat{\epsilon_i} \wedge \cdots \wedge \epsilon_p.$$
is exact. We call this exact sequence the Koszul resolution of $\mathcal{O}/\mathcal{I}_d$.

Now let us consider our case. As observed in 2.1, ω can be regarded as a homomorphism $\omega : \mathcal{G} \rightarrow \Omega_X$ such that it defines a global section

$$\omega \in H^0(X, \mathcal{H}om_{\mathcal{O}}(\mathcal{G}, \mathcal{O}_X)) \simeq H^0(X, \mathcal{O}_X \otimes \mathcal{G}^{'\vee}).$$

Locally on U_{α}, ω is given by $\omega_{\alpha} \otimes s_{\alpha}^{\vee} = \sum f_i (dx_i \otimes s_{\alpha}^{\vee})$ for some local coordinates of X and a local frame s_{α}^{\vee} for $\mathcal{G}^{'\vee}$. In the other words, ω acts on $(\mathcal{O}_X \otimes \mathcal{G}^{'\vee})^{\alpha} \simeq \mathcal{O}_X \otimes \mathcal{G}$ as a contraction operator $\omega : \mathcal{O}_X \otimes \mathcal{G} \rightarrow \mathcal{O}$. We denote by \mathcal{I}_ω the ideal sheaf defined by $\text{Im}(\omega : \mathcal{O}_X \otimes \mathcal{G} \rightarrow \mathcal{O})$. We assume that $\mathcal{S}(\mathcal{G}) = \{ p \in X | \omega_p = 0 \}$ consists only of isolated points such that the local coefficients (f_1, \cdots, f_n) of ω is regular sequence on $\mathcal{S}(\mathcal{G})$. Then the complex of sheaves

$$0 \rightarrow \wedge^n(\mathcal{O}_X \otimes \mathcal{G}) \rightarrow \wedge^{n-1}(\mathcal{O}_X \otimes \mathcal{G}) \rightarrow \cdots \rightarrow \wedge^1(\mathcal{O}_X \otimes \mathcal{G}) \rightarrow \mathcal{O} \rightarrow \mathcal{O}/\mathcal{I}_\omega \rightarrow 0$$

is exact with the boundary operator

$$d_p(e_1 \wedge \cdots \wedge e_p) = \sum_{i=1}^{p} (-1)^{i-1} f_i e_1 \wedge \cdots \wedge \hat{e}_i \wedge \cdots \wedge e_p$$

where we set $e_i = \frac{\partial}{\partial x_i} \otimes s$. Therefore this gives the Koszul resolution of $\mathcal{O}/\mathcal{I}_\omega$.

By using this projective resolution, we can defines the Chern character of the coherent sheaf $\mathcal{O}/\mathcal{I}_\omega$ by

Proposition 4.1.

$$ch(\mathcal{O}/\mathcal{I}_\omega) = c_n(\mathcal{O}_X \otimes \mathcal{G}^{'\vee}).$$

Proof. We use [H] of Theorem 10.1.1 and we have

$$ch(\mathcal{O}/\mathcal{I}_\omega) = ch(\sum_{i=0}^{n} (-1)^i \wedge^i(\mathcal{O}_X \otimes \mathcal{G}))$$

$$= td^{-1}(\mathcal{O}_X \otimes \mathcal{G}^{'\vee}) c_n(\mathcal{O}_X \otimes \mathcal{G}^{'\vee})$$

$$= c_n(\mathcal{O}_X \otimes \mathcal{G}^{'\vee}).$$

4.2. Baum-Bott type residue formula. Now we translate the above results in terms of differential system in the tangent sheaf \mathcal{O}_X. Let $\mathcal{F} = \{ v \in \mathcal{O}_X | \langle v, \omega \rangle = 0 \}$ be the annihilator of \mathcal{G}. Then \mathcal{F} defines a $n-1$ dimensional (possibly) singular distribution. Since \mathcal{G} is locally free, by applying $\otimes \mathcal{G}$ to the exact sequence

(1)$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_X \rightarrow N_{\mathcal{F}} \rightarrow 0,$$

the following sequence

$$0 \rightarrow \mathcal{F} \otimes \mathcal{G} \rightarrow \mathcal{O}_X \otimes \mathcal{G} \rightarrow N_{\mathcal{F}} \otimes \mathcal{G} \rightarrow 0,$$

is also exact. Since the kernel of $\omega : \mathcal{O}_X \otimes \mathcal{G} \rightarrow \mathcal{O}_X$ is equals to $\mathcal{F} \otimes \mathcal{G}$, we have

