Stanley–Reisner rings with large multiplicities

佐賀大学・文化教育学部
寺井 直樹 (Naoki TERAI)
Department of Mathematics
Faculty of Culture and Education
Saga University

名古屋大学・大学院多元数理科学研究科
吉田 健一 (Ken-ichi YOSHIDA)
Graduate School of Mathematics
Nagoya University

1. INTRODUCTION

Throughout this report, let Δ be a simplicial complex on the vertex set $V = [n] := \{1, 2, \ldots, n\}$, that is, $\Delta \subseteq 2^V$ such that

(a) $\{i\} \in \Delta$ for all $i \in V$,
(b) $F \in \Delta, G \subseteq F \implies G \in \Delta$.

An element of Δ is called a face of Δ. For a face $F \in \Delta$, the dimension of F is defined by $\dim F = \#(F) - 1$, where $\#(F)$ denotes the cardinality of F. A face of dimension i is called an i-face. We also define the dimension of Δ by $\dim \Delta = \max \{\dim F : F \in \Delta\}$. A simplicial complex Δ is pure if all facets (maximal faces) have the same dimension.

Let k be a field of any characteristic. Let $S = k[X_1, \ldots, X_n]$ be a polynomial ring with n variables over k. We regard the ring S as a homogeneous k-algebra with $\deg X_i = 1$. For a simplicial complex Δ, the Stanley–Reisner ideal I_{Δ} is defined by

$$I_{\Delta} = (X_{i_1} \cdots X_{i_p} : 1 \leq i_1 < \cdots < i_p \leq n, \{i_1, \ldots, i_p\} \not\in \Delta)S.$$

The ring $k[\Delta] = S/I_{\Delta}$ is called the Stanley–Reisner ring of Δ. For example,

$$\Delta = \begin{array}{c}
2 \\
3 \\
1
\end{array} \quad k[\Delta] = \frac{k[X_1, X_2, X_3, X_4]}{(X_1X_4, X_2X_4, X_1X_2X_3)}$$

The Hilbert series of $k[\Delta]$ can be written as in the following form:

$$F(k[\Delta], \lambda) = \sum_{i \geq 0} \dim_k k[\Delta]_i \lambda^i = \frac{f_{-1} + f_0 \lambda}{1 - \lambda} + \frac{f_1 \lambda}{(1 - \lambda)^2} + \cdots + \frac{f_{d-1} \lambda^d}{(1 - \lambda)^d} = \frac{h_0 + h_1 \lambda + \cdots + h_d \lambda^d}{(1 - \lambda)^d},$$
where \(f_i = f_{i}(\Delta) \) denotes the number of \(i \)-faces of \(\Delta \) and \(f_{-1} = 1 \). Hence \(\dim k[\Delta] = d \) (the \textbf{Krull dimension}) and the \textbf{multiplicity} \(e(k[\Delta]) \) is equal to \(f_{d-1} \), the number of \((d - 1)\)-faces in \(\Delta \). In particular, \(e(k[\Delta]) \leq \binom{n}{d} \).

Let \(A = S/I \) be a homogeneous \(k \)-algebra with \(\dim A = d \) with the unique homogeneous maximal ideal \(\mathfrak{m} = (X_1, \ldots, X_n)S/I \) or a \(d \)-dimensional Noetherian local ring with the unique maximal ideal \(\mathfrak{m} \). Then the \(i \)th local cohomology module \(H^i_m(A) \) with support \(V(\mathfrak{m}) \) is defined by

\[
H^i_m(A) := \lim_{j} \Ext_{A}^{i}(A/\mathfrak{m}^{j}, A).
\]

Then it is well known that \(H^d_m(A) \neq 0 \). We also define the \textbf{depth} of \(A \) by

\[
\depth A = \min\{i \in \mathbb{Z}_{\geq 0} : H^i_m(A) \neq 0\}.
\]

By the above remark, we always have \(\depth A \leq \dim A \). If the equality holds, then \(A \) is said to be a \textbf{Cohen–Macaulay} ring. We say that \(A \) satisfies \textbf{Serre's condition} \((S_2)\) if \(\depth A_P \geq \min\{2, \dim A_P\} \) for all prime ideals \(P \) in \(A \). The Cohen–Macaulay property is very important notion in the theory of commutative algebra.

