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Introduction.
1. Motivation.

We consider a second order partial differential equation

$F(x, y, z,p, q, r, s, t)=0$

with two independent variables $x,$ $y$ of $\mathbb{R}^{2}$ (or $\mathbb{C}^{2}$), a dependent variable $z$ of $x,$ $y$ , and $p=$
$\frac{\partial z}{\partial x},$ $q= \frac{\partial z}{\theta y},$

$r= \frac{\partial^{2}z}{\partial x^{2}},$ $s= \frac{\partial^{2}z}{\partial x\partial y},$ $t= \frac{\partial^{2}}{\partial y}z\mathrm{F}$ .
Goursat $([\mathrm{G}])$ considered the so-called Gousat equations (see I.1.1.). And then Cartan ([C],

$\mathrm{c}\mathrm{f}.[\mathrm{T}],[\mathrm{Y}])$ showed the followings: for a Goursat equation

(i) $9r^{2}+12t^{2}(rt-s^{2})+32s^{3}-36rst=0$

and an involutive system
$/( \mathrm{i}\mathrm{i})r=\frac{1}{3}t^{3}\sim$

’
$s= \frac{1}{2}t^{2}$ ,

1: the surface (i) is the tangent developable of the space curve (ii) in $(r, s,t)$-space.
2: the symmetry of infinitesimal contact transformations of (i) and (ii) is the Lie algebra of

the type exceptional Lie group $G_{2}’$ of non-compact (split) type
Then we have the following questions: How and where are the equation (i) and the symmetry

of (i) derived from ? What is the essence and the universality of Goursat equations ?
In this note, we look for the answers to these questions by using two dualities in twistor

theory: Lagrange-Grassmann duality and Cartan-Legendre duality.

2. Important viewpoints.
$\bullet$ Reduction to the system of first order ODE.
We have an analogy of Monge geodesics and a Monge flow to $\mathrm{g}\mathrm{e}o$desics and a geodesic flow.
$\bullet$ Application of twistor theory.
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Assuming that the automorphism group is of finite type, in particular $A,$ $BD$ , exceptional
types, we can construct the normal Cartan connections and can get lifting theorems and re-
duction theorems in the twistor theory.

$\bullet$ Another generalization of Monge-Amp\‘ere equations of parabolic type.
One generalization of Monge-Amp\‘ere equations of parabolic type is decomposable Monge-

Amp\‘ere systems of Lagrange type ([M-M]). As another generalization, we have Goursat equa-
tions.

$\bullet$ Connections with Wolf spaces, Gray spaces.
The twistor diagrams in complex category explained in I.1.2 have relation to Wolf spaces

and Gray spaces. A Wolf space $X^{4n}$ is a compact homogeneous quaternion-K\"ahler manifold
with positive curvature. This space $X$ has two kinds of twistor spaces. The one is $M_{\mathbb{C}}^{2n+1}$

called the Salamon twistor space which appears in 3.1. The other is a Gray space $\mathrm{Y}_{\mathbb{C}}^{3(n-1)}$ via
$N_{\mathbb{C}}^{3n-1}$ , which is a compact homogeneous nearly-K\"ahler manifold with a non-integrable complex
structure.

For lack of space, in this note we deal with briefly : constructions of equations in PART I
and constructions of solutions in PART II. Details will be appeared elsewhere.

$\underline{\mathrm{P}\mathrm{A}\mathrm{R}\mathrm{T}}$I. Constructions of equations
1. Goursat equations.
1.1. Definition.
Let

$F(x_{i}, z,p_{i},p_{ij})=0$

be a single second order partial differential equation (briefly, a 2nd order PDE). Here $x_{i}$ are $n$

independent variables of $\mathbb{R}^{n}$ (or $\mathbb{C}^{n}$), $z$ a dependent variable of $x_{1}$ and $p_{1}= \frac{\partial z}{\partial x:},p_{ij}=\frac{\partial^{2}z}{\partial x_{*}\partial x}..\cdot$

A 2nd order PDE $F(x_{i}, z,p_{i},p_{ij})=0$ is called a Goursat equation if the followings are
satisfied:

(i) the rank of the $n\cross n$ matrix $( \frac{\partial F}{\Phi:j})$ is 1, that is, any $2\cross 2$ minor is divided by $F$.
(ii) the Monge characteristic system $D$ (which is defined below) is completely integrable.
If $F=0$ is of 2 independent variables, the condition (i) means that $F=0$ is a parabolic type.

In (ii), as an example $F=p_{11}= \frac{\partial^{2}}{\partial}x_{1}^{7}z=0$, a general solution has a form $z=f(x_{2}, \cdots, x_{n})x_{1}+$

$g(x_{2}, \cdots, x_{n})$ and $D$ is spanned by $D= \langle\frac{d}{dx_{1}}, \frac{\partial}{\partial \mathrm{p}j\mathrm{j}}\rangle,$ where$\frac{d}{dx_{1}}=\frac{\partial}{\partial x_{1}}2\leq:\dot{o}\leq n+p_{1^{\frac{\partial}{\partial z}}}+\sum_{j=1}^{n}p_{1j^{\frac{\partial}{\partial p_{\mathrm{j}}}}}$.