(2)$$\mathcal{I}_\omega \simeq (\mathcal{O}_X \otimes \mathcal{G})/(\mathcal{F} \otimes \mathcal{G}) \simeq N_{\mathcal{F}} \otimes \mathcal{G}.$$ We take $\mathcal{H}om_{\mathcal{O}}(\mathcal{G}, \mathcal{O})$ of the dual exact sequence

$$0 \rightarrow \mathcal{G} \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_G \rightarrow 0$$

of (1), we obtain the exact sequence

$$0 \rightarrow \mathcal{H}om_{\mathcal{O}}(\mathcal{G}, \mathcal{O}) \rightarrow \mathcal{H}om_{\mathcal{O}}(\mathcal{O}_X, \mathcal{O}) \rightarrow \mathcal{H}om_{\mathcal{O}}(\mathcal{G}, \mathcal{O}) \rightarrow \mathcal{E}xt^1_{\mathcal{O}}(\mathcal{G}, \mathcal{O}) \rightarrow 0,$$

which implies

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_X \rightarrow \mathcal{G}^{'\vee} \rightarrow \mathcal{E}xt^1_{\mathcal{O}}(\mathcal{G}, \mathcal{O}) \rightarrow 0.$$
We use $\mathcal{F} = \text{Hom}_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O})$ and $\Theta_X = \text{Hom}_\mathcal{O}(\Omega_X, \mathcal{O})$ in the above. Thus we obtain

$$0 \rightarrow N_{\mathcal{F}} \rightarrow \mathcal{G}' \rightarrow \mathcal{E}xt^1_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O}) \rightarrow 0.$$ \hfill (3)

By taking the Chern characters of (3), we have

$$ch(N_{\mathcal{F}}) = ch(\mathcal{G}') - ch(\mathcal{E}xt^1_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O})).$$ \hfill (4)

By tensoring \mathcal{G} for each term of (3), we also have the exact sequence

$$0 \rightarrow \mathcal{I}_\omega \rightarrow \mathcal{O} \rightarrow \mathcal{E}xt^1_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O}) \otimes \mathcal{G} \rightarrow 0$$

and which gives the isomorphism $\mathcal{O}/\mathcal{I}_\omega \simeq \mathcal{E}xt^1_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O}) \otimes \mathcal{G}$. Thus the Chern characters of those sheaves satisfy

$$ch(\mathcal{E}xt^1_\mathcal{O}(\Omega_{\mathcal{G}}, \mathcal{O})) = ch(\mathcal{O}/\mathcal{I}_\omega)ch(\mathcal{G}').$$ \hfill (5)

Therefore by combining the two equalities (4) and (5) for the Chern characters, we obtain

Proposition 4.2.

$$ch(N_{\mathcal{F}}) = (1 - ch(\mathcal{O}/\mathcal{I}_\omega))ch(\mathcal{G}')$$

$$= (1 - c_n(\Omega_X \otimes \mathcal{G}'))ch(\mathcal{G}').$$

Now we find the top Chern class of $N_{\mathcal{F}}$.

Proposition 4.3.

$$c_n(N_{\mathcal{F}}) = (-1)^n(n - 1)!c_n(\Omega_X \otimes \mathcal{G}').$$

Proof. Let $\{\xi_i\}$ be the formal Chern roots of $c(N_{\mathcal{F}})$ and ch_i the terms of i-th degree in ch. Then from proposition 3.1, we have

$$ch_i(N_{\mathcal{F}}) = \frac{1}{i!}c_1(\mathcal{G}')^i$$

for $i \leq n - 1$ and

$$ch_n(N_{\mathcal{F}}) = \frac{1}{n!}c_1(\mathcal{G}')^n - c_n(\Omega_X \otimes \mathcal{G}').$$

$ch_1(N_{\mathcal{F}}) = c_1(\mathcal{G}')$ is obvious. We also see that

$$\frac{1}{2!}c_1(\mathcal{G}')^2 = ch_2(N_{\mathcal{F}})$$

$$= \frac{1}{2!}(\xi_1^2 + \cdots + \xi_n^2)$$

$$= \frac{1}{2!}((\xi_1 + \cdots + \xi_n)^2 - 2 \sum \xi_i\xi_j)$$

$$= \frac{1}{2!}c_1(\mathcal{G}')^2 - c_2(N_{\mathcal{F}}),$$

which implies $c_2(N_{\mathcal{F}}) = 0$. We continue the same computations for fundamental symmetric polynomials, we have

