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Some asymptotic boundary behavior of a proper harmonic map
between Carnot spaces

Keisuke Ueno (_-EFEENT)
Yamagata University (ILFEK%)

§1. Introduction.

Let (M, g) and (M',h) be Riemannian manifolds, and v : M — M’ a C? map.
For the differential map d,u : T, M — Ty;)M' of u at z € M, we denote by |d,u| the
Hilbert-Schmidt norm of d,u. For a relatively compact domain D C M we define
the total energy of a map u on D by

1
Fo(u) = 5 /D deufav,

where dv, is the volume form induced from the Riemannian metric g. Then a map
u is a harmonic map if it is a critical point of Ep for any relatively compact domain

DcM.

In terms of local coordinates (z!,22,... ,2™) on M and (y%,4?2,...,%") on M’,
where m = dim M and n = dim M’, respectively, we express the Riemannian metric
locally by

m n
9= gydrida’, h= Z hapdy*dy’,
1,j=1 a,f=1 :
and a map u in the following way:

u(z) = (ul(ct,... ,2z™),... ,u*(@*,... ,2™)).

Then the Euler-Lagrange equation of Ep is given by the following system of the
second order semi-linear elliptic partial differential equations:

y g ¥

() = (@) + 30 3 6 (2) T (o)) G (2) &) =0
w3 By

(a: I... ’n)a

where Ay is the Laplace-Beltrami operator of (M, g), (¢¥) = (g;;)7%, and V¥ Ig is
the Christoffel symbol of (M, h).

Let (M,g) be a Hadamard manifold, that is, it is complete, connected, sim-
ply connected Riemannian manifold of nonpositive sectional curvature, and vy, :
[0,00) — M unit speed geodesic rays. Then v; and ~, are asymptotic if there exists
a positive constant C such that d(7;(t),42(t)) < C holds for any t > 0, where d is the
distance function on M induced from the Riemannian metric g. Then the asymptotic
relation defines equivalence classes on the set of unit speed geodesic rays, and we
denote the set of equivalence classes by M (oo), which is called the ideal boundary



of M. If we set M = M U M(oo), then with respect to a suitable topology, what is
called the cone topology, M(oco) is homeomorphic to the (m — 1)-dimensional unit
sphere S™!, and M is homeomorphic to the m-dimensional closed unit ball B™.
M is called the Eberlein-O’Neill compactification of M.

Let (M,g) and (M’,h) be Hadamard manifolds, M = M U M(cc) and M’ =
M’ U M'(c0) their Eberlein-O’Neill compactifications. Then M and M’ can be
regarded as the manifolds with the boundary. Thus we can consider the following
Dirichlet problem for harmonic maps at infinity.

Dirichlet problem for harmonic maps at infinity:

Given a map f € C%M(o0), M'(c0)), find a harmonic map u € 02(M M) N
C°(M, M) which assumes f as the boundary value.

We note that the Dirichlet problem for harmonic maps between compact Rieman- '

nian manifolds with the boundary has been considered around 1975 by Hamilton,
who proved the existence of a harmonic map assuming any continuous boundary
map. However, in our problem, manifolds are not compact and Riemannian metrics
can not be extended to the ideal boundaries.

For example, we investigate the case of real hyperbolic spaces. If we take the
ball model, D™, of the m-dimensional real hyperbolic space which is given by

({w eR™ |3 < 1 Tz Z(dmvz) ,

i=1

where |22 = S0, (2%)?, ¢ = (2!, 2%,... ,2™). Then the Eberlein-O’Neill compactifi-
cation D™ is nothing but the closure of D™ with respect to the standard topology of
the m-dimensional real Euclidean space R™, and the ideal boundary is the (m —1)-
dimensional unit sphere S™1,

For a map u € C?(D™,D"), the Euler-Lagrange equation of Ep has the form

7(u)*(z) = (1 — |z|%)2Apu®™ + (lower derivative terms),

where A is the Laplace-Beltrami operator of the real Euclidean space R™. Since
the principal part of the above equation vanishes at the ideal boundary, we have
some difficulties in the analysis of the Euler-Lagrange equation.

