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1 A brief sketch

In this paper, we discuss the deformation theory of A-branes in String theory,
from the point of view of CR structures and give an outline of our approach.
The full paper will appear in another paper. Let W be a Kaehler manifold and
let ww be its Kaehler form. Let M be a real hypersurface in W. We assume
that our M admits an A-brane structure. Namely, there is a real line bundle L
on M, and a connection V on L, satisfying;

[1] The curvature of the connection, F , is an element of I'(M, A2F*),

2] J := w‘TVIF determines a complex structure on F), where F := %,
and £ is a characteristic foliation £, defined by: for p € M, £, = {Y,, Y, €
T,W,ww(Yy,Y,) =0, Y, € T,M}.

In this paper, by using the notion of almost CR structures, we reformulate
the notion of A-branes. Our J determines an almost CR structure (M,T7) on
M. For this almost CR structure, we prove that C ® £ + T is integrable on
M. And show the deformation complex of A-branes (the Kapustin-Orlov com-
plex)(see (2.7)). This is a natural generalization of the case M = W (Kapustin-
Orlov consider the case; A-branes wrap the whole W, and obtain the standard
O-complex as a deformation complex).

Here we treat A-branes of the type hypersurfaces. Now for a given A-brane,
we introduce the notion of family of A-branes, {(M, L, V:)}ser. In this paper,
we introduce the deformation complex of A-branes, and construct the Kodaira-
Spencer map for the given family of A-branes. On the parameter space, a
complex structure is given. But, we are relying on the Hamilton deformation,
so we can’t discuss in the complex analytic category(so we have to use.that
{(M,L,V:)}ter depends on t,C*®-ly). And because of this fact, we have to
discuss in the category, mod (¢2,7).

The author would like to thank Prof.A.Kapustin for allowing me to use
the name, the Kapustin-Orlov complex and valuable suggestions during the
preparation of this paper(the author learned that Kapustin and his student Yi
Li, independently, obtained the integrability of C ® £ + T%).



2 The Kapustin-Orlov complex

In [Kap-Or], Kapustin-Orlov formulate the D-branes of A-type(in their lan-
guage, A-branes), mathematically. We consider the deformation theory of A-
branes in the case real hypersurfaces. For this, we recall the notion of A-branes.
Let W be a Kaehler manifold. Let ww be its Kaehler metric. Let M be a real
submanifold of W. Then, for this M, we have a characteristic foliation £. This
is defined by: for p € M,

L, = {Y,,Y, € LW,uw(Y,,Y;) =0, ¥, € T,M}.

By this definition, £ is a subbundle of TW | and the rank of £ is 2n—dimg M,

because of wy being non-degenerate(here n is the complex dimension of W).
Definition 2.1. If forpe M, L, C T, M, then M is called coisotropic.

Henceforth we assume that our real submanifold is coisotropic. So, on M,
we have a quotient bundle
T™

Vo

Definition 2.2. (A-branes). Let M be a coisotropic submanifold. Then M
admits the A-brane if and only if there is a real line bundle L and a connectwn
V of L, (L, V) which satisfies

[1] The curvature of the connection, F' , is an element of T'(M, A2 F*),

18] J = wy 'F determines a ”Tac” structure on M (this means that:J? = —1
and this J is integrable modulo characteristic foliation ).

F =

Now for the submanifold M, a CR structure (M,°T") is introduced by:
| P = CRTMNT"W | M,

where C' ® TM means the complexfied tangent bundle of M. Let D ={Y :Y ¢
TM,Y = X + X, X € °T"}. Then, naturally,

D=F.

By this identification, J is defined on D, satisfying : J2 = —1. Hence J deter-
mines an almost CR structure on M. We study this structure. J is defined on
D. We extend this J on C ® D, naturally. Set

T)={X:X € C®D, JX =+/=1X},
T ={X': X' e C®D, JX' = -/=1X'}.

Then, as mentioned in [Kap-Or], we have

Proposition 2.1.

C®D=T;+T7, T;nT} =0, (2-1)
(T'(M, Tﬁ),F(M, TJ)] CT(M,Ty) mod L. (22)

Proof. (0.1) is obvious. We see (0.2). By the definition, dF = 0, dwy = 0, and
ww(X,JX') = F(X,X'), X,X' € C® D.
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With these, we compute : for X;,X, € T(M,T5), X e T'(M,C ®TM),

dF(X]_,Xz,X) = 0, (23)
dww (X1, X2, X) = 0. (2.4)

We compute (0.3). Then,

X1F(X2,X) - XzF(Xl,X) + XF(Xl,Xz)
—-F([Xl,Xz],X) + F([Xl,X],Xg) - F([Xz,X],Xl) =0.