$$c_2(N_{\mathcal{F}}) = \cdots = c_{n-1}(N_{\mathcal{F}}) = 0.$$
Thus for n-th term, we have
\[
\frac{1}{n!}c_{1}(G^\vee)^{n} - c_{n}(\Omega_X \otimes G^\vee) = ch_{n}(N_{F}) \]
\[
= \frac{1}{n!}(\xi_{1}^{n} + \cdots + \xi_{n}^{n})
\]
\[
= \frac{1}{n!}\{ (\xi_{1} + \cdots + \xi_{n})^{n} - (-1)^{n}n\xi_{1}\cdots\xi_{n} \}
\]
\[
= \frac{1}{n!}c_{1}(G^\vee)^{n} - \frac{(-1)^{n}}{(n-1)!}c_{n}(N_{F}),
\]
from which the result follows.

We combin the results in (2.3), we can derive the formula for the normal sheaf N_{F}, which is the Baum-Bott type residue formula.

Theorem 4.4 (Baum-Bott type residue formula). Let ω be a codimension 1 distribution with conormal sheaf \mathcal{G}, and F the anihilator of \mathcal{G}. We suppose that $S(\mathcal{G}) = \{ p_{1}, \cdots, p_{k} \}$ and we write $\omega = \sum f_{i}^{(j)}(dx_{i} \otimes s^{\vee})$ near p_{j}. Then we have
\[
\int_{X}c_{n}(N_{F}) = (-1)^{n}(n-1)! \sum_{j} \text{Res} \left[\frac{df_{1}^{(j)} \wedge \cdots \wedge df_{n}^{(j)}}{f_{1}^{(j)} \cdots f_{n}^{(j)}} \right].
\]

proof. This is simply given by
\[
\int_{X}c_{n}(N_{F}) = (-1)^{n}(n-1)! \int_{X}c_{n}(\Omega_X \otimes G^\vee)
\]
\[
= (-1)^{n}(n-1)! \sum_{j} \text{Res} \left[\frac{df_{1}^{(j)} \wedge \cdots \wedge df_{n}^{(j)}}{f_{1}^{(j)} \cdots f_{n}^{(j)}} \right]
\]

Remarks. If we assume the integrability condition on \mathcal{G}, the above formula implies the Baum-Bott residue formula for singular holomorphic foliations. Since the Baum-Bott residue for $c_{n}(N_{F})$ is given by
\[
(-1)^{n}(n-1)! \dim Ext_{\mathcal{O}_{\mathrm{p}}}^{1}(\Omega_{\mathcal{G},p}, O_{\mathrm{p}}) = (-1)^{n}(n-1)! \dim O_{\mathrm{p}}/\mathcal{I}_{\omega,p},
\]
the right hand side of 3.4 coincides the Baum-Bott residue.

5. **Applications**

5.1. **Residue for the non-transversal loci of a holomorphic map.** Let $F : X^{n} \rightarrow Y^{m}$ be a holomorphic map between n and m dimensional compact complex manifolds. If Y has a non-singular distribution $\tilde{\mathcal{G}} = O_{Y}(G)$, then the inverse image $\mathcal{G} = F^{-1}\tilde{\mathcal{G}}$ gives a distribution of X which is possibly singular. In codimension 1 case, if a distribution $\tilde{\mathcal{G}}$ on Y is given by a collection of 1-forms $\tilde{\omega} = (\tilde{\omega}_{\alpha})$, then the inverse image $\mathcal{G} = F^{-1}\tilde{\mathcal{G}}$ of the invertible sheaf $\tilde{\mathcal{G}}$ is given by the collection of 1-forms $\omega = (F^{*}\tilde{\omega}_{\alpha})$. If the image of the differential DF_{p} does not contain the normal space G_{p}^{*}, we see that covector ω_{p} is zero. Thus the non-transversal loci of F to $\tilde{\mathcal{G}}$ is given by
\[
S(\mathcal{G}) = \{ p \in X : F^{*}\tilde{\omega}_{\alpha}(p) = 0 \}
\]

Now we give the residue formula for the non-transversality of F to $\tilde{\mathcal{G}}$. We assume that $S(\mathcal{G})$ consists of isolated points $\{ p_{1}, \cdots, p_{k} \}$. We set that, near p_{j}, $f_{i}^{(j)}$ are
the coefficients of $F^{*}\tilde{\omega}_{\alpha}^{(j)}$ such that we write $F^{*}\tilde{\omega}_{\alpha}^{(j)} = f_{1}^{(j)}dx_{1} + \cdots + f_{n}^{(j)}dx_{n}$. Then we have

$$
\int_{X} c_{n}(\Omega_{X} \otimes \mathcal{G}^{\vee}) = \sum_{l=0}^{n} \int_{F^{*}(c_{l}(\Theta_{X}))} c_{1}(\tilde{\mathcal{G}})^{l}
= \sum_{j=1}^{k} \text{Res}_{p_{j}} \left[df_{1}^{(j)} \wedge \cdots \wedge df_{n}^{(j)} \right].
$$

Now we have the result.