Our primary object is to deduce a necessary condition for the existence of a
harmonic map. In other words, if there exists a proper harmonic map u between
Hadamard manifolds which assumes a map f as a boundary value, then what is the
condition u or f satisfies at the ideal boundary. Here a map u : M — M’ between
Hadamard manifolds is proper if for any sequence {z;} in M which tends to the
ideal boundary M(oo) as i — oo, then the sequence {u(z;)} also tends to the ideal
boundary M’(oo) as i —» oco. Assume that u € C°(M, M"). Then the properness
means that v maps the ideal boundary into the ideal boundary.

The following is the first result in this direction.
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Fact. (Li-Tam [3]) Let u € C?(D™,D") n C(D™,D") be a proper harmonic
map, and (r,0',... ,0™ 1) and (p,n!,...,n""!) the polar coordinate on D™ and
D", respectively. Then, at the ideal boundary D(o0), we have

m-0(2) =)

on* 0Op .
—_— = e = <1< —_ <a<n-
5 = 560 0 1<i<m-11<a<n-1),

where f = ..., and e(f)(z) = (1/2)|d, f|? is the energy density of f at z with
respect to the standard Riemannian metrics on the unit spheres.

Thus, if a proper harmonic map u : D™ — D" has a sufficient regularity up to
the ideal boundary, then its boundary behavior should be restricted. We have to
remark that, using these conditions, Li and Tam proved the existence and uniqueness
of proper harmonic map assuming any C' map f : S™~! — 8™ ! as a boundary
value whose energy density is nowhere vanishing.

We shall extend their investigations and results on the boundary behavior of a
proper harmonic map to the case of other homogeneous Riemannian manifolds, say,
Carnot spaces.

§2. Carnot spaces.

We firstly review some geometric and algebraic structure of complex hyperbolic
spaces.

Let M be the ball model of 2-dimensional complex hyperbolic space, that is,
M = (B2?,gp), where B2 = {z € C? | |z| < 1} and gp is the Bergman metric.
For J = diag[-1,1,1], let SU(1,2) = {g € M(3;C) | g7 'Jg = J,detg = 1}, and
SUp(1,2) the identity component of SU(1,2). Then SUp(1,2) acts on M transitively
and isometrically as a linear fractional transformation. On the other hand, we have
the Iwasawa decomposition SUp(1,2) = N A- K, where N is the Heisenberg group,
A is the 1-dimensional Lie group, and K is the isotropic subgroup. We can easily
verify that the semi-direct product S = N . A of N and A is solvable, and acts
on M simply transitively. Since N is the Heisenberg group, the corresponding Lie
algebra n of N satisfies [[n,n],n] = {0}. If we take n; = [n,n] and the orthogonal
complement n; of ny in n, then the Lie algebra s of S is decomposed into

s =n; +ny + R{H},

where H is a generator of a. Moreover, n; + n; is a graded Lie algebra. Indeed, let
ad be the adjoint representation of su(1,2), then '

n={X en|adH(X)=1iX} (i=1,2)

and [n;,n;] C niy;, where n = {0} for k > 3.
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Using orthonormal frame fields {U, V} and {T'} of n; and n3, respectively, we
define a map ¥ : R® x R, — (B2, gp) by the following way.

R® x Ry 3 ((u,v,t),y) — exp(ul + vV +tT) - exp((log y) H) - 0 € B?,

where o is the origin of B2, and “-” stands for the action of the element of SU(1,2)
on B? as a linear fractional transformation, and exp means the exponential map on
Lie algebra. Then the map V¥ is a diffeomorphism and the pull-back metric ¥*gp of
the Bergman metric gg on B? via ¥ is

. 1., 1 2
U*gp = ?dy + y—2'91 + ‘y292’
where

g1 = du? +dv? and gy = (dt + udv — vdu)2

are left invariant metrics on the Lie group N. Since exp : n — N is a diffeomorphism,
the 2-dimensional complex hyperbolic space is realized as the upper half space N x
R, equipped with the 2-ply warped product metric

1 1 2
(N X Ry, ggd?/z + 5591 + ng) .
Moreover, the ideal boundary of Eberlein-O’Neill compactification is given by

(N x {y = 0}) U {oo}.
Following this investigation, we introduce the notion of a Carnot space.

Definition. Let S be a simply connected, connected solvable Lie group and gs
a left-invariant metric on S. Then the pair (S, gg) is a k-term Carnot space if the
following conditions hold.

(1) S is a semi-direct product N x R, of nilpotent Lie group N and the positive
real line R .