The purpose of this report is to give an answer to the following question with respect to Cohen–Macaulay property of Stanley–Reisner rings:

Question. Let \(\Delta \) be a \((d - 1)\)-dimensional simplicial complex on \(V = [n] \). If \(e(k[\Delta]) \) is sufficiently large (that is, \(e(k[\Delta]) \) is close to \(\binom{n}{d} \)), then is \(k[\Delta] \) Cohen–Macaulay?

Now let us observe the above question in some special cases. First we consider the case where \(e(k[\Delta]) = \binom{n}{d} \). Then \(\Delta \) is certainly Cohen–Macaulay. Indeed, we can characterize such a complex; see below. Recall that the \(i \)-\textbf{skeleton} of \(\Delta \) is defined by \(\Delta^{(i)} = \{F \in \Delta : \dim F \leq i\} \). It is also well known that \(\Delta^{(i)} \) is Cohen–Macaulay if so is \(\Delta \).

Proposition 1.1 ([5, Proposition 1.2]). Let \(\Delta \) be a \((d - 1)\)-dimensional simplicial complex on \(V \). Then the following conditions are equivalent:

\begin{enumerate}
 \item \(e(k[\Delta]) = \binom{n}{d} \).
 \item \(\indeg I_{\Delta} := \min\{i \in \mathbb{Z} : (I_{\Delta})_i \neq 0\} = d + 1 \).
 \item \(I_{\Delta} = (X_{i_1} \cdots X_{i_{d+1}} : 1 \leq i_1 < \cdots < i_{d+1} \leq n) \). That is, \(\Delta \) is the \((d - 1)\)-skeleton of the standard \((n - 1)\)-simplex \(2^V \).
\end{enumerate}

When this is the case, \(k[\Delta] \) is \textbf{Cohen–Macaulay}.

Next we consider the case of \(\dim \Delta = 1 \). Let \(\Delta \) be a 1-dimensional simplicial complex on \(V = [n] \), and put \(e = e(k[\Delta]) \). Then \(\Delta \) can be regarded as a simple graph having \(n \) points and \(e \) edges. \(k[\Delta] \) is also Cohen–Macaulay if and only if \(H_0(\Delta; k) = 0 \), that is, \(\Delta \) is connected. Thus, in this case, the above question says that

"If a graph has sufficiently many edges, then is it connected?"
Of course, this is true! To be precise, the graph is connected whenever \(e \geq \binom{n-1}{2} + 1 \). Similarly, any graph without isolated points is connected whenever \(e \geq \binom{n-2}{2} + 2 \).

The main result in this report is the following theorem, which generalizes the above observations.

Theorem 1.2 (See [3, 6, 7]). Let \(\Delta \) be a \((d-1)\)-dimensional simplicial complex on \(V \). Suppose that one of the following conditions is satisfied:

1. \(e(k[\Delta]) \geq \binom{n}{d} - (n-d) \);
2. \(e(k[\Delta]) \geq \binom{n}{d} - 2(n-d) + 1 \) and \(\Delta \) is pure;
3. \(e(k[\Delta]) \geq \binom{n}{d} - 3(n-d) + 2 \) and \(k[\Delta] \) satisfies Serre's condition \((S_2)\).

Then \(k[\Delta] \) is Cohen-Macaulay.

2. Sketch of the proof of the main result

In this section, we give a sketch of the proof of Theorem 1.2. We first recall some definitions and terminology which we need later. Throughout this section, let \(\Delta \) be a \((d-1)\)-dimensional simplicial complex on \(V = [n] \), unless otherwise specified. Let \(k[\Delta] = S/I_\Delta \) denote the Stanley-Reisner ring of \(\Delta \), where \(S = k[X_1, \ldots, X_n] \) is a homogeneous polynomial ring over a field \(k \), and put \(c = n-d \).

For a face \(F \) of \(\Delta \) and a subset \(W \subseteq V \), let us define several subcomplexes of \(\Delta \) as follows:

\[
\Delta_W = \{ G \in \Delta : G \subseteq W \},
\]

\[
\text{link}_\Delta F = \{ G \in \Delta : F \cup G \in \Delta, F \cap G = \emptyset \},
\]

\[
\text{star}_\Delta F = \{ G \in \Delta : F \cup G \in \Delta \}.
\]

These complexes are called the restriction to \(W \), the link of \(F \), and the star of \(F \), respectively.

