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1. INTRODUCTION

1.1. One of the distinguished features of infinite dimensional Lie algebras is the
modular invariance of the characters of certain representations. There are two
celebrated examples for this phenomena: One is the integrable highest weight rep-
resentations of an affine Lie algebra g associated with a simple Lie algebra g at a
fixed level [KP], and the other is the minimal series representations [FFu] of the
Virasoro algebra Vir with a fixed central charge.

However there is a relevant difference in these two examples: The Virasoro al-
gebra is a single Lie algebra, while affine Lie algebras constitute a family of Lie
algebras. Therefore it is natural to consider a generalization of the Virasoro alge-
bra.

The W-algebras can be regarded as such a generalization of the Virasoro algebra.
Some people say that this is the reason why they are called the “W-algebras”
(because the letter “W” comes right after “V” alphabetically). The first example
of a W-algebra was discovered by Zamalodchikov [Za] in his study of classification
of conformal field theory (see [BS] and reference therein.).

1.2. Ingeneral, there is the W-algebra W(g) associated with any simple Lie algebra,
g ([FF2]). The simplest W-algebra is the W-algebra W(slz) associated with sls.
This is nothing but the Virasoro algebra (or more precisely, the corresponding
vertex algebra). The Virasoro algebra Vir is the Lie algebra with the following
generators and the relations:

generators: Ly, (n € Z), c
relations:  [Lp,c] =0

1
[Lems L] = (m ~n)Lmin + Em(mz = 1)0m-4n,0C.
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The next simplest W-algebra is the one associated with sl3; W(sl3) is defined by
the following generators and relations:

generators: ¢, L, (n € Z), W, (n € Z),

relations:  [c, W(sl3)] =0,

3

mT —m

[Lma Ln] = (m - n)Lm+n + 12 5m+n,007
[Lma Wh] = (2m — n)Wptn,
(Wi, Wi
1 1
= (m - m){ ggm +n+3)(m+n+2) - glm+ Dln+ 2} L
16 ¢ 2 _ 2 _
+22 + 5C (m n)Am+n + 360m(m 1)(m 4)6m+n’0,
where
3
(1) An = Z LyLp_g + Z LpxLr — '1‘6(” + 2)(n + 3)Ln.
k<0 k>0

In the above formula, the pole at ¢ = —22/5 can be removed if we multiply W, by
22 + 5¢, and therefore it is inessential. More serious is the existence of the infinite
sum of the quadratic term of the form L,_xLg. This means that the above does
not define a Lie algebra in the usual sense. In general, W-algebras are no more Lie
algebras and one should understand them as vertez algebras (see [K2, FB, BD] for
the definition of vertex algebras).

1.3. As we have seen in the above, W(g) has a complicated algebraic structure
except for the case that g = sl,. In fact, even the defining relations of the generators
are not known for a general W(g) ! Thus, instead of defining it by generators and
relations, W-algebras are usually defined by a cohomological method. This method
is called the quantized Drinfeld-Sokolov reduction, or simply the quantum reduction,
and was discovered by Feigin and Frenkel [FF2]. This is a powerful method, in the
sense that it not only gives a uniform definition of W(g), but also defines a functor
form a suitable category (the category ©) of g-modules to the category of W(g)-
modules. Frenkel, Kac and Wakimoto [FKW] conjectured that one can obtain a
family of modular invariant representations of W(g) from the modular invariant
representations (admissible representations) of g via this functor. If this is true
then one can surely say that W(g) is a generalization of Vir, for it inherits our
favorite property of the Virasoro algebra.

1.4. The propose of this note to describe the representation theory of W(g) via
quantum reduction. In particular, we explain how the conjecture of Frenkel, Kac
and Wakimoto follows from our general results.