(2) Let n =Lie(N) and s = Lie(S) = n + R{H}. Then n has a decomposition
k
n= Zﬂi,
i=1

where
m:{XEnI adH(X):iX} (lgiSk).

(3) gs is a left invariant metric on S whose sectional curvature is negative and

gs(H,H)=1 and H Ln.
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Note. [n;,n;] C 4, where iy = {0} ({ > k).
For a k-term Carnot space, define a map ¥: N x Ry — S by

N xRy 3 (n,y) = n-exp((logy)H) € S.

¥ is called the generalized Cayley transformation. Then we can prove the following
Fact. (1) V¥ is a diffeomorphism.
(2) The pull-back metric U*gg is given by

dy? 1
‘I’*QSZ?"+?:"§91+"'+§§EQI:,
where g1 + g2 + -+« + gx is a left invariant metric on N.

(3) For any fixed n € N, the curve y — (n,y) defines an asymptotic geodesic.
Moreover, M (o0o0) — {00} = N x {0}, where oo denotes the point at infinity at where
these asymptotic curves meet.

Example. (1) The m-dimensional real hyperbolic space is a 1-term Carnot space.
In fact, n is abelian and (N, g;) is nothing but the (m—1)-dimensional real Euclidean
space R™! equipped with the standard metric on R™1,
(2) One of a typical example of 2-term Carnot space is the 2-dimensional com-
plex hyperbolic space as seen in the beginning of this section. In general, the m-
dimensional complex hyperbolic space is a 2-term Carnot space if m > 2, and N is
the (2m — 1)-dimensional Heisenberg Lie group.
(3) Let gl(k+1; R) be the general linear Lie algebra consisting of real (k+1)x (k+1)-
matrices with the natural Lie bracket, and E;; € gl(k + 1; R) the matrix unit, that
is, whose (4, j)-entry is 1 and otherwise entries are 0. Let H = ({k — 2(i — 1)}4;;) €
gl(k + 1;R). Since

ad H(Ey) = (H, Eyj] = (7 — 4) By,
if we define Lie algebras by

k
n, = R{Fun} (1<i<k), n:Zni, s =R{H} +n,
i=1

then n; is the eigenspace of ad H with the eigenvalue ¢ and n is abelian. If we take
the inner product on s by

(HyH) =1, (H,Ey;) =0, (Ey,FE;) =0,
then the left invariant extension gg on S of (,) is given by

dy?

1
gs=— + Se3®es+-++ —€;,, Q€ ,
yz yz 2 2 yzk k+1 k+1



where e; is the left invariant extension of Ey; on S and e} is its dual form. Thus
(S,9s) is a k-term Carnot space.

§3. Harmonic maps between Carnot spaces

Let (S, gs) and (S, gs') be k-term Carnot spaces and diffeomorphic to N x R
and N’ x R, respectively, where N and N’ are nilpotent Lie groups. Following the
decompositions of the corresponding Lie algebras

n=ngt+ngteetng, n=apEng ey

. we can also decompose the tangent spaces of N x {0} and N’ | x {0} as
TN = (n)p + (n2)p + - + (Wh)p)
TyN' = (w)q + (ng)g + -+ + (Mg

for p € N x {0} and g € N’ x {0}.

Definition. Let u € C(S,5") be a proper map and f := ujg,,- Then u is nonde-
generate at N x {0} if

dp f ((nx) p)¢z ) ()

holds for any p € N x {0}. In other words, u is nondegenerate if

(&£ ((m)p)) N (1) s # {0}
holds for any p € N x {0}.

For example, if (S, gs) and (S', gs/) are real hyperbolic spaces, that is, 1-term
Carnot spaces, then a proper map u € C*(8,5) is said to be nondegenerate if

dpf((m)p) Z (n0) 1w = {0}
Hence u is nondegenerate if and only if |d,f| # 0 for any p € S(o0).

Theorem. Let (S,gs) and (S, gs') be k-term Carnot spaces and u € C*(S,5)
a proper harmonic map and f = Y| g0y Assume u 1s nondegenerate. Then for
1<i<kandanype N x {0}, we have

o1 (Zor) < o

j=1

Namely, f is a filtration preserving map.
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We shall investigate some geometric meaning of this statement in the case of
complex hyperbolic spaces.

