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1 A brief sketch
In this paper, we discuss the deformation theory of A-branes in String theory,
from the point of view of CR structures and give an outline of our approach.
The full paper will appear in another paper. Let $W$ be a Kaehler manifold and
let $\omega_{W}$ be its Kaehler form. Let $M$ be a real hypersurface in $W$ . We assume
that our $M$ admits an A-brane structure. Namely, there is a real line bundle $L$

on $M$ , and a connection V on $L$ , satisfying;
[1] The curvature of the connection, $F$ , is an element of $\Gamma(M, \wedge^{2}\mathcal{F}^{*})$ ,
[2] $J:=\omega_{W}^{-1}F$ determines a complex structure on 1‘), where .7‘ $:= \frac{TM}{\mathcal{L}}$ ,

and $\mathcal{L}$ is a characteristic foliation $\mathcal{L}$ , defined by: for $p\in M,$ $\mathcal{L}_{p}=\{\mathrm{Y}_{p},$ $\mathrm{Y}_{p}\in$

$T_{\mathrm{p}}W,\omega_{W}(\mathrm{Y}_{p}, \mathrm{Y}_{p}’)=0,$ $Y_{p}^{l}\in T_{p}M\}$ .
In this paper, by using the notion of almost CR structures, we reformulate

the notion of A-branes. Our $J$ determines an almost CR structure $(M,T_{J}’’)$ on
$M$ . For this almost CR structure, we prove that $C\otimes \mathcal{L}+T_{J}’’$ is integrable on
$M$ . And show the deformation complex of A-branes (the Kapustin-Orlov com-
plex) (see (2.7)). This is a natural generalization of the case $M=W$(Kapustin-
Orlov consider the case; A-branes wrap the whole $W$ , and obtain the standard

$\overline{\partial}$-complex as a deformation complex).
Here we treat A-branes of the type hypersurfaces. Now for a given A-brane,

we introduce the notion of family of A-branes, $\{(M,L, \nabla_{t})\}_{t\in T}$ . In this paper,
we introduce the deformation complex of A-branes, and construct the Kodaira-
Spencer map for the given family of A-branes. On the parameter space, a
complex structure is given. But, we are relying on the Hamilton deformation,
so we can’t discuss in the complex analytic category(so we have to use that
$\{(M, L, \nabla_{t})\}_{t\in T}$ depends on $t,C^{\infty}- 1\mathrm{y}$). And because of this fact, we have to
discuss in the category, $\mathrm{m}\mathrm{o}\mathrm{d} (t^{2},\overline{t})$ .

The author would like to thank Prof.A.Kapustin for allowing me to use
the name, the Kapustin-Orlov complex and valuable suggestions during the
preparation of this paper(the author learned that Kapustin and his student Yi
Li, independently, obtained the integrability of $C\otimes \mathcal{L}+T_{J}’’$).
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2 The Kapustin-Orlov complex
In [Kap-Or], Kapustin-Orlov formulate the $\mathrm{D}$-branes of A-type(in their lan-
guage, A-branes), mathematically. We consider the deformation theory of A-
branes in the case real hypersurfaces. For this, we recall the notion of A-branes.
Let $W$ be a Kaehler manifold. Let $\omega_{W}$ be its Kaehler metric. Let $M$ be a real
submanifold of $W$ . Then, for this $M$ , we have a characteristic foliation $L$ . This
is defined by: for $p\in M$ ,

$L_{p}=\{Y_{p}, \mathrm{Y}_{p}\in T_{p}W,\omega_{W}(\mathrm{Y}_{p}, \mathrm{Y}_{p}’)=0, \mathrm{Y}_{p}’\in T_{p}M\}$.

By this definition, $\mathcal{L}$ is a subbundle of $TW|_{M}$ and the rank of $\mathcal{L}$ is $2n-dim_{R}M$ ,
because of $\omega_{W}$ being non-degenerate(here $n$ is the complex dimension of $W$).

Deflnition 2.1. If for $p\in M,$ $\mathcal{L}_{p}\subset T_{\mathrm{p}}M$ , then $M$ is called coisotropic.

Henceforth we assume that our real submanifold is coisotropic. So, on $M$ ,
we have a quotient bundle

$F:= \frac{TM}{\mathcal{L}}$ .