2. FINITE DIMENSIONAL CASE

2.1. Recall that g is an affinization (or a chiralization) of the finite dimensional Lie
algebra g. In this sense, the Virasoro algebra Vir is a chiralization of its zero mode,
“CLg". And because Ly corresponds to the Casimir operator (via the Sugawara
construction), one can think of Vir= W(sl,) as a chiralization of the center Z(sl,)
of U(sly). This is true in general:

W(g) is a chiralization of the center Z(g) of U(g).
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2.2. Kostant’s Theorem. Let e be a principal nilpotent element of g. For in-
stance, if g = sl,, then e has the form

0 1 0 0
o o0 1 .. 0
0 0 0 1 0
eE=1. . . .
0o 0 0 -~ 0 1
0 0 0 -~ 0 O

By the Jacobson-Morozov theorem there exists a corresponding sls-triple {e, ho, f}:
[ho,e]=26, [hOsf]=_2f)' [ f]“

Then we have the eigenspace decomposition of g with respect to the adjoint actlon
of p = ho / 2:

s=s; 0 ={zegp’, 2] =jz}.
JEZ
Because e is principal, this gives a triangular decomposition g =n_@®h & n.,., where

n-i'-_'zg_']: b go, N- —ZQJ

j>0 3<0
Let A4 C b* be the corresponding set of positive roots, A_ = —A,, A ALUA_.
Define p € n* by
p(z) = (z,€).
Here ( , ) is the normalized invariant inner product of g. Then p([n_,n_]) =0 and

p defines a character of n_.
Let Cl be the Clifford algebra associated with the space n_ @& n* and the natural
bilinear form on it. Then C! has the following generators and relations:

generators: ¥,, %, (a€ A_),
relations: {ﬂ/)a,@/fﬁ} = 50:,,3’ {wasd’ﬂ} = {¢;,¢E} =0.
We shall regard
U(g)RCl

as a superalgebra with even generators g > z = - zQ1 and odd generators 1, =

1®@Ya, V5 = 18y,
Define an odd element Q%* € U(g)®CI by

P =Y zabi-z Y Lvivs
a€A . a,B,yEA
Here z, is a (fixed) root vector of root « and ¢ 18 the structure constant. Then
by direct calculation one can check that [Q®, Q“] = 0, or equivalently,
(@)% =
We remark that the “st” suffix stands for “sta.nda.rd”, because @t is the differential

of the standard Lie algebra cohomology or homology.
Set

Q= QSt + D,
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where p is considered as an element of Cl C U(g)®Cl:

p= )Y p(Ta)¥s

acA_
Lemma 1. [p,p] = [Q%,p] = 0. Therefore [Q, Q] =0, or equivalently Q* = 0.

By Lemma 1 it follows that
(2d@)*=0
on U(g)®Cl. Hence we can consider (U(g)®Cl,ad Q) as a homology complex by
setting
degu=0 (u€U(g)),
degtpo =1, degyr=-1 (a€A_).
Then the corresponding homology
H.(U(g)®Clad Q) = @D Hi(U(s)2Cl, ad Q)
i€Z
inherits the graded superalgebra structure from U(g)®Cl.
Theorem 1 (Kostant [Ko], Kostant-Sternberg [KS], cf. [A3, Theorem 2.3.2]).
(1) Hizo(U(g)®Cl,ad Q) = 0.
(ii) The map
Z(g) — Ho(U(g)eCl,2d Q)
P - z®1
i8 an isomorphism of C-algebras.
2.3. Reduction Functor. Let A(n_) be the Grassmann algebra of n_. Then
A(n_) is naturally a module over Cl. Thus, for a g-module M,
C(M):=MA(n_)
is naturally a module over U(g)®C!. Thus, (C(M),Q) again has the structure of
homology complex. Let
H,(M) := H,(C(M), Q).
By definition (C(M), Q) is identical to the Chevalley complex for calculating the
Lie algebra homology H,(n-, MQC,). Hence
(2) Hy(M) = Hy(n_, M8C,).

On the other hand, the U(g)®Cl-module structure of C(M) induces a Z(g)-module
structure on H;(M), because Z(g) = Ho(U(g)®Cl,ad Q). Thérefore we have ob-
tained the following functor:
3) Hi(?): g-Mod — Z(g)-Mod

M —~ H(M).

Let O be the BGG category [BGG] of g. Let M()\) € O the Verma module of
highest weight A, L(\) € O the unique irreducible quotient of M(X). Then it is
known that the following are equivalent:

(i) The Gelfand-Kirillov dimension Dim L(A) of L() is maximal, i.e. Dim(L())) =
dimn_.