Let $J^{i}(\mathbb{R}^{n},\mathbb{R})$ be the $i$-jet space of i-th derivatives of1-function on $\mathbb{R}^{n}$ . We have the canonical
projections:

$J^{2}(\mathbb{R}^{n},\mathbb{R}):(x_{i}, z,p_{i},p_{ij})arrow J^{1}(\mathbb{R}^{n},\mathbb{R}):(x:, z,p:)arrow J^{0}(\mathbb{R}^{n}, \mathbb{R}):(x_{i}, z)$ .
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$dp_{i}- \sum_{i=1}^{n}p_{ij}dx_{j}(i=1, \cdots, n)$ .
The symbol algebra of $J^{2}(\mathbb{R}", \mathbb{R})$ is

$\mathrm{c}^{2}=\mathbb{R}\oplus V^{*}\oplus(V\oplus S^{2}(V^{*}))=\langle\frac{\partial}{\partial z}\rangle\oplus\langle\frac{\partial}{\partial p:}\rangle\oplus(\langle\frac{d}{dx_{i}}\rangle\oplus(\frac{\partial}{\partial p_{ij}}\rangle)$ ,

where $\frac{d}{dx:}=\frac{\partial}{\partial x:}+p_{i}\frac{\partial}{\partial z}+\sum_{j=1}^{n}p_{*j}\frac{\partial}{\alpha_{j}}$. The dual basis consists of

$\omega_{o}rightarrow\frac{\partial}{\partial z},$
$\omega_{1}rightarrow\frac{\partial}{\partial p_{i}},$ $dx_{i} rightarrow\frac{d}{dx_{i}},$ $dp_{ij} \Leftrightarrow\frac{\partial}{\partial p_{ij}}$.

The distribution $\mathrm{c}_{-1}=\langle\frac{d}{dx}.,\rangle\oplus\langle\frac{\partial}{\Phi:j}\rangle$ is the annihilation of $\omega_{0},\omega_{i}$ .

A second order PDE $F=0$ defines a submanifold $L=F^{-1}(0)=\{F=0\}\subset J^{2}$ of
codimension 1. We assume that the projection $Larrow J^{1}$ is an onto-mapping. Because of a
single equation, a subspace $\mathrm{f}\subset S^{2}(V^{*})$ of codimension 1 is defined in the tangent space at each
point of $L\subset J^{2}$ . Dualizing, we have the 1-dimensional subspace $\mathrm{f}^{\perp}\subset S^{\mathit{2}}(V)$ . Because of rank
$(_{\partial \mathrm{p}_{i}}^{\partial}\perp_{j})=1$ for a Goursat equation, there exists a vector $e\in V$ such that $\mathrm{f}^{\perp}=\langle e^{2}\rangle$ . Then we
define a Monge characteristic syatem $D$ , which is a distribution on $L$ , by

$D=E\oplus S^{2}(E^{\perp})(\subset \mathrm{c}_{-1})$ .

Here $E=\langle e\rangle$ and $\dim S^{2}(E^{\perp})=\frac{n(n-1)}{2}$ .
Because of complete integrability of the Monge characteristic syatem $D$ for a Goursat

equation, the leaf space $R=\{F=0\}/D$ is locally a manifold. The symbol algebra of
$R=\{F=0\}/D$ is

$\mathrm{m}=W\oplus U\oplus W\otimes U^{*}\cong J^{1}(n-1,2)$ ,

where $\dim W=2,$ $\dim U=n-1,$ $\dim W\otimes U^{*}=2(n-1)$ . The distribution $U\oplus W\otimes U^{*}$ is the
annihilation of some two 1-forms $\varpi_{0}$ (induced by $\omega_{0}$), $\varpi_{1}$ .

1.2. Twistor diagram.

Since $D’=S^{2}(E^{\perp})\cong D/E$ is completely integrable, the leaf space $\overline{R}=\{F=0\}/D’$ is
locally a manifold. In consideration of the symbol algebra, we have the projections:

$\{F=0\}arrow\tilde{R}=\{F=0\}/D’$ , $\tilde{R}arrow R=\{F=0\}/D$ ,
$\{F=0\}arrow\tilde{R}=\{F=0\}/D’$, $\tilde{R}arrow J^{1}$ .

Therefore we have the double fibering called the twistor diagram of a Goursat equation:

$\tilde{R}^{3n}=\{F=0\}/D’$

$\pi_{1}$ $\swarrow$ $\searrow\pi_{2}$

$(J^{1})^{2n+1}$ $R^{3n-1}=\{F=0\}/D$ .
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We have a flow called a Monge flow on $\tilde{R}$ induced by $E=\langle e\rangle$ on $L=\{F=0\}$ . The space
$\tilde{R}$ equipped with the Monge flow is called a Monge structure. The space $R$ is the orbit space
of the Monge flow on $\tilde{R}$ . The total space $\tilde{R}$ is also regarded as a fiber bundle called a Monge
direction bundle over $J^{1}$ with an $(n-1)$-dimensional fiber consisting of direction fields of the
Monge flow.

Projecting the Monge flow on $\tilde{R}$ to $J^{1}$ , we have a unique curve called a Monge geodesic such
that, for any Monge direction at each point of $J^{1}$ , a curve passes through the direction at the
point. Projecting the fiber $(\subset\tilde{R})$ over $J^{1}$ to $R$ , we have an $(n-1)$-dimensional manifold called
a Goursat surface with 1-dimensional parameter at each point of $R$ .

1.3. Solutions.
A solution surface $S\subset L=\{F=0\}$ is an $n$-dimensional integral surface of $\omega_{o}=\omega_{i}=0$ .

For a Goursat equation, a solution surface has $\dim(T_{p}S\cap D_{\mathrm{p}})=1(p\in S)$ .
A solution surface $\tilde{S}\subset\tilde{R}$ is an $n$-dimensional integral surface of $\varpi_{o}=\varpi_{1}=0$. It is generated

by the 1-dimensional Monge flow. This property characterizes a solution surface of a Goursat
equation. It follows that $\pi_{1}(\tilde{S})\subset J^{1}$ is a Legendre subvariety.

1.4. Isomorphism and automorphism.

For the isomorphisms of Goursat equations $(\mathrm{c}\mathrm{f}.[\mathrm{T}],[\mathrm{Y}])$ , we have

$L=\{F=0\}\sim L’=\{F’=0\}$ : contact equivalence
$\Leftrightarrow\tilde{R}^{3n}\sim\tilde{R}^{\prime^{3n}}$ : distribution equivalence
$\Leftrightarrow R^{3n-1}\sim R^{\prime 3n-1}$ : distribution equivalence.