Take a graded minimal free resolution of an arbitrary homogeneous ideal \(I \) \((0 \neq I \subseteq (X_1, \ldots, X_n)^2)\) over \(S \):

\[
0 \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0,j}(I)} \xrightarrow{\varphi_p} \cdots \xrightarrow{\varphi_1} \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{0,j}(I)} \xrightarrow{\varphi_0} I \rightarrow 0,
\]

where \(p = \text{pd}_S I \). In general, \(n-d-1 \leq p \), and the equality holds if and only if \(A := S/I \) is Cohen–Macaulay.

Let \(\mu(I) \) denote the minimal number of generators of \(I \), that is, \(\mu(I) = \sum \beta_{0,j}(I) \). Moreover,

\[
\text{indeg} I = \min \{ j \in \mathbb{Z} : \beta_{0,j}(I) \neq 0 \} = \min \{ j \in \mathbb{Z} : \beta_{1,j}(A) \neq 0 \},
\]

\[
\text{rt}(I) = \max \{ j \in \mathbb{Z} : \beta_{0,j}(I) \neq 0 \} = \max \{ j \in \mathbb{Z} : \beta_{1,j}(A) \neq 0 \},
\]

\[
\text{reg} I = \max \{ j-i \in \mathbb{Z} : \beta_{i,j}(I) \neq 0 \}
\]

are called the initial degree of \(I \), the relation type of \(I \) and the regularity of \(I \), respectively. By definition, it is easy to see that \(\text{reg} I \geq \text{indeg} I \). If
equality holds (and $\text{indeg } I = q$), then I (or A) has (q)-linear resolution. For a given integer $r \geq 0$, a homogeneous ideal I satisfies $(N_{q,r})$-condition if the graded minimal free resolution of I over S can be written as in the following shape:

$$\cdots \rightarrow \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{r,j}} \rightarrow S(-q-r+1)^{\beta_{r-1,1}} \rightarrow \cdots \rightarrow S(-q)^{\beta_{0}} \rightarrow I \rightarrow 0.$$

Note that I satisfies $(N_{q,r})$ for $r > \text{pd}_S I$ if and only if it has q-linear resolution. A homogeneous ideal I satisfies $(N_{*,r})$ if it satisfies $(N_{q,r})$ for some $q \geq 2$.

Let us recall Hochster's formula on the Betti numbers:

$$\beta_{i,j}(I_{\Delta}) = \sum_{W \subseteq V, \#(W) = j} \dim_k \tilde{H}_{i-j-2}(\Delta_W; k),$$

where $\tilde{H}_i(\Delta; k)$ (or simply $\tilde{H}_i(\Delta)$) denotes the ith reduced simplicial homology group with valued in k. By this formula we have

$$\text{reg } I_{\Delta} = \max \{ r \in \mathbb{Z} : \tilde{H}_r(\Delta_W) \neq 0 \text{ for some } W \subseteq V \} + 2.$$

In particular, $\text{reg } I_{\Delta} \leq d + 1$.

Now let us reduce Theorem 1.2 to its Alexander dual version. In the proof of Theorem 1.2, we may assume that $c \geq 2$. Moreover,

we suppose that $\text{indeg } I_{\Delta} = d$

for simplicity. Then the Alexander dual complex of Δ is defined by

$$\Delta^* = \{ F \in 2^V : V \setminus F \not\in \Delta \}.$$

This is a simplicial complex on the same vertex set V as that of Δ. For a subset $W = \{i_1, \ldots, i_p\}$ of V, if we put $P_W = (X_{i_1}, \ldots, X_{i_p})S$, then

$$I_{\Delta} = \bigcap_{F \text{ is a facet of } \Delta} P_{V \setminus F}$$

gives an irredundant primary decomposition of I_{Δ}. On the other hand, if we put $X^W = X_{i_1} \cdots X_{i_p}$, then we have

$$I_{\Delta^*} = (X^{V \setminus F} : F \text{ is a facet of } \Delta).$$

In particular,

1. $\text{indeg } I_{\Delta^*} = \text{height } I_{\Delta}$.
2. $\beta_{0,q^*}(I_{\Delta^*}) = e(k[\Delta]),$ where $q^* = \text{indeg } I_{\Delta^*}$.

Moreover, the following lemma plays a key role in our argument. The latter assertion has been proved in [2] by Eagon and Reiner, and was generalized by the first author and Yanagawa (see [8, Corollary 3.7]).