(i) L(A) = M(N),



100

(ili) A is anti-dominant, i.e. A(aV) g Nforall o € A,.
The following assertion was essentially proved by Kostant [Ko] (cf. [A3, Section
2)) |
Theorem 2.

(i) Hi;éo(M) =0 forall M € O.

C,yy, ¥ DimL(\) =dimn_,
0 #f Dim L(A\) < dimn_.
Here C,, = Z(g)/ Kervyx and v» : Z(g) — C is the central character defined as the
evaluation at M ().

(if) Ho(L(X)) = {

By Theorem 2 (i), the functor Ho(?) is exact. Moreover, by Theorem 2 (ii), one
can obtain each simple Z(g)-module as the image of the functor Hy(?).

Remark 1. More is known for the functor Hyp(?). According to Soergel [S] and
Backelin [Ba, it holds that

Homo(M, P) = Homz(g) (HQ(M), HO(P))
provided that P is projective in O (cf. [A3, Section 2]).

3. CHIRALIZATION OF THE CENTER

3.1. We now “chiralize” the construction of the previous section to define affine
W-algebras. To this end we “chiralize” the every data used for the cohomological
realization of Z(g) in Theorem 2. Thus

e g is replaced by the affine Lie algebra g = g®C|t,t~1]@ CK @ CD, were
K is the central element and D is the degree operator;

e n_ is replaced by its loop algebra In_ = n_QC[t,t~!] C §;

e Cl is replaced by the Clifford algebra Cl associated with Ln_ @ &(Ln_)*
and its natural symmetric bilinear form, where (Ln_)* is the graded dual
of Ln_. This algebra may be defined by the following generators and
relations: |

generators: Yo(n), ¥i(n) (a€A_,neZ),
relations:  {Ya(m), ¥3(n)} = 8a,80m+n,0,
{¥a(m), ¥s(n)} = {¢5(m), ¥5(n)} = 0;

e @ = @Q** + p is replaced by @ = QSt + p, where

~ 1
Q=D zal-kak) 5 D L s¥a(RepU)es(m),
"f?z“ :f:’lii;
ﬁ= Z p(.’l?a)'(/);(o),
a€EA

where z(k) = z®t* € 3.
By analogy with Theorem 1, we want to define the affine W-algebra W(g) as
“W(g) = Ho(U(8)eCl,,ad Q)"

But this does not make sense, for the appearance of the mﬁmte sum in the formula
of Q. Thus we need to make a suitable completion of U(g) ®Cl. We also specialize



the value of the central element K € g at a given complex number k € C. So let
Ux(8) = U(g)/(K — kid). The algebra Uy (§)®Cl is naturally graded:

Uk(8)®Cl = EP(Uk (8)&C1)a,

dez
where the grading is taken from the relation
(4) deg z(n) = deg Ya(n) = deg¥5(n) = n, deg1 = 0.

Give Ux(g) ®Cl the linear topology defined by the decreasing sequence where
In=PIN)a, @n)a= Y U@ECa—;Us@ECD;.

deZ , j2N

N

Let Ui (ﬁ)®5l be the corresponding completion:
Ux(8)®Cl = lim (Uk(§)®a/IN) .
N

e

Then @ is a well-defined element of the topological algebra Uy (ﬁ)@(?l, and one can
define

(5) Ho(Ux(8)Chad 0) = lim H, (Uk(a)®€l/IN, ad@) :
But .
(6) “Wi(g) = Ho(Ux(§)®Cl,2d Q) (k€ C)".

is still not a correct definition of W-algebra, because what is defined by (6) is a
topological algebra in the usual sense, but an affine W-algebra should be defined
as a vertex algebra. So what we actually mean by (6) is the following statement:

Theorem 3 ([A3, Theorem 3.11.1]). There is an isomorphism

P

UWi(g)) = Ho(Ux(3)®Cl,2d @),

where U(V) = @ ez U(V)q is the universal enveloping algebra of a vertez algebra
V' (in the sense of Frenkel and Zhu [FZ)).

N

Remark 2. The vanishing H;xo(Ux (8)®Cl, ad Q) = 0 also holds.