In general, the automorphism of a Goursat equation is of infinite type. We restrict to the
situations where the symmetry groups are simple Lie groups of $A,$ $BD$ , exceptional types (no $\mathrm{C}$

type). Then the automorphisms are of finite type. We can construct normal Cartan connections
and invariants with respect to curvatures.

For the symbol algebra $\mathrm{m}=W\oplus U\oplus W\otimes U^{*}$ of $R^{3n-1}=\{F=0\}/D$ , the automorphism
preserving the distribution $U\oplus W\otimes U^{*}$ of corank 2 is of infinite type and the automorphism
preserving the distribution $W\otimes U^{*}$ is of finite type. As an example, in a 5-dimensional manifold,
the automorphism of type $(3, 5)$ distribution is of infinite type and the automorphism of type
(2, 3, 5) distribution (called Cartan distribution) is of finite type ( $G_{2}’$ type). Cf. [M].

2. Constructions of Goursat equations.
2.1. Legendre cone fields in contact structures, cf. cone fields in CHSS (compact Hermitian

symmetric spaces).

Let $(M, D)$ be a contact manifold $M$ of dimension $2n+1$ with a contact structure $D$ . Take
a contact form $\theta$ such that $\theta=\mathrm{K}\mathrm{e}\mathrm{r}D$ . Let $K(\subset D)$ be an $n$-dimensional Legendre cone field.
For a point $m\in M,$ $D_{m}$ is a symplectic vector space with a symplectic form $d\theta$ . Accordingly
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we can consider a symplectic vector space ( $V\cong \mathbb{R}^{2n}$ (or $\mathbb{C}^{2n}),$ $\Omega$ ), which we also regard as a
manifold, and consider an $n$-dimensional Lagrange cone $K$, that is, an $\mathbb{R}^{*}-(\mathrm{o}\mathrm{r}\mathbb{C}^{*}-)\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}$

Lagrange submanifold.

2.2. Lagrange-Grassmann duality, cf. projective duality and Grassmann duality.

The 2-jet space $J^{2}(\mathbb{R}^{n}, \mathbb{R})$ is a fiber bundle over the 1-jet space $J^{1}(\mathbb{R}^{n}, \mathbb{R})$ . As a gener-
alization, we have a Lagrange Grassmann bundle $L(M)$ with fiber the Lagrange Grassmann
manifold of each contact distribution over a contact manifold $M$.

Let $V_{1}$ be a 1-dimensional (isotropic) subspace and $V_{n}$ a ($n$-dimensional) Lagrange subspace
of $V$. We have the following twistor diagram called Lagrange-Grassmann duality:

$I_{L}=\{V_{1}\subset V_{n}\}$

$L^{\frac{n(\mathfrak{n}-1)}{2}}\swarrow$ $\searrow P^{n-1}$

$P^{2n-1}=\{V_{1}\}$ $LG^{\frac{n(n+1)}{2}}=\{V_{n}\}$

The projective space $P^{2n-1}$ has the standard contact structure. The Lagrange Grassmann
manifold $LG$ has the standard symmetric matrix coordinates $(a_{1j}),$ $a_{ij}=a_{ji}$ .

Fix $V_{n}$ . Then the set of all $V_{1}$ included in $V_{n}$ is a Legendre plane $P^{n-1}$ of $P^{2n-1}$ . The space
$I_{L}$ is a fiber bundle with fiber $P^{n-1}$ over $LG$ . In other words, $LG$ is regarded as the moduli
space of all Legendre planes $\{P^{n-1}\}$ . Next, fix $V_{1}$ . Then the set of all $V_{n}$ which includes $V_{1}$ is
an $\frac{n(n-1)}{2}$ -dimensional “hyper”plane $L$ . The set of all Legendre planes $P^{n-1}$ through a point in
$P^{2n-1}$ is interpreted as an $L$ in $LG$ dually. The set of all $L$ through a point in $LG$ is interpreted
as a Legendre plane $P^{\mathfrak{n}-1}$ in $P^{2n-1}$ dually.

2.3. Intersection variety, cf. tangent variety.

Let $X=P(K)$ be an $(n-1)$-dimensional projectified Lagrange cone in $P^{2n-1}$ . We consider
all Legendre planes $P^{n-1}$ across $X$ transversally. Considering dually, we have the two manifolds
(varieties).

The one is the $(n-1)$-dimensional dual space $\tilde{X}$ of $X$ obtained by taking the tangent space,
which is a Legendre plane, at each point in $X$ .

The other is the space $Z(X)$ , called a intersection variety, consisting of all Legendre planes
$P^{n-1}$ across $X$ transversally. We see that the space $Z(X)$ is a $(\mathrm{c}\mathrm{o}\dim 1)$ hypersurface by
counting dimensions $n-1+ \frac{n(n-1)}{2}=\frac{n(n+1)}{2}-1$ and it is a ruling space of $L$ . Rf. [G-K-Z].

2.4. Resultant, cf. discriminant.

As the intersection variety $Z(X)$ is a hypersurface in $LG,$ $Z(X)$ may be represented by a
single definig equation $f(a_{ij})=0$ . By definition, $f(a_{ij})=0$ is nothing but a resultant between
$X$ and $P^{n-1}$ .

2.5. Goursat equation, cf. parabolic (degenerate) Monge-Amp\‘ere equation.

We will show that the resultant $f(a_{1j})=0$ has rank $(_{\partial a_{ij}}^{\partial}\perp)=1$ .
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For $p\in X=P(K)$ , take a Legendre plane $\mathcal{L}=P^{n-1}$ such that

$T_{p}X\cap \mathcal{L}=\{p\}$ .
By the projectification of $V$ to $P(V)=P^{\mathit{2}n-1}$ , we consider $K,\overline{L},\overline{p}\subset V$ such that $Karrow$
$X,\overline{\mathcal{L}}arrow \mathcal{L},\overline{p}arrow p$ . Then we have

$TffK\cap\overline{\mathcal{L}}=\langle\dot{\overline{p}}\rangle$ .
In consideration of

$T_{\overline{\mathcal{L}}}Z(X)\subset T_{\overline{\mathcal{L}}}\mathrm{G}\mathrm{r}(n, 2n)\cong \mathrm{H}\mathrm{o}\mathrm{m}(\overline{\mathcal{L}}, V/\overline{\mathcal{L}})$ ,
$T_{\overline{\mathcal{L}}}Z(X)$ is regarded as the set of symmetric $n\cross n$ matrices with rank $n-1$ .