Theorem 5.1 (Residue formula for non-transversality). Let $F : X^{n} \rightarrow Y^{m}$ be a holomorphic map of generic rank r and $\tilde{\mathcal{G}}$ a codimension 1 non-singular distribution of Y. We assume that the non-transversal points of F to $\tilde{\mathcal{G}}$ are $\{p_{1}, \cdots, p_{k}\}$, then we have

$$
\chi(X) + \sum_{l=1}^{r} \int_{F^{*}(c_{l}(\Theta_{X}))} c_{1}(\tilde{\mathcal{G}})^{l} = \sum_{j=1}^{k} \text{Res}_{p_{j}} \left[df_{1}^{(j)} \wedge \cdots \wedge df_{n}^{(j)} \right].
$$

Proof. We denote by X^{*} the set of generic points where F has rank k. By using projection formula,

$$
\int_{X} c_{n-l}(\Theta_{X})c_{1}(\tilde{\mathcal{G}})^{l} = \int_{X^{*}} c_{n-l}(\Theta_{X})F^{*}(c_{1}(\tilde{\mathcal{G}})^{l})
= \int_{F^{*}(c_{n-l}(\Theta_{X})-\{X\})} c_{1}(\tilde{\mathcal{G}})^{l}.
$$

It is obvious that the above terms are zero for $k \leq l$.

Here let $F : X^{2} \rightarrow Y^{m}$ be a map from compact complex surface. In this case we write down the above general form of the formula into geometric forms. We set that $y_{m} = F_{m}^{(j)}(x_{1}, x_{2})$ is the m-th entry of a local representation of F near p_{j} and also write $dF_{m}^{(j)} = f_{1}^{(j)}dx_{1} + f_{2}^{(j)}dx_{2}$. Then the above formula is

$$
\chi(X) + \int_{F^{*}(c_{1}(\Theta_{X})-\{X\})} c_{1}(\tilde{\mathcal{G}}) + \int_{F^{*}[X]} c_{1}(\tilde{\mathcal{G}})^{2} = \sum_{j=1}^{k} \text{Res}_{p_{j}} \left[df_{1}^{(j)} \wedge f_{2}^{(j)} \right].
$$

We remark that if the generic rank of F is 1, the last term in the left-hand side of the above vanishes and we have

$$
\chi(X) + \chi(M_{F}) \int_{F^{*}[X]} c_{1}(\tilde{\mathcal{G}}) = \sum_{j=1}^{k} \text{Res}_{p_{j}} \left[df_{1}^{(j)} \wedge f_{2}^{(j)} \right].
$$

In the above, M_{F} is the generic fiber of F.

As an other example let us consider the case that $F : X^{n} \rightarrow C$ is a map for a curve C and $\tilde{\mathcal{G}} = \Omega_{C}$ is the point distribution. Then the above formula implies the multiplicity formula. (See [IS], [F].)

Theorem 5.2 (The multiplicity formula). Let $F : X^{n} \rightarrow C$ be a holomorphic function for a compact complex curve C with the generic fiber M_{F}. If F has finite
number of isolated critical points \(\{p_1, \cdots, p_k\}\), then we have

\[
\chi(X) - \chi(M_F)\chi(C) = (-1)^n \sum_{j=1}^{k} \mu(F, p_j)
\]

where \(\mu(F, p_j)\) is the Milnor number of \(F\) at \(p_j\).

Remarks. The one dimensional cases of theorem 4.1 is the classical Riemann-Hurwitz formula for a morphism of Riemann surfaces \(F : C \to \overline{C}\). We note that it cannot be deduced from the Baum-Bott type formula for \(c_1(N_F)\) in the above settings, however we can still apply the residue formula for \(G\) in theorem 2.4. By taking the anihilator of the inverse image \(G\) of \(\Omega_{\overline{C}}\), the given tangent sheaf \(F\) of the lifted foliation turn out to be reduced. Since 1 dimensional manifolds only admits point foliations, the zero schemes of singularities are the points with multiplicities. Thus those kinds of singularities become non-singular by taking reduction. Therefore in our pull-back situation, the normal sheaf \(N_F\) is always locally free and only \(G\) itself keeps the informations of singularities of \(F\).

References