We will not define the W-algebra W (g) itself in this note. Instead, we take (6)
as its definition because a Wi (g)-module M is by definition a U(Wx(g, e))-module
(such that dimU(Wk(g,€))n - v < oo for all v € V and n > 0). But it should be
remarked that Theorem 3 follows from the corresponding statement for the vertex
algebra Wi(g) itself. This was proved for generic k by Feigin and Frenkel [FF2],
for a general k and g = sl,, by de Bore and Tjin [dBT?2] and for a general k and a
general g by Frenkel [FB].

Remark 3. The W-algebra Wi (g) considered here is not a simple vertex algebra in-

general.

Remark 4. If k # —hY, then Wi(g) has the structure of the vertex operator algebra
and has the central charge

c(k) = rank g — 12(x|p"[* = (p,p") + |p*/K), (k=K + hv)-
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Remark 5. It is known that W_,v(g) is commutative. This is one of the results of
Feigin-Frenkel [FF2].

To give a more precise relationship between Z(g) and Wk(g), let us introduce
the notion of Zhu algebra Zh(V') of a (graded) vertex algebra V.

Zh(V) :=U(V)o/D UWV)pU(V)p,

p>0
where ~ denotes the closure. By definition the following assertion is clear.

Theorem 4 (Zhu [Zhu]). There is a one-to-one correspondence between irreducible
V-modules and irreducible Zh(V')-modules.

For example, consider the universal affine vertex algebra Vj(g) associated with

g at level k. Then U(Vi(g)) = Uk(g) and we have Zh(Vi(g)) = U(g). This reflects
the fact that g (or more precisely Vi(g)) is a chiralization of g. Since Wi(g) is a
chiralization of Z(g), it is natural to expect the following assertion:

Theorem 5 ([A3, Theorem 3.13.2]). The Zhu algebra Zh(Wi(g) of Wk((g)) is
naturally isomorphic to Z(g).

By Theorems 4, 5, irreducible Wy (g)-modules are parameterized by the central
characters of Z(g). Let L(v) denote the irreducible Wj(g)-module corresponding
the central character v. Then L(v) is the quotient of the Verma module M(v) with
highest weight ~, which has the PBW type basis.

3.2. Asin the finite dimensional case we functionally obtain the Wi (g)-modules in
the following way: Let A% (Ln_) be the irreducible representation of Cl generated
by the vector 1 satisfying the following relations:

Ya(n)l=9Y5(n+1)1=0 (a€A_, n>0).
Denote by Oy the BGG category of § at level k. Then
C(M) := MRAT (Ln_)
with M € O is nat/tga/lly a module over Uy(g)®Cl, and its action extends to the

smooth action of Uy (§)®€z In particular the action of Cj is well-defined on 5(M ).
Thus the homology

(7) H.(M) := H,(C(M), Q)
well-defined and is naturally a module over Wy (g). Note that H;(M) is naturally
graded (cf. (4)):
®) B,(M) = @ BuM)..
: deC

If k is not critical then (8) is essentially the Lg-eigenspace decomposition. Set
ch Hi(M) =Y jec ¢° dim H;(M)4 whenever it is well-defined.

Remark 6. By definition we have H, (M) = Hgg 4 o(Ln_, M®C;), the Feigin’s semi-
infinite Ln_-homology with the coefficient in MQC; ([Fe]).

Let M (X) be the Vlarma module of § with highest weight X, E(S) the unique
simple quotient of M()).
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Theorem 6 ([A3]). For any k € C we have the following.
(i) z;go(M) =0 for all objects M of Oy.
(ii) Let \ be a weight of § at level k, X the classical part of p) (i.e. the restriction
ofx to b). Then

o~ L
Bo(E ) = {0 o
By Theorem 6 it follows that the functor
Hy(?) : O — Wi(g)-Mod

if Dim L(A\) = dimn_,
if Dim L()\) < dimn_.

is exact for any k € C. A
Write the formal character ch L(A) of L(A) as

chL(3) =) ms,ch M(B), (ms;€Z)
73

Then the following assertion follows from Theorem 6:
Theorem 7 ([A3]). ch Ho(Z(X)) = Y5 ms5 507® [Tino(L — g~%)~r2nks.