We rewrite this by using : ww (X, JX') = F(X, XN, X, X'eC®D.
XlwW(JX2,X) - X2WW(JX1,X) + XwW(JX1,X2)
—wW(J[X13X2]’X) + U)W([Xl,X], J-X2) - wW([X%X]’ JXI) =0.

By JX; = v-1X;,1 = 1,2, this becomes

Xiww (V-1X3,X) — Xoww (V-1X1, X) + Xww (V-1X1, X3)
—ww (J[X1, X3], X) + ww ([X1,X],V-1X2) - ww ([X2,X],vV—-1X;) = 0.

While, by (0.4),

XlwW(Xg,X) - XQUW(X]_,X) + XLUW(XI,XZ)
—ww ([X1, X2], X) + ww ([ X1, X], X2) — ww([X2, X], X1) = 0.

Hence, we have
ww(J{Xl,Xg],X) = ww(v—l[Xl,Xz],X) forany X e C® D.
This means that: [X1, X2] € T modulo L. O

The following proposition is also mentioned in [Kap-Or].

Proposition 2.2.
ww (X1,X3) =0 for X; € T}, X, € T5.

So, J-structure is different from the CR structure, naturally, induced from
W. Here for the convenience, we give a proof.

Proof. We use ww(X,JY) = F(X,Y), for any X,Y € C®TM. For X; €
T},X, € TY,
ww (X1, JX3) = F(X1, Xs).

By JX, = —/—=1Xa,
LUW(Xl, -V —1X2) = F(X]_,X2),

80,
ww (X1, X2) = V-1F (X1, X2).

On the other hand,
Q)W(Xz, JXl) = F(Xz,Xl).
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SO, by JXl = \/—'1X1,
w(Xz2,X1) = —V-1F (X2, Xy).

Hence
w(XlaXZ) =V —]-F(XI’X2)'

This means that ww (X1, X3) = 0. O

As is mentioned in [Kap-Or], the following corollary follows from this propo-
sition.

Corollary 2.3.
dimcT; = even.

Now we set a C'* vector bundle decomposition
CRTM=CQL+T;+Ty.

Here C ® £ means the complexfied £. While in our case, (M, TY) may not be
a CR structure(only integrable modulo £). But,

Proposition 2.4. £ preserves J, namely,
L(M,T5), L] CT'(M,T}) modulo L.

Proof. By the same ways as in Proposition 2, we see this proposition.
For X € T;,Y € TY,{ € L, as F,ww are closed,

dF(X, Y) C) = O,
dww (X,Y,() = 0.

By the first equation,

XF(Y,{) -YF(X,() + (F(X,Y)
-F([X,Y],¢) + F([X,¢,Y) - F([Y,¢], X) = 0.

As L is a characteristic foliation, this becomes
(F(X,Y)+ F([X,(,Y) - F([Y,{], JX) = 0.
With ww (X', JY') = F(X",Y) for X",Y' e C® D,
C wwlUXY) w4 TY) - ww([¥ (L, JY) =0.
While, by Proposition 2,

wW(JX,Y) = ww(\/—_IX,Y)
= Q.

Hence

ww (X, ¢, ~V=1Y) — (¥, ¢}, V=1X) =0, (2.5)
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While by the second equation,

Xww (Y, () — Yuw (X, () + (ww(X,Y)
—ww ([X,Y],0) +ow ([X,(],Y) —ww (Y (], X) =0.

So, by the same way, this becomes

ww((X,,Y) - w(l¥,¢], X) =0. (26)
With (0.5), (0.6), we have

ww([X,¢,Y)=0,for XeT; Y €Ty

This means that: the 7% part of [X, ] vanishes because of wy being nondegen-
erate with Proposition 2.2. Hence

[X,(] € T(M,T3) modulo L.

Now we can.state our theorem.

Theorem 2.5. We set T" := C @ L+ Tj. Then,
[O(M, T"), (M, T")] c T(M,T").

By this theorem, we have the deformation complex of A-branes (Kapustin-
Orlov complex). Namely, for u € I'(M, C), we set du of T'(M, (T")*) by;

Bu(X) = Xu, for X € T".