Lemma 2.1 ([2, 8]). Let Δ^* be the Alexander dual complex of Δ. For an integer $r \geq 2$, $k[\Delta]$ satisfies (S_r) if and only if I_{Δ^*} satisfies $(N_{r,r})$. In particular, $k[\Delta]$ is Cohen–Macaulay if and only if I_{Δ^*} has linear resolution.
Remark 2.2. When \(r = 1 \), \(\Delta \) is pure if and only if \(I_{\Delta^*} \) satisfies \((N_{*,1})\), that is, \(\text{indeg } I_{\Delta^*} = \text{rt}(I_{\Delta^*}) \).

Let \(\Delta^* \) be the Alexander dual complex of \(\Delta \). Then
\[
\dim k[\Delta^*] = n - \text{height } k[\Delta^*] = n - \text{indeg } k[\Delta] = n - d = c.
\]
Furthermore, \(k[\Delta] \) satisfies \((S_2)\) (resp. \(\Delta \) is pure) if and only if \(k[\Delta^*] \) satisfies \((N_{c,2})\) (resp. \((N_{c,1})\)) by Lemma 2.1 and Remark 2.2. When this is the case, since \(I_{\Delta^*} \) is generated by elements of degree \(c \), we have
\[
e(k[\Delta]) = \beta_{0,c}(I_{\Delta^*}) = \mu(I_{\Delta^*}) = \binom{n}{c} - f_{c-1}(\Delta^*).
\]
Hence
\[
e(k[\Delta]) \geq \binom{n}{c} - m \iff e(k[\Delta]) = f_{c-1}(\Delta^*) \leq m.
\]

From these observations we have:

Theorem 2.3 (Alexander dual version of Theorem 1.2). Suppose that one of the following conditions holds:

1. \(e(k[\Delta]) \leq d \);
2. \(e(k[\Delta]) \leq 2d - 1 \) and \(\text{rt}(I_\Delta) = \text{indeg } I_\Delta = d \);
3. \(e(k[\Delta]) \leq 3d - 2 \) and \(I_\Delta \) satisfies \((N_{d,2})\).

Then \(I_\Delta \) has \(d \)-linear resolution.

In fact, we could prove the following more general assertion:

Theorem 2.4. Suppose that one of the following conditions holds:

1. \(e(k[\Delta]) \leq d \);
2. \(e(k[\Delta]) \leq 2d - 1 \) and \(\beta_{0,d+1}(I_\Delta) = 0 \);
3. \(e(k[\Delta]) \leq 3d - 2 \) and \(\beta_{1,d+2}(I_\Delta) = 0 \).

Then \(\text{reg } I_\Delta \leq d \), that is, \(\tilde{H}_{d-1}(\Delta) = 0 \).

We divide the proof into three cases.

Lemma 2.5. If \(e(k[\Delta]) \leq d \), then \(\tilde{H}_{d-1}(\Delta) = 0 \).

Proof (see [6]). Assume that there exists a complex \(\Delta \) such that \(e(k[\Delta]) \leq d \), \(\tilde{H}_{d-1}(\Delta) \neq 0 \) and \(\dim \Delta = d - 1 \). Take one \(\Delta \) whose multiplicity is minimal among the multiplicities of those complexes. Choose any \((d - 1)\)-facet \(F \) of \(\Delta \). Then \(F \) contains just \(d \) subfacets of \(\Delta \); say \(G_1, \ldots, G_d \). Then \(G_i \) is not a free face. That is, \(G_i \) is contained in at least two facets of \(\Delta \). Indeed, if \(G = G_i \) is a free face of \(\Delta \), then the simplicial complex \(\Delta' := \Delta \setminus \{F, G\} \) is homotopy equivalent to \(\Delta \) and thus \(\tilde{H}_{d-1}(\Delta') \cong \tilde{H}_{d-1}(\Delta) \neq 0 \). This contradicts the minimality of \(e(k[\Delta]) \) since \(e(k[\Delta']) < e(k[\Delta]) \).

Thus for each \(i \in V \) there exists a \((d - 1)\)-facet \(F_i \) of \(\Delta \) such that \(G_i \subseteq F_i \neq F \). In particular, \(F_1, \ldots, F_d, F \) are \((d + 1)\) distinct facets of \(\Delta \). This is a contradiction. \(\square \)
Remark 2.6. We have an “algebraic proof” of Lemma 2.5. Namely, we can show that if \(A \) is an \(\mathbf{F} \)-pure homogeneous \(k \)-algebra with \(e(A) \leq d \) then \(a(A) < 0 \). We can also give a direct proof of Theorem 1.2(1) without Alexander dual complexes.