From linear algebra, if $A$ is an $n\cross n$ matrix such that rank $n-1$ , then the cofactor matrix
$\tilde{A}$ of $A$ has rank 1.

Therefore it follows that
$\mathrm{r}\mathrm{t}\mathrm{k}(\frac{\partial f}{\partial a_{ij}})=1$ .

Next expand the above argument from one point $m\in M$ to the whole $M$. Then from the
resultant $f(a_{ij})=0$ with rank $(_{\partial a_{1\mathrm{j}}}^{\partial}\perp)=1$ , we have a Goursat equation $f(p_{1j})=0$ .

We also have the following twistor diagram:
$Q^{3n}$

$P(K)\swarrow$ $\searrow P^{1}$

$M^{2n+1}$ $N^{3n-1}$

Summarizing the above arguments, we have the following.

Theorem 1. Let $(M, D)$ be a contact manifold $M$ of dimension $2n+1$ unth a contact
structure $D$ and $K(\subset D)$ a Legendre cone field. Then, by the above construction via

(i) $K$ (cone), (ii) $X=P(K)$ (projective cone), (iii) $\tilde{X}$ (dual space),
(iv) $Z(X)$ (intersection variety), (v) $f(a_{ij})=0$ (resultant),

we have a Goursat equation
$f(p_{ij})=0$ .

The dual space $\tilde{X}$ may have relation to an involutive system.

3. Automorphisms of finite type.
3.1. Homogeneous Ansatz.
In a twistor diagram

$Q^{3n}$

$P(K)\swarrow$ $\searrow P^{1}$

$M^{2n+1}$ $N^{3n-1}$
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we assume that a group $G_{0}$ acts on $X=P(K)$ transitively and $G$ , which is the prolongation
of $G_{0}$ , also acts on $M,$ $Q,$ $N$ transitively. We assume that $G$ is a simple Lie group of $A,$ $BD$, or
exceptional type.

3.2. Contact structures of finite type.

We study contact structures of finite type for three equivalent manners:
(i) infinitesimal automorphisms 90, 9,
(ii) ($2n$-dimensional) contact distribution $D$ ,
(iii) ( $(n-1)$-dimensional) projectified $n$-dimensional cubic cone $P(K)$

Remark that $C$ type contact structure, which is called the projective contact structure, has no
cubic cone structure. Compare to various dimensional cone strucutres in CHSS which is the
first kind flag manifolds (e.g., quadratic cone structures in conformal structures).

$\circ A$ type called the Lagrange contact structure
(i) $g_{0}=\mathfrak{g}\mathfrak{l}(n, \mathbb{C})\oplus \mathbb{C}$

$\mathfrak{g}=\epsilon 1(n+2, \mathbb{C})=\mathfrak{g}_{-2}(\dim=1)\oplus \mathfrak{g}_{-1}(\dim=2n)\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}\oplus g_{2}$

(ii) $D=D_{1}\oplus D_{\mathit{2}}$ ( $D_{i}$ : Lagrangian)
(iii) $P^{n-1}(D_{1})\cup P^{n-1}(D_{2})$ ( $D_{1}$ : degenerate cones)
$\circ BD$ type called the Lie contact structure
(i) $g_{0}=\mathrm{o}(n, \mathbb{C})\oplus\epsilon 1(2, \mathbb{C})\oplus \mathbb{C}$

$\mathfrak{g}=\mathrm{o}(n+4, \mathbb{C})=9-2(\dim=1)\oplus \mathfrak{g}_{-1}(\dim=2n)\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$

(ii) $D=W\otimes V$ (rank $W=2$ , rank $V=n$ for (V, $g$))
(iii) $P^{1}(W)\cross Q^{n-2}(V)$ (null) $\subset P^{1}(W)\cross P^{n-1}(V)\mapsto P^{2n-1}(W\otimes V)$

It is called a Segre cone, which is reducible $(\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}+\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c})$ .
$\circ$ exceptional type –cubic cones are irreducible.
. $G_{2}$ type

(i) $\mathfrak{g}_{0}=\epsilon l(2, \mathbb{C})\oplus \mathbb{C}$, $\mathfrak{g}=g_{2}^{\mathbb{C}}$ , $\dim(\mathfrak{g}_{-2}\oplus g_{-1})=5=1+4$

(ii) $D=S^{3}(V)$ (rank $V=2$)
(iii) $P^{1}(V)$ called twisted cubic curve, Veronese curve.
We omit the $F_{4},$ $E_{6},$ $E_{7},$ $E_{8}$ types.

4. Explicit examples of Goursat equations.
In the Lagrange-Grassmann duality

$I_{L}=\{V_{1}\subset V_{\mathrm{n}}\}$

$\swarrow$ $\searrow$

$P^{2n-1}=\{V_{1}\}$ $LG^{\frac{n(n+1)}{2}}=\{V_{\mathrm{n}}\}$ ,

we take inhomogeneous coordinates $(x_{i}, y_{i})=(x_{1}, \cdots,x_{n-1}, x_{n}=1, y_{1}, \cdots, y_{n-1},y_{n})$ in $P^{2n-1}$

and $(a_{1j}),$ $a_{1j}=a_{j:}$ , in $LG^{\frac{n(n+1)}{2}}$
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We have the incidence relations (twistor equations):

$\{$

$y_{i}= \sum_{j=1}^{n-1}a_{1j}x_{j}+b_{i}$ , $(a_{ij}=a_{ji})$ $1\leq i\leq n-1$ ,

$y_{n}=z= \sum_{1=1}^{n-1}b_{\dot{*}^{X}:+c}$ .