Example. (Donnelly [2]) Let (S,gs) and (S',gs') be complex hyperbolic spaces
of dimension m > 2 and n > 2, respectively. Then their ideal boundaries are
identified with the S>™~! and S2"!, respectively. If we consider the Hopf fibration
§?m=1 — CP™, then n; and ny part correspond to the horizontal distribution H,
and the vertical distribution V of the fibration, respectively. Therefore we have the
following correspondence.

u is nondegenerate <= df (V) ¢ H/,
[ is a filtration preserving map <= df(H) Cc H/,

where f = Ujgoy: OD the other hand, we can define a natural contact structure,
or contact form on the odd dimensional unit sphere. Since n; is the null space of
the contact form on the unit sphere S%™~1, the property of the filtration preserving
means that it maps the contact distribution on §?™~! into one of S*"~1. Namely,

the boundary value of a proper harmonic map preserves the contact structure on
the boundaries.

We briefly review the notations to prove the Theorem. Let (S, gs) and (5, gs)
be k-term Carnot spaces, and express them as
d? 1 1
(S,9s) = (NXR+’7+EQI+“'+1/W%) )

, av: 1, 1
(S,ggz)_N_(N’XR+,—}7-2—+‘}}‘591+"'+?‘2‘;91¢)7

where (n,y) € N x Ry, (n,Y) € N xRy, g1+ -+ + gx and g + -+ + g} are left
invariant metrics on N and N', respectively. We shall decompose the Lie algebras
n = Lie(N) and n' = Lie(N’) into k spaces as the following way

n=n;+ng+-o g, n=nl4+ny+.. o,

and set ng =dimng,np =dimnp, and n=n; +--- +ng, 0’ =nj+... +nk.

We take adapted frame fields {e;} on N x Ry and {f,} on N’ x R, in the
following way. For 1 < A < k, let {e4;} be an orthonormal basis of (n4,g4) and
denote their left invariant extension on N by the same letters. Then

(o= 2} s,

is an adapted frame field on N x R.. For the target manifold N’ x R, we define
an adapted frame field

{fo - 5‘;—} U {{fpp}Zil}izl
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as the same manner.
Let u € C%(S, S’). In terms of these adapted frame fields, we write the differential

of u as follows. ,
du=3 > ufe® fa,

i=0 a=0
where e} denotes the dual frame of e;. Since
“k = fi, (du(ex.)),
we note that u is nondegenerate if and only if

!
ne T

SN wE)#£0

i=1 B=1

holds at the ideal boundary. Using these adapted frame fields, we can calculate the
first component 7(u)? of the Euler-Lagrange equation as the following:

n k
=) gtei-uf) + (1 - ) nad)yug

i=0 A=1

=Y () (ug)* — Y (w)” Zy“Z a.)?

i=1

1+ y2 Z Py(u)—2P+1 Z(upﬂ)2 + Zy2A Z PY(u)—2P+1 Z Zp(u
) A=1 i=1 p=1

Note. Since u is a proper map, Y (u) — 0 as y — 0, which yields

i =1 — 0
11}13)1(1)3/ Y (u) = uy.

Lemma 1. Let u € C*(S,3) be a proper map and 1 < B < k. Then we have
(1) The sum of the first four terms in the equation 7(u)? x Y (u)Z*~! x y~2B tends

k
- (Zw) W)  (B=k),
A=1
0 (B < k).
(2) The fifth term in the equation 7(u)°? x Y (u)?*~! x y~25 is given by

np

\ |
> Py [ (Y (u)y~ 1) Fy*-F 'B+‘u§"]2,+ o(1)

P=1 p=1
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asy — 0. »
(3) The sixth term in the equation 7(u)? x Y (u)%*-1 x y=28 is given by

kok ;
D2 Py {(Y(u)y“l)k“" yF A‘Buﬁ‘j] " o(1)

" as y — 0. In particular, if B < A, the sixth term vanishes at the ideal boundary.

Especially, if u is a proper harmonic map, then using the Lemma 1 with B =1,
we have the following

Corollary 1. Let u € C'(S,5) be a proper harmonic map. Then we have the
following identity at the ideal boundary.

(1) When k =1,

ny(ug)® = Z Z(U:ﬂy-

=0 /=1

(2) When k > 1,

ke _ ks _
Uy =1y, =0.