Definition 2.2. ($A$ -branes). Let $M$ be a coisotropic submanifold. Then $M$

admits the $A$ -brane if and only if there is a real line bundle $L$ and a connection
$\nabla$ of $L,$ $(L, \nabla)$ which satisfies

[1J The curvature of the connection, $F$ , is an element of $\Gamma(M, \wedge^{2}F^{*})$ ,
[$ZJJ:=\omega_{W}^{-1}F$ determines a “ $Tac^{f}$’ structure on $M$ (this means $that:J^{2}=-1$

and this $J$ is integrable modulo characteristic foliation).

Now for the submanifold $M$ , a CR structure $(M^{0},T’’)$ is introduced by:

$0_{T’’=C}\otimes TM\cap T’’W|M$ ,

where $C\otimes TM$ means the complexfied tangent bundle of $M$ . Let $D=\{Y:\mathrm{Y}\in$

$TM,$ $\mathrm{Y}=X+\overline{X},$ $X\in 0T’’\}$ . Then, naturally,

$D$ or.T.

By this identification, $J$ is defined on $D$ , satisfying: $J^{2}=-1$ . Hence $J$ deter-
mines an almost CR structure on $M$ . We study this structure. $J$ is defined on
$D$ . We extend this $J$ on $C\otimes D$ , naturally. Set

$T_{J}’=\{X:X\in C\otimes D, JX=\sqrt{-1}X\}$ ,
$T_{J}’’=\{X’ : X’\in C\otimes D, JX’=-\sqrt{-1}X’\}$ .

Then, as mentioned in [Kap-Or], we have

Proposition 2.1.

$C\otimes D=T_{J}’+T_{J}’’,$ $T_{J}’\cap T_{J}’’=0$ , (2.1)
$[\Gamma(M,T_{J}’),\Gamma(M, T_{J}’)]\subset\Gamma(M,T_{J}’)$ mod C. (2.2)

Proof. (0.1) is obvious. We see (0.2). By the definition, $dF=0,$ $h_{W}=0$ , and

$\omega_{W}(X, JX’)=F(X,X’),$ $X,$ $X’\in C\otimes D$ .
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With these, we compute : for $X_{1},$ $X_{2}\in\Gamma(M, T_{J}’),$ $X\in\Gamma(M, C\otimes TM)$ ,

$dF(X_{1}, X_{2}, X)=0$ , (2.3)
$d\omega_{W}(X_{1}, X_{2}, X)=0$ . (2.4)

We compute (0.3). Then,

$X_{1}F(X_{2}, X)-X_{2}F(X_{1}, X)+XF$ ( $X_{1}$ , X2)
$-F([X_{1}, X_{2}], X)+F([X_{1}, X], X_{2})-F([X_{2}, X], X_{1})=0$.

We rewrite this by using: $\omega_{W}(X, JX’)=F(X, X’),$ $X,X’\in C\otimes D$ .

$X_{1}\omega_{W}(JX_{2}, X)-X_{2}\omega_{W}(JX_{1}, X)+X\omega_{W}(JX_{1}, X_{2})$

$-\omega_{W}(J[X_{1}, X_{2}], X)+\omega_{W}([X_{1}, X], JX_{2})-\omega w([X_{2}, X], JX_{1})=0$.

By $JX_{i}=\sqrt{-1}X_{i},i=1,2$ , this becomes

$X_{1}\omega_{W}(\sqrt{-1}X_{2},X)-X_{2}\omega_{W}(\sqrt{-1}X_{1}, X)+X\omega_{W}(\sqrt{-1}X_{1}, X_{2})$

$-\omega_{W}(J[X_{1}, X_{2}], X)+\omega_{W}([X_{1},X], \sqrt{-1}X_{2})-\omega_{W}([X_{2},X], \sqrt{-1}X_{1})=0$ .

While, by (0.4),

$X_{1}\omega_{W}(X_{2}, X)-X_{2}\omega_{W}(X_{1}, X)+X\omega_{W}(X_{1}, X_{2})$

$-\omega_{W}([X_{1},X_{2}], X)+\omega_{W}([X_{1}, X],X_{2})-\omega_{W}([X_{2}, X],X_{1})=0$ .
Hence, we have

$\omega_{W}(J[X_{1}, X_{2}],X)=\omega_{W}(\sqrt{-1}[X_{1}, X_{2}], X)$ for any $X\in C\otimes D$ .

This means that: $[X_{1},X_{2}]\in T_{J}’$ modulo L.

The following proposition is also mentioned in [Kap-Or].

Proposition 2.2.