In $P^{2n-1}$ , the incidence relations represent a Legendre plane with respect to the contact form
$\omega=dz+\sum_{;_{=1}}^{n}(x_{\dot{*}}dy_{i}-y_{i}dx_{i})$ .

$0$ $A$ type
The group $GL(n, \mathbb{C})(\subset Sp(n, \mathbb{C}))$ acts on $V=\mathbb{C}^{2n}=\mathbb{C}^{n}\oplus \mathbb{C}^{n}\cong D_{m}(m\in M)$ .
For

$X=P^{n-1}\subset P^{2n-1}$ : $(x_{1}, \cdots, x_{n-1},1,0, \cdots, 0)$ ,
the dual space $\tilde{X}$ of $X$ is one point $\{a_{ij}=0\}$ and the intersection variety $Z(X)\subset LG^{\frac{n(n+1)}{2}}$ has
the defining equation by the resultant

$R_{X}=|_{a_{1n}}^{a_{11}}a_{12}..\cdot$

$a_{22}a_{12}$

$:\cdot:.:$

.
$a_{nn}a_{1n}:.|=0$ $\wedge GL(n, \mathbb{C})$ .

From the resultant $R_{X}=0$ , we have a Goursat equation

$Hess==0\subset J^{2}$ $\cap SL(n+2,\mathbb{C})$ .

$\mathrm{o}BD$ type
The group $SL(2, \mathbb{C})\otimes O(n, \mathbb{C})(\subset Sp(n, \mathbb{C}))$ acts on $W\otimes V=\mathbb{C}^{2}\otimes \mathbb{C}^{n}=\mathbb{C}^{n}\oplus \mathbb{C}^{n}\cong D_{m}(m\in$

$M)$ .
For

$P^{1}\cross Q^{n-2}arrow X\subset P^{2-1}$“

$([u, v], [_{X:}]), \sum_{i=1}^{n}x_{i}^{2}=0\mapsto[_{vx_{1}}^{ux_{1}}$ $ux_{n1}vx_{n1}=ux_{n]}vx_{n}\subset[_{y_{1}}^{x_{1}}$ $x_{n1}y_{n1}=x_{n]}y_{n}$
’

taking inhomogeneous coordinates $u=1,x_{n}=1$ , we ask for the resultant $R_{X}=0$ which is the
condition for having common solutions of $n$ quadratic equations

$\{$

$( \sum_{k=1}^{n-1}b_{k}x_{k})x_{i}-(\sum_{j=1}^{n-1}a_{ij}x_{j}-cx_{1})-b_{1}=0$, $1\leq i\leq n-1$ ,

$\sum_{;=1}^{n-1}X_{1}^{2}$. $=0$ .
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But $R_{X}=0$ is very complicated even though in the case $n=3$ (cf. [K-S-Z]).
$\circ G_{2}$ type

The group $SL(2, \mathbb{C})(\subset Sp(2, \mathbb{C}))$ acts on $S^{3}(V)=S^{3}(\mathbb{C}^{2})=\mathbb{C}^{4}\cong D_{m}(m\in M)$ .
For

$P^{1}\supset \mathbb{C}arrow X\subset P^{3}$ , $x \mapsto(x, y=-\frac{1}{2}x^{2}, z=\frac{1}{6}x^{3})$ ,

which is a Legendre curve with respect to $\omega=dz+xdy-ydx$ , the dual curve $\tilde{X}$ of $X$ is

$a=-x$ , $b= \frac{1}{2}x^{2}$ , $c=- \frac{1}{3}x^{3}$

and the resultant $R_{X}=0$ , which is the condition for having common solutions of two equations

$f_{1}=- \frac{1}{2}x^{2}-ax-b=0$ ,

is as follows: using the Sylvester determinant,

$f_{2}= \frac{1}{6}x^{3}-bx-c=0$

$R_{X}=R(f_{1}, f_{2})=|_{\frac{1}{6}}^{-\frac{1}{\mathit{2}}}$
$=^{a}0 \frac{1}{6}\frac{1}{2}$

$=_{\frac{1}{b2}}^{a}=_{0}^{b}$

$=_{C}^{a}=_{b}^{b}$

$=_{C}^{b1}$

$=- \frac{1}{8}c^{2}-\frac{4}{9}b^{3}+\frac{1}{2}abc+\frac{1}{6}a^{2}(b^{2}-ac)=0$ .

Multiplying it by-72, we have the intersection variety $Z(X)$ with a definig equation

$9c^{2}+32b^{3}-36abc-12a^{2}(b^{2}-ac)=0$.

Taking $aarrow t$ , b– $s,$ $carrow r$, we have a Goursat equation

$9r^{2}+32s^{3}-36rst+12t^{2}(rt-s^{2})=0$.

This is nothing but the equation (i) in Introduction.

PART II. Constructions of solutions
1. $G_{2}’$ twistor diagram
1.1. Imaginary split octonions.

Let $V^{7}$ be the imaginary split octonions ${\rm Im} \mathbb{O}’$ . Let $g$ be the inner product of type $(3, 4)$ and
di the associative 3-form:

$\phi(x, y, z)=g(xy, z)$ .
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Then we have
$G_{\mathit{2}}’=\{g\in \mathrm{G}\mathrm{L}(V)|g^{*}\phi=\emptyset\}$ .

Take a basis $\{e_{i}\}$ and coordinates

$x=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}+y_{1}e_{5}+y_{2}e_{6}+y_{3}e_{7}+ze_{4}=(x_{1}, x_{2},x_{3}, y_{1}, y_{2}, y_{3}, z)$

such that $g$ has the matrix representation

$g==2dx_{1}dy_{1}+2dx_{2}dy_{2}+2dx_{3}dy_{3}+dz^{2}$ .