Theorem 2.4(2) follows from the following lemma. Note that \(\text{rt}(I_\Delta) \leq d \) if and only if \(\beta_{0,d+1}(I_\Delta) = 0 \).

Lemma 2.7. If \(e(k[\Delta]) \leq 2d - 1 \) and \(\text{rt}(I_\Delta) \leq d \), then \(\tilde{H}_{d-1}(\Delta) = 0 \).

Proof (see [6]). Put \(e = e(k[\Delta]) \). Let \(\Delta' \) be the subcomplex that is spanned by all facets of dimension \(d - 1 \). Replacing \(\Delta \) with \(\Delta' \), we may assume that \(\Delta \) is pure.

We use induction on \(d = \text{dim } k[\Delta] \geq 2 \). First suppose \(d = 2 \). The assumption shows that \(\Delta \) does not contain the boundary complex of a triangle. Hence \(\overline{H}_1(\Delta) = 0 \) since \(e(k[\Delta]) \leq 3 \).

Next suppose that \(d \geq 3 \), and that the assertion holds for any complex the dimension of which is less than \(d - 1 \). Assume that \(\Delta \) is a \((d-1) \)-dimensional pure complex with \(\text{rt}(I_\Delta) \leq d \), \(e(k[\Delta]) \leq 2d - 1 \) and \(\tilde{H}_{d-1}(\Delta) \neq 0 \). Take one \(\Delta \) whose multiplicity is minimal among the multiplicities of those complexes. Then \(\Delta \) does not contain any free face by a similar argument as in the proof of the above lemma.

First consider the case of \(\text{rt}(I_\Delta) = d \). Take a generator \(X_1 \cdots X_d \) of \(I_\Delta \).

Then since each \(G_j = \{1, \ldots, \hat{j}, \ldots, d\} \in \Delta \) is contained in at least two facets, \(e(k[\Delta]) \geq 2d \). This is a contradiction.

Next we consider the case of \(\text{rt}(I_\Delta) < d \). Let \(V = [n] \) be the vertex set of \(\Delta \).

Take the Mayer–Vietoris sequence with respect to \(\Delta = \Delta_{V \setminus \{n\}} \cup \text{star}_\Delta \{n\} \) as follows:

\[
0 = \tilde{H}_{d-1}(\Delta_{V \setminus \{n\}}) \oplus \tilde{H}_{d-1}(\text{star}_\Delta \{n\}) \longrightarrow \tilde{H}_{d-1}(\Delta) \longrightarrow \tilde{H}_{d-2}(\text{link}_\Delta \{n\}),
\]

where the vanishing in the left-hand side follows from the minimality of \(e(k[\Delta]) \) since \(e(k[\Delta_{V \setminus \{n\}}]) < e(k[\Delta]) \). Hence \(\tilde{H}_{d-1}(\Delta) \cong \tilde{H}_{d-2}(\text{link}_\Delta \{n\}) \neq 0 \).

Set \(\Delta' = \text{link}_\Delta \{n\} \). Then \(\Delta' \) is a complex on \(V \setminus \{n\} \) such that \(\dim k[\Delta'] = d - 1 \) and \(\text{rt}(k[\Delta']) \leq \text{rt}(k[\Delta]) \leq d - 1 \). One can also easily see \(e(k[\Delta_{V \setminus \{n\}}]) \geq 2 \), which implies that \(e(k[\Delta']) \leq 2d - 3 \). Hence \(\tilde{H}_{d-2}(\Delta') = 0 \) by induction hypothesis. This is a contradiction.

When \(\Delta \) is pure, we have the following refinement of Lemma 2.5.

Corollary 2.8. Suppose that \(\Delta \) is pure and \(d \geq 2 \). If \(e(k[\Delta]) \leq d + 1 \), then \(\tilde{H}_{d-1}(\Delta) = 0 \).