$\omega_{W}(X_{1},X_{2})=0$ for $X_{1}\in T_{J}’,$ $X_{2}\in T_{J}’’$ .

So, $J$-structure is different from the CR structure, naturally, induced from
$W$ . Here for the convenience, we give a proof.

Proof. We use $\omega_{W}(X, J\mathrm{Y})=F(X, \mathrm{Y})$ , for any $X$. $\mathrm{Y}\in C\otimes TM$ . For $X_{1}\in$

$T_{J}’,X_{2}\in T_{J}’’$ ,
$\omega w(X_{1}, JX_{2})=F(X_{1}, X_{2})$ .

By $JX_{2}=-\sqrt{-1}X_{2}$ ,

$\omega_{W}(X_{1}, -\sqrt{-1}X_{2})=F(X_{1},X_{2})$ ,

so,
$\omega_{W}(X_{1},X_{2})=\sqrt{-1}F(X_{1},X_{2})$ .

On the other hand,
$\omega w(X_{2}, JX_{1})=F(X_{2},X_{1})$ .
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So, by $JX_{1}=\sqrt{-1}X_{1}$ ,

$\omega(X_{2}, X_{1})=-\sqrt{-1}F(X_{2}, X_{1})$ .

Hence
$\omega(X_{1}, X_{2})=-\sqrt{-1}F(X_{1}, X_{2})$ .

This means that $\omega_{W}(X_{1},X_{2})=0$ . $\square$

As is mentioned in [Kap-Or], the following corollary follows from this propo-
sition.

Corolary 2.3.
$dim_{C}T_{J}’=even$ .

Now we set a $C^{\infty}$ vector bundle decomposition

$C\otimes TM=C\otimes L+T_{J}’’+T_{J}’$ .

Here $C\otimes \mathcal{L}$ means the complexfied L. While in our case, $(M, T_{J}’’)$ may not be
a CR structure(only integrable modulo L). But,

Proposition 2.4. $\mathcal{L}$ preserves $J$ , namely,

$[\Gamma(M, T_{J}’), \mathcal{L}]\subset\Gamma(M, T_{J}’)$ modulo L.

Proof. By the same ways as in Proposition 2, we see this proposition.
For $X\in T_{J}’,$ $\mathrm{Y}\in T_{J}’’,$ $\zeta\in \mathcal{L}$ , as $F,\omega_{W}$ are closed,

$dF(X, \mathrm{Y}, \zeta)=0$,
$d\omega_{W}(X, \mathrm{Y}, \zeta)=0$ .

By the first equation,

$XF(\mathrm{Y}, \zeta)-\mathrm{Y}F(X, \zeta)+\zeta F(X, \mathrm{Y})$

$-F([X, Y], \zeta)+F([X, \zeta], \mathrm{Y})-F([\mathrm{Y}, \zeta], X)=0$.

As $\mathcal{L}$ is a characteristic foliation, this becomes

$\zeta F(X, \mathrm{Y})+F([X, \zeta], \mathrm{Y})-F([\mathrm{Y}, \zeta], JX)=0$ .

With $\omega_{W}(X’, J\mathrm{Y}’)=F(X’, \mathrm{Y}‘)$ for $X’,$ $Y’\in C\otimes D$ ,

$\zeta\omega_{W}(JX, \mathrm{Y})+\omega_{W}([X, \zeta], JY)-\omega_{W}([\mathrm{Y}, \zeta], J\mathrm{Y})=0$.

While, by Proposition 2,

$\omega_{W}(JX, \mathrm{Y})$ $=$ $\omega_{W}(\sqrt{-1}X, \mathrm{Y})$

$=$ $0$ .

Hence

$\omega_{W}([X, \zeta], -\sqrt{-1}\mathrm{Y})-\omega([Y, \zeta], \sqrt{-1}X)=0$ . (2.5)
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While by the second equation,

$X\omega_{W}(\mathrm{Y}, \zeta)-Y\omega_{W}(X, \zeta)+\zeta\omega_{W}(X, \mathrm{Y})$

$-\omega_{W}([X, \mathrm{Y}], \zeta)+\omega_{W}([X, \zeta], Y)-\omega_{W}([\mathrm{Y}, \zeta], X)=0$.