By the same way as for ordinary differntial forms, we can introduce & from
(M, AP(T")*) to T'(M, APT(T")*).

T T(M,AP(T")*) = T(M, APTH(T")*).
Then, by the integrability theorem(Theorem 2.5),
e =0

So, we have a deformation complex of A-branes(Kapustin-Orlov complex).

0= T(M,C) 3 T(M, (T")*) 5 T(M, A2 (T")*) — -+ 2.7)

_ Furthermore, by this theorem, we can introduce a sheaf, Op, composed of
0-closed elements, which are holomorphic in the direction T, and constant in
the direction L.
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3 A family of deformations of A-branes

We introduce the notion of a family of deformations of A-branes,

Definition 3.1. A set of A-branes {(M, L, V), is}ier, where T is an analytic
space with the origin o, is a family of deformations of A-branes if

(1) connections V; depends on t, C*®-ly, and V, = V,
(2) embeddings i, depends ont, C®-ly, and i, = 1.

Unlike CR structures, we rely on C* category. Because, in the case symplec-
tic structures, the Hamiltonian deformations play an essential part. We study
a family of deformations of A-branes in the case real hypersurfaces. For the
embedding i;, we have the characteristic vector field, &. By using this vector
field, the condition of {(M, L, V.),i:} being the A-brane is rewritten as follows.

[1]; The curvature of the connection V;, F; , is an element of I'(M, A2F}),

[2]¢ Let J; := (i;ww )" F;. Then,J? = —1 on F;, where
TM

L’
and L; is generated by &. While the inclusion map induces a bundle isomor-

phism map py; from D to ZM, induced by the inclusion map ; D to TM. The
structure defined by J; induces an almost CR structure on D by;

Fi =

JZ = pt_lJtpt.

Henceforth, we use the same notation J; for J{ and we regard J; as an almost
CR structure on D. Therefore [1];,[2]; are written as

(1] The curvature of the connection V,, F, , satisfies F;(&,Y) = 0 for
YeD,
[2]} Let J; := (itww) 1 F;. Then, J2 = —1on D.

We see why we call this complex a deformation complex of A-branes.

Definition 3.2. The quartets of A-branes, {(M,L,V),i}, {(M,L',V'),i'} are
equivalent if there is a gauge transform of the line bundle L (we write this bundle
map by q), and there is a Hamiltonian diffeomorphism map of W, defined by a
C* function g (we write it by V,), satisfying;

(1) the composition of maps V, and i, Vyi =1,
—_
(2) Vrq¢V=V
Next we introduce an equivalence relation for a family of deformations of
A-branes.

Definition 3.3. The family of deformations of A-branes, {(M,L,V;),i:}ser,
{(M,L',V,),i,}ses are equivalent if there is a local biholomorphic map h from
T to S satisfying : h(0) = o, there is a gauge transform of the line bundle L (we
write this bundle map by g), and there is a Hamiltonian diffeomorphism map of
W, defined by a C* function g, (we write it by V,, ), satisfying;

(1) the composition of maps Vy, and iy, Vg,iy = Th(t)»
(2) Vit Ve= Vi
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4 The infinitesimal case

For a family of deformations of A-branes, {(M,L,V}),it}teT, We can intro-
duce the Kodaira-Spencer map, like the case the deformation theory of complex
structures.

Theorem 4.1. 5
é?{(M, L,V:),it}ier |t=o

determines an element of Ker 5(1) /Im 8 (the first cohomology of the differential
complez (2.7)).

Definition 4.1. Let W be a Kaehler manifold and {(M,L,V)} be an A-brane
in W. Let {Vi}ier be a family of connections of L, satisfying L,=0L. Let &
of a section of T(M,TW |ur), satisfying that ;§, = 0 and & can be extended to
a neighborhood of M, and let i; be the embedding map, induced by &. If the
following holds, then {(M,L;,Vs)}ser is called an infnitesimal deformation of
A-branes. _

[1), The curvature of the connection Vi, Fi , satisfies Fy(&,Y) = 0 for
Y € D, mod (t2,7)

[2]. Let J; := (itww) " F;. Then, J? = —1 mod (t*,%) on D.

With this correspondence, we have

Theorem 4.2. For ¢ € T(M,(C ® L + Tj)*), satisfying ; 5(1)¢ =0, on M,
we can set a family of deformations of A-branes, infinitesimally.

In a forthcomming paper, the proof is given.
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