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Abstract

This paper shows the problems of singularities in learning theory. We
introduce two important observables in learning theory, stochastic com-
plexity and generalization error. A lot of learning machines used in infor-
mation science have singularities in their parameter space, resulting that
their mathematical properties have been left unknown. In this paper we
show that the asymptotic behaviors of stochastic complexity and general-
ization error can be identified by the largest pole and its order of the zeta
function of the learning machine.

1 Introduction
Let $\mathrm{R}^{N}$ and $\mathrm{R}^{d}$ be respectively $N$ and $d$ dimensional Euclidean spaces. Also
let $(\Omega,\mathcal{B}, P)$ be a probability space, and $X_{1},X_{2},$

$\ldots,$
$X_{n}$ be random variables

defined as measurable functions from $\Omega$ to $\mathrm{R}^{N}$ . Assume that random variables
$X_{1},$ $X_{2},$ $\ldots,X_{n}$ are independently subject to the probability distribution $q(x)dx$

where $q(x)>0$ is a positive and measurable function on $x\in \mathrm{R}^{N}$ and $dx$ is
Lebesgue measure on $\mathrm{R}^{N}$ . Let $D_{n}$ denote the set of random variables,

$D_{n}=\{X_{1},X_{2}, \ldots,X_{n}\}$ .

The set $D_{n}$ is referred to as the set of random samples and the probability
distribution $q(x)dx$ is called as the true distribution.

A learning machine is defined by the conditional probability distribution
$p(x|w)\$ , where $p(x|w)$ is a positive and measurable function of $x\in \mathrm{R}^{N}$ for
a given $w\in \mathrm{R}^{d}$ . Here $w$ is called a parameter of the learning machine. Let
$\varphi\langle w$) $dw$ be a probability distribution on $\mathrm{R}^{d}$ . In learning theory we study two
probability distributions. The a posteriori distribution of $w$ is defined by

$p(w|D_{n})= \frac{1}{Z(D_{n})}\varphi(w)\prod_{i=1}^{n}p(X_{i}|w)$ ,
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where $Z(D_{n})$ be the normalized function defined by

$Z(D_{n})= \int\varphi(w)\prod_{i=1}^{n}p(X_{i}|w)dw$ .

The predictive distribution is defined by

$p(x|D_{n})= \int p(x|w)p(w|D_{n})dw$ ,

which is the estimated probability distribution from the random samples. The
main problem of learning theory can be expressed as the following.

Main Problem in Learning Theory. Establish mathematical foundation
that is necessary to clarify the difference between two probability distributions
$q(x)dx$ and $p(x|D_{n})dx$ .

Remarks. In information science, only the random variables $D_{n}$ are given,
whereas the true probability distribution $q(x)dx$ is unknown. Information sci-
entist employs a learning machine $p(x|w)dx$ and estimates “the true distribution
is approximately equal to the predictive distribution $p(x|D_{n})dx$ . Learning the-
ory is needed to answer how precise the estimation is.

2 Stochastic Complexity and Generalization Er-
ror

The relative entropy from a probability distribution $p_{1}(x)dx$ to $p_{2}(x)dx$ is de-
fined by

$\int p_{1}(x)\log\frac{p_{1}(x)}{p_{2}(x)}dx$ ,

which is nonnegative and is equal to zero if and only if $p_{1}(x)dx=p_{2}(x)dx$
$(\forall x)$ . The generalization emrvr is defined as the relative entropy from the true
distribution $q(x)dx$ to the predictive distribution $p(x|D_{n})$ ,

$G(D_{n})= \int q(x)\log\frac{q(x)}{p(x|D_{n})}dx$ .

The generalization error is a measurable function of the random variables $D_{n}$ ,
hence it is also a random variable. It is expected that $G(D_{n})arrow 0$ when $n$ tends
to infinity. The goal of learning theory is to clarify the asymptotic behavior of
the random variable $G(D_{n})$ .

We define the $\log$ loss function by

$f(x,w)=- \log\frac{q(x)}{p(x|w)}$ .
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Then the stochastic complexity is given by

$F(D_{n})=- \log\int\exp(-\sum_{i=1}^{n}f(X_{i},w))\varphi(w)dw$ ,

which is also a random variable. It is quite easy to show that

$E[G(D_{n})]=E[F(D_{n+1})]-E[F(D_{n})]$ ,

where $E[\cdot]$ shows the expectation value. This relation shows that there is a
mathematical relation between the generalization error and the stochastic com-
plexity.

Remark. The stochastic complexity is also called the random free energy. It
is quite important in mathematical physics to clarify the asymptotic behavior
of the stochastic complexity.

3 Mathematical Problem
The set of true parameters is defined by

$W_{0}=\{w\in \mathrm{R}^{d};q(x)=p(x|w) (\forall x)\}$.

If the set of true parameters consists of one point $w_{0}$ and the Fisher information
matrix

$I(w_{0})= \int\frac{\partial f(x,w_{0})}{\partial w_{i}}\frac{\partial f(x,w_{0})}{\partial w_{j}}p(x|w_{0})dx$

is positive definite, then it is easy to show the asymptotic behaviors of $G(D_{n})$

and $F(D_{n})$ . It is well known in information theory, theoretical physics, and
statistics that

$nE[G(D_{n})]$ $arrow$ $\frac{d}{2’}$

$E[F(D_{n})]- \frac{d\log n}{2}$ $arrow$ const.,

where this fact was proved between 1920-1940.