Let f;;p be the dual frame of fpp. Then

up? = fi,(du(ey,)).

Therefore, the second statement in Corollary 1 implies that

dyu((m1)p) N (W) = {0}
holds for any p € N x {0}. In other words, we have

k-1

dpu(("l)p) C Z(n;‘)“(l’)‘ ‘

e

If a proper harmonic map u can be extended to the ideal boundary with C*
regularity, then higher order derivatives of u should satisfy more identities at the
ideal boundary. Indeed, applying Lemma 1 inductively, we can prove the following

Lemma 2. Letk 2 2and 1 < r < k— 1. Then any proper harmonic map
u € C7(8,5") satisfies the following identities at N x {0}.

(1) Forany P (k—7+1< P <k),

€S . ((Y(u)y-l)k-f’u{,’ﬂ) =0 (0<C<r-1).



(2) Forany P (k—r+1<P<k)and A(1< A< P—-k+r),

e - ((Y(u)y‘l)’c -F P”) =0 (0<C<r-1).

Lemma 3. Let k > 2 and 1 < r < k — 1. Assume that u € C"(S5,5) is a proper
harmonic map and satisfies uJ # 0 at N x {0}. Then the following holds at N x {0}.

(1) Forany P (k—r+1< P<k),
€y uo =0 (0<s<P-k+r-1).
(2) Forany P(k—r+1<P<k)andA(1<ALP-k+r),

€Uy, =0 (0<s<P-A+r-1)

Moreover, if u € C*¥~1(§,5), that is, r = k—1 in Lemma 3, we have the following

Proposntlon 1. Let k > 2 and u € C*!(5,5) a proper harmonic map which
satisfies ud # 0 at N x {0} Then, at N x {0}, we have

(1) For any P 2< P<k),
ugf =0 (0<s<P-2).
(2) Forany P(2<P<k)and A(1<A<P-1),
€g - uA =0 (0<s<P-A+k-2).

In particular, applying the result in Proposition 1 (_2_) for the case s = 0, we can
easily verify that a proper harmonic map u € C*~1(8,5") should satisfy

u? =0 2<P<k1<A<P-1),

that is,
uf =0 (1<A<k-1,A+1<P<k)
at N x {0}. Therefore for each A (1 < A <k — 1), it holds that

for any p € N x {0}. Thus we have

Corollary 2. Let k > 2. Assume that u € C*~1(5,5) is a proper harmonic map
and satisfies ud # 0 at N x {0}. Then, for any p € N x {0}, it holds that

A

dpu(Z(nJ) > () uge)-

=1
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Finally, we investigate a relation between the nondegeneracy of a proper har-
monic map and the condition ug # 0 at the ideal boundary.
Applying Lemma 1 with B = k and by virtue of Lemma 2, we have

Lemma 4. Let u € C*(S,S") be a proper harmonic map. Then the following
identity holds at N x {0}.

(Ek: nAA) @)%~ 3PS (k- 1)} (5 v @p-ru))”
A=1 P=1 p=1
k P na

-3 >"PY° i{(k — A2 (eg-A : (Y(u)k~Pu§fj))2 =0. (%)

P=1A=1 i=1 g=1

Proof of Theorem. If we separate the sum of the third term of (*) into two parts;
one is for P = A = k and otherwise, then (%) is rewritten as

k ne M
(Z nAA) (ud)®* + (nonpositive term) — k Z Z(u’,:f )2 =0. (**)
A=1 i=1 g=1 .
Assume that v is nondegenerate. Then it implies that
ne N
2.2 () #0
i=1 =1

holds at the ideal boundary. Hence, from the eQuation (*x), we have
up #0

at the ideal boundary. Combining this result with Corollary 2, we obtain the con-
clusion. O

Note. If we investigate the asymptotic behavior of the component 7(u)P=, then we
can prove the following

Theorem. Let u € C*(5,5) be a proper harmonic map, which is nondegenerate
at the ideal boundary. Then

(1) Forany2< P<kandl1< A< P—1, we have
ep - uA‘ 0 (0<r<P-4
at the ideal boundary.
(2) The derivative ug satisfies the following algebraic equation at the ideal boundary:
np "p

(Eer 2[5 S

i=1 =1



Especially, the boundary value of uJ is completely determined by the derivatives of
the boundary map.
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