Then we have

$\phi=\omega_{415}+\omega_{426}+\omega_{437}+\omega_{567}-\omega_{123}$

$=dz$ A ($dx_{1}$ A $dy_{1}+dx_{2}$ A $dy_{\mathit{2}}+dx_{3}\wedge dys$) $+dy_{1}$ A $dy_{\mathit{2}}$ A $dy_{3}-dx_{1}$ A $dx_{2}$ A $dx_{3}$ ,

where $\omega_{ijk}=e_{i}^{*}\wedge e_{j}^{*}\wedge e_{k}^{*},$ $\{e_{i}^{*}\}$ is the dual basis of $\{e_{i}\}$ . Rf. [B].
For the interior product of $\phi$ , we have

$i_{e:}\phi=-dz\wedge dy_{i}-dx_{j}$ A $dx_{k}$ $(e_{i}, i=1,2,3)$

$i_{e}.\phi=dz\wedge dx_{i}+dy_{j}\wedge dy_{k}$ $(e_{i}, i=5,6,7)$

$i_{e_{4}}\phi=dx_{1}\wedge dy_{1}+dx_{2}$ A $dy_{2}+dx_{3}$ A $dy_{3}$ ,

where $(i,j, k)$ is the even permutation of (1, 2, 3).

1.2. Twistor diagram.

In $V^{7}$ , let $V_{1}$ be a 1-dimensional null subspace, $V_{2}$ a 2-dimensional null subspace such that
$i_{e:}\phi(1\leq i\leq 7)$ vanish, $V_{3}$ a 3-dimensional null subspace such that di vanishes. Putting
$L^{6}=\{(V_{1}, V_{2})|V_{1}\subset V_{2}\},$ $M^{5}=$ {all $V_{1}$ }, $N^{5}=$ {all $V_{2}$ }, we have the $G_{2}’$ twistor diagram:

$L^{6}=\{V_{1}\subset V_{2}\}$

$P^{1}\swarrow\pi_{1}$ $\pi_{2}\searrow P^{1}$

$M^{5}=\{V_{1}\}$ $N^{5}=\{V_{2}\}$ .

Fix $V_{2}$ . Then the set of all $V_{1}$ included in $V_{2}$ is a line $P^{1}$ in $M^{5}$ called a Goursat line $P_{G}^{1}$ .
The space $L^{6}$ is a fiber bundle with fiber $P^{1}$ over $N^{5}$ . In other words, $N^{5}$ is regarded as the
moduli space of all Goursat lines $\{P_{G}^{1}\}$ . Next, fix $V_{1}$ . Then the set of all $V_{2}$ which includes $V_{1}$ is
a line $P^{1}$ in $N^{5}$ called a Monge line $P_{M}^{1}$ . The space $L^{6}$ is a fiber bundle with fiber $P^{1}$ over $M^{5}$ .
In other words, $M^{5}$ is regarded as the moduli space of all Monge lines $\{P_{M}^{1}\}$ . The bundle $L^{6}$

is called the Goursat direction bundle over $M^{5}$ , and also is called the Monge direction bundle
over $N^{5}$ .
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1.3. Two geometric structures.

In the Grassmann manifold $G_{2,7}$ which consists of all 2-dimensional subspaces in $V$, we take
inhomogeneous coordinates

$\{\}$ .

Here we exchange coordinates in $V$ for $(x_{1}, y_{1},x_{2}, x_{3}, y_{2}, y_{3}, z)$ .
Take inhomogeneous coordinates $(x_{1}=1, y_{1}, x_{2},x_{3}, y_{2}, y_{3}, z)$ in the projective space $P^{6}(V)$ .

Rom $y_{1}+x_{2}y_{2}+x_{3}y_{3}+z^{2}=0$, the space $M^{5}(\subset P^{6})$ is represented by the graph of

$y_{1}=-x_{2}y_{2}-x_{3}y_{3}-z^{2}$ .
Namely we have local coordinates $(x_{2}, x_{3}, y_{2},y_{3}, z)$ in $M$.

From $i_{e:}\phi$ , we consider

$\{$

$\theta_{1}=dz-y_{2}dy_{3}+y_{3}dy_{\mathit{2}}$

$\theta_{2}=dx_{2}+zdy_{3}-y_{3}dz$

$\theta_{3}=dx_{3}-zdy_{2}+y_{2}dz$ .
Putting

$\{^{\mathrm{Y}_{2}=_{\partial y_{2}}-y_{3}}\mathrm{Y}_{3}==_{\partial}+y_{2}y_{2}^{2}\partial=\partial z=^{y_{3}^{2}}\partial=\partial x_{2}-(z-y_{\mathit{2}}y_{3})=_{\partial}\partial y_{3}\partial z\partial x_{3^{+(z+y_{2}y_{3})}}\partial x_{2}\partial\partial\partial\partial\partial x_{3}$

,

we can canonically consider a distribution

$D_{M}=\mathrm{A}\mathrm{n}\mathrm{n}\{\theta_{1},\theta_{2}, \theta_{3}\}=\langle \mathrm{Y}_{\mathit{2}}, \mathrm{Y}_{3}\rangle$

on $M$. From
[$\mathrm{Y}_{2}$ , Y3] $=2 \frac{\partial}{\partial z}+4y_{3}\frac{\partial}{\partial x_{2}}-4y_{2}\frac{\partial}{\partial x_{3}}=:Z$,

$[ \mathrm{Y}_{2}, Z]=-4\frac{\partial}{\partial x_{3}}=:X_{3}$ , $[ \mathrm{Y}_{3}, Z]=4\frac{\partial}{\partial x_{2}}=:X_{2}$ ,

$D_{M}$ is of type (2, 3, 5) distribution which is called the Cartan distribution.
We can canonically consider a conformal structure $g$ of type $(2, 3)$ on $M$ defined by

$g=\theta_{2}dy_{2}+\theta_{3}dy_{3}+\theta_{1}^{2}$ .