However, almost all learning machines used in modern information science
do not have positive definite Fisher information matrices. Moreover, $W_{0}$ is not
one point but an algebraic set or an analytic set in general.

Mathematical Problem in Learning Theory. Establish mathematical
foundation on which we can construct learning theory when $W_{0}$ is an algebraic
set or an analytic set.
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Remark. If a learning machine estimates the structure of the true distribution
or if it estimates the hidden variables of the true distribution, then it has singu-
larities (degenerate Fisher information matrices) in its parameter space. Almost
all learning machines such as neural networks, Bayesian networks, gaussian mix-
tures, mixtures of binomial distributions, spin systems, hidden Markov models,
probabilistic contex-free grammars, and Boltzmann machines have singularities.

4 Results
The main results are described in this section.

Condition (A). The a priori distribution $\varphi(w)$ is given by the following form,

$\varphi(w)=\{$
$\varphi 0(w)$ $(\varphi_{1}(w)>0, \ldots, \varphi_{k}(w)>0)$

$0$ (otherwise)

where $\varphi_{0}(w),$
$..,$

$\varphi_{k}(w)$ are real analytic functions. The support of $\varphi(w)$ is com-
pact.

Condition (B). The function

$f(x, w)=\log(q(x)/p(x|w))$

is an $L^{\epsilon}(U)$ valued analytic function of $w\in \mathrm{R}^{d}(s\geq 2)$ where $W\subset \mathrm{R}^{d}$ is an
open set which includes the support of $\varphi(w)$ . Here $L^{\epsilon}(U)$ is the Banach space
defined by

$L^{s}(U)= \{g;\int_{U}|g(x)|^{s}q(x)dx<\infty\}$ .

These conditions are assumed in the following theorems. Under the condition
(B), the function

$H(w)= \int q(x)\log\frac{q(x)}{p(x|w)}dx$

is an analytic function of $w$ .
The first theorem claims that the stochastic complexity has asymptotic ex-

pansion.

Theorem 1 Assume two conditions $(A)$ and $(B)$ $fors\geq 4$ . Then the stochastic
complexity has the follovring asymptotic erpansion,

$F(D_{n})=\lambda_{1}\log n-(m_{1}-1)\mathrm{l}\mathrm{c}\mathrm{g}\log n+R(D_{n})$ .
Here $(-\lambda_{1})$ and $m_{1}$ are respectively the largest pole and its order of the mero-
morphic function $\zeta(z)(z\in \mathrm{C})$ on the entire complex plane that is the analytic
continuation of

$\zeta(z)=\int H(w)^{z}\varphi(w)dw$ $(Re(z)>0)$ .
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The random variables $R(D_{n}),$ $R$ sa.tisfy

$R(D_{n})arrow R$ (convergence in law),

and
$\lim_{narrow\infty}E[R(D_{n})]=E[R]$ .

For the proof of this theorem, see the reference [1].

Condition (C). We define a function $M(x)$ by

$M(x)= \sup_{w\in K*}|f(X_{)}w)|$ .

where $K^{*}$ is an open set of $C^{d}$ which contains the support of $\varphi$ . There exists a
constant $\gamma>0$ such that

$E[M(X)^{2}\exp(\gamma M(X)^{2})]<\infty$ .

This condition is needed in the second theorem.

Theorem 2 Assume that condition $(A),(B)$ and $(C)$ for $s\geq 4$ . Then theme
exists a random $var\dot{\tau}ableG$ such that the convergence in law

$nG(D_{n})arrow G$

holds and
$nE[G(D_{n})]arrow E[G]=\lambda_{1}$ ,

where $\lambda_{1}$ is equal to that in Theorem 1.

For the proof of this theorem, see the reference [1].

5 Algorithms

In information science, we need an algorithm to obtain the largest pole and its
order of the zeta function. It is well known that, if we find the resolution of
singularities of $H(w)=0$ , then $\lambda_{1}$ and $m_{1}$ can be immediately calculated. In
fact, these coefficients of a lot of learning machines have been found by $\mathrm{r}\mathrm{e}s$olution
of singularities.

6 Conclusion
This paper shortly introduced the problem of singularities in learning theory.

151



References
[1] Sumio Watanabe, “Daisu Kika to Gakushu Riron,” Morikita Shuppan, in

Japanese (2006).

[2] Sumio Watanabe, “Algebraic Geometry and Statistical Learning Theory,”
to be published in Cambridge University Press (In English).

[3] M.Aoyagi, S.Watanabe, “Stochastic complexities of reduced rank regres-
sion in Bayesian estimation,” International Journal of Neural Networks,
18 (7),$\mathrm{p}\mathrm{p}.924- 933,2005$ .

[4] S.Watanabe,“Algebraic analysis for nonidentifiable learning machines”,
Neural Computation, 13(4), pp.899-933, 2001.

[5] S.Watanabe, K.Fukumizu, K.Hagiwara, S.Amari, “Learning Theory of Sin-
gular Statistical Models,” hans. IEICE,J88-D2 (2), pp.159-169, 2005. (Sur-
vay Paper).

[6] K. Yamazaki, S. Watanabe, “Algebraic geometry and stochastic complexity
of hidden Markov models”, Neurocomputing, to appear.

152