So, by the same way, this becomes

$\omega_{W}([X, \zeta], \mathrm{Y})-\omega([\mathrm{Y}, \zeta], X)=0$ . (2.6)

With (0.5), (0.6), we have

$\omega_{W}([X, \zeta], \mathrm{Y})=0$, for $X\in T_{J}’Y\in T_{J}^{\prime l}$

This means that: the $T_{J}’’$ part of [X, $\zeta$] vanishes because of $\omega_{W}$ being nondegen-
erate with Proposition 2.2. Hence

[X, $\zeta$] $\in\Gamma(M, T_{J}’)$ modulo L.

$\square$

Now we can state our theorem.

Theorem 2.5. We set $T”:=C\otimes \mathcal{L}+T_{J}’’$ . Then,

$[\Gamma(M, T"), \Gamma(M, T")]$ $\subset\Gamma(M, T")$ .

By this theorem, we have the deformation complex of A-branes (Kapustin-
Orlov complex). Namely, for $u\in\Gamma(M, C)$ , we set $\overline{\partial}\mathrm{u}$ of $\Gamma(M, (T")’)$ by;

$\overline{\partial}u(X)=Xu$ , for $X\in T’’$ .

By the same way as for ordinary differntial forms, we can introduce $\mathrm{P}$ from
$\Gamma(M, \wedge^{\mathrm{p}}(T’’)^{*})$ to $\Gamma(M, \wedge^{p+1}(T’’)^{*})$ .

$\ovalbox{\tt\small REJECT}$ : $\Gamma(M, \wedge^{p}(T’’)^{*})arrow\Gamma(M, \wedge^{p+1}(T’’)^{*})$ .

Then, by the integrability theorem(Theorem 2.5),

$\partial^{\mathrm{P}+1}\overline{\partial}^{p}=0$ .

So, we have a deformation complex of $\mathrm{A}$-branes(Kapustin-Orlov complex).

$0arrow\Gamma(M, C)arrow\Gamma(M, (T^{l\prime}))arrow\Gamma(M, \wedge^{2}(T’’)^{*}\overline{\theta}’\overline{\partial}^{1})arrow\cdots$ (2.7)

Furthermore, by this theorem, we can introduce a sheaf, $\mathcal{O}_{T’’}$ , composed of
$\overline{\partial}$-closed elements, which are holomorphic in the direction $T_{J}’’$ , and constant in
the direction L.

189



3A family of deformations of A-branes
We introduce the notion of a family of deformations of A-branes,

Definition 3.1. A set of $A$ -branes $\{(M, L, \nabla_{t}), i_{t}\}_{t\in T}$ , where $T$ is an analytic
space with the origin $\mathit{0}$ , is a family of deformations of $A$ -branes if

(1) connections $\nabla_{t}$ depends on $t,$ $\mathrm{C}^{\infty}$ -ly, and $\nabla_{o}=\nabla$ ,
(2) embeddings $i_{t}$ depends on $t,$ $\mathrm{C}^{\infty}- ly$, and $i_{o}=i$ .

Unlike CR structures, we rely on $\mathrm{C}^{\infty}$ category. Because, in the case symplec-
tic structures, the Hamiltonian deformations play an essential part. We study
a family of deformations of A-branes in the case real hypersurfaces. For the
embedding $i_{t}$ , we have the characteristic vector field, $\xi_{t}$ . By using this vector
field, the condition of $\{(M, L, \nabla_{t}),i_{t}\}$ being the A-brane is rewritten as follows.

$[1]_{t}$ The curvature of the connection $\nabla_{t},$ $F_{t}$ , is an elenent of $\Gamma(M, \wedge^{2}\mathcal{F}_{t}^{*})$ ,
$[2]_{t}$ Let $J_{t}:=(i_{t}^{*}\omega_{W})^{-1}F_{t}$ . $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},J_{t}^{2}=-1$ on $.\mathcal{F}_{t}$ , where

$\mathcal{F}_{t}:=\frac{TM}{\mathcal{L}_{t}}$ ,

and $\mathcal{L}_{t}$ is generated by $\xi_{t}$ . While the inclusion map induces a bundle isomor-
phism map $\rho_{t}$ ; from $D$ to $\frac{TM}{\mathcal{L}_{t}}$ , induced by the inclusion map ; $D$ to $TM$ . The
structure defined by $J_{t}$ induces an almost CR structure on $D$ by;

$J_{t}’:=\rho_{t}^{-1}J_{t}\rho_{t}$ .
Henceforth, we use the same notation $J_{t}$ for $J_{t}’$ and we regard $J_{t}$ as an almost
CR structure on $D$ . Therefore $[1]_{t},[2]_{t}$ are written as

$[1]_{t}’$ The curvature of the connection $\nabla_{t},$ $F_{t}$ , satisfies $F_{t}(\xi_{\ell}, Y)=0$ for
$\mathrm{Y}\in D$ ,

$[2]_{t}’$ Let $J_{t}:=(i_{t}^{*}\omega_{W})^{-1}F_{t}$ . Then, $J_{t}^{2}=-1$ on $D$ .