Recall that the integer m,) , is known by Kashiwara-Tanisaki-Cassian [KT1,
KT2, KT3, Ca] provided that k # —hY. Therefore by Theorems 6 and 7 we have
obtained the character formula of all the irreducible highest weight representations
of Wi (g) for any k € C\{-hV}.

Remark 7. It may be worth emphasizing that Theorems 6 and 7 remain valid even
at the critical level k = —hV, and the result for this case in particular implies
the Kac-Kazhdan conjecture [KK], which was proved by Hayashi [Ha] and others
[GW, FF1, Ku] by computational methods (see [A4] for details).

3.3. Frenkel-Kac-Wakimoto Conjecture. Note that our functor Hy (?) kills in-
tegrable representations of g. However there are a wider class of modular invari-
ant representations of @; they are called Kac-Wakimoto admissible representations
[KW1, KW2].
The simple module L(}) is called admissible if X is an admissible weight. An

admissible weight is a weight 2 that satisfies the following:

(1) X is regular dommant

(ii) the Q-span of AQN) :={a € A . Xa) € Z} = the Q-span of A, e,
The condition (i) 1mphes that the corresponding Kazhdan-Lusztig polynomial is
trivial. Therefore L(A) has the Weyl-Kac type character formula:

I = Y (-1)"chM(wod),
weW(x)
where W(X) is the integral Weyl group of §, generated by the reflections r, with
av € E(X)V The condition (ii) implies that W(}) is an infinite Coxeter group,
and ch Z(}) is written in terms of some theta functions ([(KW1, KW2}).
If the classical part A of an admissible weight ) is anti-dominant, then X is called

a non-degenerate admissible weight. Let P1'“°“"deg be the set of non-degenerate
admissible weight at level k.
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And as explained in Introduction, the conjecture of Frenkel, Kac and Wakimoto
[FKW] follows from Theorems 6 and 7:

Corollary 1 (Frenkel-Kac-Wakimoto Conjecture [FKW]). Let X be an non-degenerated
admissible weight of g, \ the classical part of \. Then

ch L(7A) = Z (_l)e(w)q(on)(D) H(l — q—i)—rankg'
weW(X) i>1
As explained in [FKW], from Corollary 1 it follows that the (modified) characters
of ’

{L(%»); A is the classical part of X € Prion—des)

are modular invariant, i.e. the linear space spanned by their (modified) characters
are invariant under the natural action of SLy(Z). In the case that g = sl, they are
exactly the minimal series representations of Vir.

4. GENERALIZATION TO OTHER NILPOTENT ORBITS

4.1. In the above construction we started with the principal nilpotent element of
g. However the above construction can be generalized to cases of other nilpotent
elements:

Let e be a nilpotent element which corresponds to a nice parabolic subalgebra
([BW]) of g. Then it is straightforward to generalize the previous construction to
e (cf. [dBT1, dBT2, KRW]). As a result, instead of Z(g), we obtain the finite
W-algebra Whn (g, e) [dBT1] associated with (g, e), which is the endmorphism ring
of the generalized Gelfand-Graev representation ([Kal, cf. [Pr, GG, BG]). The
corresponding affine W-algebra Wi (g, €) has Win(g, €) as its Zhu algebra (cf. [DK]).

We have the similar result as Theorems 6 and 7 for this case ([A5]); The difficulty
is that the representation theory of WH?(g, e) is not known very much in general,
except for the type A cases; Recently Brundan and Kleshchev [BK] established
important results on the representation theory of finite W-algebras for these cases.
Thanks to their result, for the type A cases one obtains the character formula for
each irreducible highest weight representations of Wk(g, e) (see [A5] for details).

If e does not corresponds to a nice parabolic subalgebra then the construction
of W-algebras becomes more involving. The most general construction was made
by Kac, Roan and Wakimoto [KRW], which applies to the Lie superalgebra case
also. One of the remarkable discoveries of Kac, Roan and Wakimoto [KRW] is that
almost all the superconformal algebras (such as N = 2, 3, 4 superconformal algebra)
appears as a W-algebra associated with some Lie superalgebra g and its minimal
nilpotent element. As principal nilpotent element cases, their representation the-
ory (such as characters of irreducible representations) can be completely described
through the reduction functor (see [A2] for details).
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