It follows that $\langle \mathrm{Y}_{\mathit{2}},X_{2}\rangle=1$, $\langle$Y3, $X_{3}\rangle$ $=1,$ $\langle Z, Z\rangle=1$ , otherwise $0$ , and $D_{M}$ is a null plane.

From nullity and $i_{e:}\emptyset$ , the space $N^{5}(\subset G_{\mathit{2},7}\rangle$ is represented by the graph of

$b_{1}=-e^{2}-a_{2}f,$ $b_{2}=f,$ $c_{3}=d_{2}e-f^{2},$ $c_{2}=-e,$ $d_{1}=-a_{3}-a_{\mathit{2}}d_{2}- \frac{1}{2}ef$ .

Namely we have local coordinates $(a_{2}, a_{3}, d_{2}, e, f)$ in $N$.
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We can canonically consider a contact structure on $N$ defined by

$\omega=da_{3}+d_{2}da_{2}-edf+2fde$ .
We will show in the next section that the contact distribution $D_{N}$ defined by $\omega$ is equipped
with a 2-dimensional cone field $K$ of degree 3. The contact distribution $D_{N}$ is spanned by

$D_{N}= \mathrm{K}\mathrm{e}\mathrm{r}\omega=\langle\frac{\partial}{\partial a_{2}}-d_{2^{\frac{\partial}{\partial a_{3}’}}}\frac{\partial}{\partial d_{\mathit{2}}’}\frac{\partial}{\partial e}-2f\frac{\partial}{\partial a_{3}}, \frac{\partial}{\partial f}+e\frac{\partial}{\partial a_{3}}\rangle$ .

2. Cartan-Legendre duality
2.1. Goursat lines.
A Goursat line $P_{G}^{1}$ in $M^{5}$ is represented by

$y_{3}=t$ , $y_{2}=d_{2}t+f$, $z=ft+e$ ,
$x_{3}=(d_{2}e-f^{2})t+a_{3}$ , $x_{2}=-et+a_{2}$ , $(\lambda=d_{2})$

with respect to a parameter $t$ and constants $d_{2},$ $f,$ $e,$ $a_{3},$ $a_{2}$ . It follows that $P_{G}^{1}$ is tangent to the
Cartan distribution $D_{M}$ . It is a rigid singular curve on $D_{M}(\mathrm{c}\mathrm{f}.[\mathrm{M}])$ .

2.2. Monge lines.
A Monge line $P_{M}^{1}$ in $N^{5}$ is represented by

$d_{2}=\lambda$ , $f=y_{2}-y_{3}\lambda$ , $e=z-y_{2}y_{3}+y_{3}^{2}\lambda$ ,
$a_{3}=x_{3}+y_{2}^{2}y_{3}-(z+y_{2}y_{3})y_{3}\lambda$ , $a_{2}=x_{2}+(z-y_{2}y_{3})y_{S}+y_{3}^{3}\lambda$, $(t=y_{3})$

with respect to a parameter A and constants $y_{3},$ $y_{2},$ $z,$ $x_{3},$ $x_{2}$ . Taking derivatives with respect to
$\lambda$ , we have

$(\dot{d}_{\mathit{2}},\dot{f},\dot{e},\dot{a}_{3},\dot{a}_{2})=(1, -y_{3}, y_{3}^{2}, -(z+y_{\mathit{2}}y_{3})y_{3}, y_{3}^{3})$.
If we consider coordinates with respect to the basis $\{\frac{\partial}{\partial a_{2}}-d_{2^{\frac{\partial}{\partial a_{\theta}}}}, \frac{\partial}{\partial d_{2}}, \frac{\partial}{\partial e}-2f\frac{\partial}{\partial a\mathrm{s}}, \frac{\partial}{\partial f}+e\frac{\partial}{\partial a_{\theta}}\}$

in $D_{N}$ , then we have
$(y_{3}^{3},1, y_{3}^{2}, -y_{3})$ .

It is a Veronese (a twisted cubic) curve with respect to a parameter $y_{3}=t$ in the projectified
$P(V_{N})$ at each point of $N$. We also have a 2-dimensional cone field $K$ of degree 3 on $N$ given
by

$(y_{3}^{3}s, s, y_{3}^{2}s, -y_{3}s)$ .

2.3. Cartan-Legendre duality.
We have the $G_{2}’$ twistor diagram with coordinates:

$L^{6}$

$P^{1}:\lambda\swarrow\pi_{1}$ $\pi_{\mathit{2}}\searrow P^{1}:t$

$M^{5}$ : $(x_{2}, x_{3}, y_{2}, y_{3}=t, z)$ $N^{5}$ : $(a_{\mathit{2}}, a_{3}, d_{2}=\lambda, e, f)$
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We call the correspondence

$(x_{2}, x_{3}, y_{2}, y_{3}, z, \lambda)\sim*(a_{2}, a_{3}, d_{2}, e, f, t)$

by the above-mentioned each six relations on $L^{6}$ the Cartan-Legendre duality (transformation)
(or briefly, C-L duality).

3. Constructions of solutions
3.1. Construction by C-L duality.

We construct solutions of the Goursat equation (i) in Introduction of $G_{2}’$ type by the Cartan-
Legendre duality.

A $D_{M}$-curve is a curve on $M$ whose tangent vectors are tangent to the Cartan distribution
$D_{M}$ . It is called a Goursat curve.

Take a Goursat curve $l$ in $M$ which is not a Goursat line. We transform $l$ into $N$ via the
Cartan-Legendre duality in two ways.

One way is to first consider a surface $S=\pi_{1}^{-1}(l)$ on $L$ .
Taking the C-L duality, from transforming the fiber direction $\lambda$ to $d_{2}=\lambda$ direction, we have

$S$ generated by the Monge flow with a parameter $\lambda$ .
Projecting it by $\pi_{2}$ onto $N$, we have $S’=\pi_{2}(S)$ which is ruled by Monge lines.