We see why we call this complex a deformation complex of A-branes.
Deflnition 3.2. The quartets of $A$ -branes, $\{(M, L, \nabla), i\},$ $\{(M, L’, \nabla’), i‘\}$ are
equivalent if there is a gauge transform of the line bundle $L$ (we write this bundle
map by $q$), and there is a Hamiltonian diffeomorphism map of $W$ , defined by a
$o\infty$ function $g$ (we write it by $V_{g}$), satisfying;

(1) the composition of maps $V_{\mathit{9}}$ and $i,$ $V_{\mathit{9}}i=i’$ ,
(2) $V_{g}^{*}q^{*}\nabla=\nabla’$

Next we introduce an equivalence relation for a family of deformations of
A-branes.
Deflnition 3.3. The family of deforrnations of $A$ -branes, $\{(M, L, \nabla_{t}), i_{t}\}_{t\in T}$ ,
$TtoSsatisfying.\cdot h(\mathit{0})=\mathit{0},thereisagaugetmnsfo\mathrm{r}mofthelinebundleL(we\{(M,L’,\nabla_{\epsilon}’),i_{s}’\}_{\iota\in sareequivalentifthereisalocalbiholomor\mathrm{p}hicmaphffom}$

write this bundle map by $q$), and there is a Hamiltonian diffeomorphism map of
$W$, defined by a $C^{\infty}$ function $g_{t}$ (we write it by $V_{g_{\ell}}$ ), satisfying;

(1) the composition of maps $V_{g\iota}$ and $i_{\mathrm{t}},$

$V_{\mathit{9}t}i_{t}=i_{h(t)}’$ ,
(2) $V_{g_{2}}^{*}q_{\ell}’\nabla_{t}=\nabla_{h(t)}’$
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4 The infinitesimal case
For a family of deformations of A-branes, $\{(M, L, \nabla_{t}), i_{t}\}_{t\in T}$ , we can intro-
duce the Kodaira-Spencer map, like the case the deformation theory of complex
structures.

Theorem 4.1.
$\frac{\partial}{\partial t}\{(M, L, \nabla_{t}),i_{t}\}_{t\in T}|_{t=\mathit{0}}$

determines an element of $Ker\overline{\partial}^{(1)}/Im\overline{\partial}$ (the first cohomology of the differential
complex (2.7) $)$ .

Deflnition 4.1. Let $W$ be a Kaehler manifold and $\{(M, L, \nabla)\}$ be an A-brane
in W. Let $\{\nabla_{t}\}_{t\in T}$ be a family of connections of $L$ , satisfying $L_{o}=L$ . Let $\xi_{t}$

of a section of $\Gamma(M,TW|M)$ , satisfying that $j\xi_{\mathit{0}}=0$ and $\xi_{t}$ can be euended to
a neighborhood of $M$ , and let $i_{t}$ be the embedding map, indu$\mathrm{c}ed$ by $\xi_{t}$ . If the
following holds, then $\{(M, L_{t}, \nabla_{t})\}_{t\in T}$ is called an infnitesimd deformation of
A-branes.

$[1]_{t}’$ The curvature of the connection $\nabla_{t},$ $F_{t}$ , satisfies $F_{t}(\xi_{t}, Y)\equiv 0$ for
$Y\in D$ , mod $(t^{2},\overline{t})$

$[2]_{t}’$ Let $J_{t}:=(i_{t}^{*}\omega_{W})^{-1}F_{t}$ . Then, $J_{t}^{2}\equiv-1$ mod $(t^{2},\overline{t})$ on $D$ .

With this correspondence, we have

Theorem 4.2. For $\phi\in\Gamma(M, (C\otimes \mathcal{L}+T_{J}’’)^{*})$ , satisfying ; $\overline{\partial}^{(1)}\phi=0$ , on $M$ ,
we can set a family of deformations of $A$ -branes, infinitesimally.

In a forthcomming paper, the proof is given.
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