Proof. First we prove that \(\text{rt}(I_\Delta) \leq d \). Suppose not. Since \(\text{rt}(I_\Delta) = d + 1 \), we may assume that \(X_1 \cdots X_{d+1} \) is a generator of \(I_\Delta \). Then \(F_i = \{1, \ldots, \hat{i}, \ldots, d + 1\} \) is a \((d - 1) \)-facet of \(\Delta \) for all \(i = 1, \ldots, d + 1 \). Since \(n = d + c \geq d + 2 \), there exists a facet of \(\Delta \) which contains \(\{d + 2\} \). Hence \(e(k[\Delta]) \geq d + 2 \), which is a contradiction. Therefore \(\text{rt}(I_\Delta) \leq d \). Since \(e(k[\Delta]) \leq d + 1 \leq 2d - 1 \), we have \(\tilde{H}_{d-1}(\Delta) = 0 \) by Lemma 2.7.
Our proof in [7] of the following assertion is rather complicated. So we omit the proof and give only its sketch here.

Lemma 2.9. If $e(k[\Delta]) \leq 3d - 2$ and $\beta_{1,d+2}(I_\Delta) = 0$, then $\tilde{H}_{d-1}(\Delta) = 0$.

Proof. We use an induction on $d = \dim \Delta + 1$. When $d = 2$, the assertion easily follows from Hochster's formula on Betti numbers. Suppose $d \geq 3$, and that the assertion of the lemma holds for any complex the dimension of which is less than $d - 1$. Assume that there exists a $(d - 1)$-dimensional complex Δ such that $e(k[\Delta]) \leq 3d - 2$, $\beta_{1,d+2}(I_\Delta) = 0$ and $\tilde{H}_{d-1}(\Delta) \neq 0$. Take one Δ whose multiplicity is minimal among the multiplicities of those complexes. Put $e = e(k[\Delta]) \geq 2$. If necessary, we may assume that Δ is pure. Then the minimality of the multiplicity implies that Δ does not contain any free face. The assumption $\beta_{1,d+2}(I_\Delta) = 0$ also implies that $rt(k[\Delta]) \leq d$. We first show the following claim:

Claim 1. Suppose that the following conditions are satisfied:

1. Δ is pure;
2. $rt(I_\Delta) = d$;
3. Δ does not have any free face;
4. $\beta_{2,d+2}(k[\Delta]) = 0$.

Then $e(k[\Delta]) \geq 3d - 1$.

To see the claim, we may assume that $X_1 \cdots X_d$ is a generator of I_Δ without loss of generality. Put $F := \{1, 2, \ldots, d\} \in 2^V \setminus \Delta$ and $G_i = \{1, \ldots, i, \ldots, d\}$ for each $i = 1, 2, \ldots, d$. Since Δ has no free face, there exist $2d$ facets of Δ whose form are $G_i \cup \{j\}$ for some $j \in V \setminus F$. In particular, if we set

$$U := \{j \in V \setminus F : \exists G \subseteq F \text{ such that } #(G) = d - 1, \ G \cup \{j\} \in \Delta\},$$

then $#(U) \geq 2$. Note that there exist no subsets $\{j_1, j_2\} \subseteq U$ for which the following conditions hold: both $G_i \cup \{j_1\}$ and $G_i \cup \{j_2\}$ are facets of Δ for all $i = 1, 2, \ldots, d$. In fact, we suppose that the assertion does not hold. Namely, there exists a subset $\{j_1, j_2\}$ of U for which both $G_i \cup \{j_1\}$ and $G_i \cup \{j_2\}$ are facets of Δ for all $i = 1, 2, \ldots, d$. Set $W = F \cup \{j_1, j_2\}$. Then $\tilde{H}_{d-1}(\Delta_W) = 0$ since $#(W) = d + 2$ and $\beta_{1,d+2}(I_\Delta) = 0$. Let Δ_1 be a subcomplex of Δ_W spanned by $H \cup \{j_1\}$, $H \cup \{j_2\}$ where $H \in 2^F \setminus \{F\}$, that is, $\Delta_1 = (2^F \setminus \{F\}) \ast (2^{\{j_1,j_2\}} \setminus \{j_1, j_2\})$. Let Δ_2 be a subcomplex of Δ_W spanned by all facets of Δ_W that contains $\{j_1, j_2\}$. Then $\Delta_W = \Delta_1 \cup \Delta_2$ and dim($\Delta_1 \cap \Delta_2$) $\leq d - 2$. Applying Mayer–Vietoris sequence to Δ_W, we get

$$0 = \tilde{H}_{d-1}(\Delta_1 \cap \Delta_2) \rightarrow \tilde{H}_{d-1}(\Delta_1) \oplus \tilde{H}_{d-1}(\Delta_2) \rightarrow \tilde{H}_{d-1}(\Delta_W) \rightarrow \cdots$$

On the other hand, $\tilde{H}_{d-1}(\Delta_1) \cong \tilde{H}_{d-2}(2^F \setminus \{F\}) \cong \tilde{H}_{d-2}(S^{d-2}) \cong k \neq 0$. This implies that $\tilde{H}_{d-1}(\Delta_W) \neq 0$. This is a contradiction.