The other way is to construct the dual curve $h$ in $N$ which is a Monge curve. A Monge
curve is a curve whose tangent vectors are tangent to the cone field $K(\subset D_{N})$ .

From $l$ , we consider the tangent vector $(m, l_{|m}’)$ at $m$ in $l$ . This is regarded as an element of
$L$ which is the Goursat direction bundle (called a Goursat lift, cf. a Legendre lift).

Proj.ecting it onto $N$ by $\pi_{2}$ , we have a Monge curve $h=\pi_{2}(l’)$ called the dud curve of a
Goursat curve $l$ .

As another interpretation, by the $G_{2}’$ twistor diagram, a point $m$ in $M$ corresponds to a
Monge line $P_{N}^{1}$ in $N$, and a Goursat line $P_{M}^{1}(m)\sim l_{|m}’$ in $M$ to a point $n$ in $N$. Here the tangent
vector $\mathit{1}_{m}’$ is identified with an embedded tangent line, i.e., a Goursat line $P_{M}^{1}(m)$ .

Given a Goursat curve $l$ in $M$, then we have a Monge curve $h$ in $N$ which is the dual curve
of $l$ by way of $(m, P_{M}^{1}(m))(m\in l)$ and $(P_{N}^{1}(n), n)(nrightarrow P_{M}^{1}(m))$ .

Summing up two ways, for a given Goursat curve $l$ in $M$, we have a tangent developable
surface $S’$ in $N$ ruled by Monge lines along the dual curve $h$ :

$larrow S=\pi_{1}^{-1}(l)arrow S’=\pi_{\mathit{2}}(S)$ ,
$larrow l’arrow h=\pi_{2}(l’)$ .

Theorem 2. The tangent developable surface $S’$ in $N$ constructed above is a solution surface
of the Goursat equation of $G_{2}’$ type.
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3.2. Explicit representaions.

Let $l=l(s)$ be a Goursat curve in $M$ such that it is represented by, for a smooth function
$f(s)$ ,

$y_{3}=s,$ $y_{2}=f’’(s),$ $z=2f’-sf”,$ $x_{3}=2f’f’’-3 \int(f’’)^{2}ds,$ $x_{2}=-6f+4sf’-s^{2}f’’$ .

Then the surface $S^{j}$ in $N$ constructed above is a $(s, \lambda)$-surface represented by

$d_{2}=\lambda,$ $f=f”-s\lambda,$ $e=2f’-2sf”+s^{\mathit{2}}\lambda$ ,

$a_{3}=2f’f’’+s(f’’)^{2}-3 \int(f’’)^{2}ds-2sf’\lambda,$ $a_{2}=-6f+6sf’-3s^{2}f’’+s^{3}\lambda$.

It follows that the locus of singular points to the $\pi_{2}$-projection is $\lambda=f^{m}(s)$ . It is nothing but
the dual curve of $l$ in $N$.

Proposition 1. The tangent devdopable surface $S’$ in $N$ constructed above has, as a generic
singularity, a cuspidal edge along the dual curve $l$ with type (1, 2, 3, 4, 5), $i.e.$ , each ordinary point.
Moreover, for the ffont mapping $(d_{2}, f, e, a_{3}, a_{2})rightarrow(f, a_{2}, a_{3})$ (or $(e,$ $a_{2},$ $a_{3})$ ), we have a tangent
developable surface along a space curve with type (2, 4, 5) (or (3, 4, 5)) at some point.

3.3. Solutions not obtained by Goursat curves.
For the Cartan distribution $D_{1}=D_{M}$ on $M$, let us consider the derived system of $D_{1}$ :

$D_{2}=\partial D_{1}=D_{1}+[D_{1}, D_{1}]\subset TM$ .
It is a type $(3, 5)$ distribution.

Take a $D_{2}$-curve $l$ in $M$. Lifting it as $S=\pi_{1}^{-1}(l)$ to $L$ , transforming $S$ by the C-L duality,
and projecting $S$ onto $N$ by $\pi_{2}$ , we have $S’=\pi_{\mathit{2}}(S)$ which is ruled by Monge lines, as well as
a Goursat curve that is a $D_{1}$-curve.

Theorem 3. The ruled surface $S’$ in $N$ constructed above is a solution surface of the
Goursat equation of $G_{2}’$ type.

Proposition 2. A generic ruled surface $S’$ is a smooth surface without the dual curve of $l$ .

4. Generalization.
From the $G_{\mathit{2}}’$ twistor diagram, we can extend $M^{5}$ with the $G_{2}’$ Goursat structure to $M^{3n-1}$

with a distribution $D_{M}$ of rank $2(n-1)$ called a Goursat structure, and $N^{5}$ with the $G_{2}’$ contact
structure to $N^{2n+1}$ with a contact distribution $D_{N}$ and a cubic Legendre cone field $K$. We have
the following twistor diagram:

$L^{3n}$

$P^{1}\swarrow$ $\searrow F^{n-1}$

$M^{3n-1}$ $N^{2n+1}$ .
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Remark that the left-sided and right-sided base spaces are reversed to those in I.3.1, and the
notations of $M$ and $N$ are also reversed.

We assume that a Lie group $G$ acts on $M,$ $L,$ $N$ transitively. If we take a simple Lie group
$G$ of $A,$ $BD$ , or exceptional type, then we have the twistor diagram for each type. But there is
not a twistor diagram for $C$ type.

Lifting an $(n-1)$-dimensional Goursat surface (see I.1.2.) which is a $D_{M}$-surface in $M$,
taking the generalized C-L duality, and projecting onto $N$, we have an $n$-dimensional ruled
surface in $N$ which is ruled by Monge lines. It is a solution surface of the Goursat equation of
each $A,$ $BD$ , exceptional type.
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