By the above discussion we can choose $j \in U$ ($d - 1 \leq j \leq n$) and $\ell(1 \leq \ell \leq d - 1)$ such that

$$F_{p} := \{1, 2, \ldots, \widehat{p}, \ldots, \ell, \ldots, d, j\} \in \Delta \text{ for all } p = 1, 2, \ldots, \ell,$$
$$G_{q} := \{1, 2, \ldots, \ell, \ldots, \widehat{q}, \ldots, d, j\} \notin \Delta \text{ for all } q = \ell + 1, \ldots, d.$$
Now let us consider the following subfacets of Δ:

$$H_{p,q} := \{1, \ldots, \hat{p}, \ldots, \ell, \ell + 1, \ldots, \hat{q}, \ldots, d, j\} \quad (1 \leq p \leq \ell, \ell + 1 \leq q \leq d).$$

Since Δ has no free face, $H_{p,q}$ is contained in at least two facets of Δ, but one of those facets cannot be written as in the form $G \cup \{j\}$ where $G \subseteq F$.

Counting the number of facets of Δ, we get

$$e(k[\Delta]) \geq 2d + \ell(d - \ell) \geq 2d + (d - 1) = 3d - 1,$$

as required.

Next, we must show the following claim:

Claim 2. Suppose that $d \geq 3$, $c \geq 3$. Suppose that the following conditions are satisfied:

1. Δ is pure.
2. $rt(I_{\Delta}) \leq d - 1$;
3. Δ does not have any free face;
4. There exists $y \in V$ such that $\beta_{2,d+1}(k[\text{link}_{\Delta}(y)]) \neq 0$;
5. $\tilde{H}_{d-2}(\text{link}_{\Delta}(x)) \neq 0$ holds for all $x \in V$.

Then $e(k[\Delta]) \geq 3d - 1$.

We omit a proof of the above claim here because it is technical and long.

Now let us return to the proof of the lemma. By Claim 1, we may assume that $rt(I_{\Delta}) < d$. Furthermore, we may assume that $d \geq 3$, $c \geq 3$ and $e \geq 2d$.

Let us check the conditions in Claim 2.

Claim 3. $\tilde{H}_{d-2}(\text{link}_{\Delta}(x)) \neq 0$ holds for all $x \in V$.

Fix $x \in V$. We have $\tilde{H}_{d-1}(\Delta_{V\setminus\{x\}}) = 0$ by the minimality of $e(k[\Delta])$ and the purity of Δ. Then the assertion follows from the Mayer–Vietoris sequence to $\Delta = \text{star}_{\Delta}\{x\} \cup \Delta_{V\setminus\{x\}}$.

Claim 4. There exists a vertex $y \in V$ such that $e(k[\Delta_{V\setminus\{y\}}]) \geq 3$.

Now suppose that $e(k[\Delta_{V\setminus\{x\}}]) \leq 2$ for all $x \in V$. Then at least $(e - 2)$ facets of Δ contains x. Counting the number of vertices which is contained in some facets, we obtain that $ed = e(k[\Delta]) \times d \geq n(e(k[\Delta]) - 2) = (c + d)(e - 2)$.

Hence $2(c + d) \geq ce \geq 2cd$, that is, $(c - 1)(d - 1) \leq 1$. This contradicts the assumption that $c \geq 3$ and $d \geq 3$.

Take a vertex $y \in V$ as in Claim 4 and put $\Gamma = \text{link}_{\Delta}(y)$. Since

$$e(k[\Gamma]) = e(k[\text{star}_{\Delta}(y)]) = e(k[\Delta]) - e(k[\Delta_{V\setminus\{y\}}]) \leq 3(d - 1) - 2,$$

if $\beta_{2,d+1}(k[\Gamma]) = 0$, then $\tilde{H}_{d-2}(\Gamma) = 0$ by the induction hypothesis. But this contradicts Claim 3. Hence $\beta_{2,d+1}(k[\Gamma]) \neq 0$. Therefore $e(k[\Delta]) \geq 3d - 1$ by Claim 2 and the lemma is proved.

3. Examples

We construct some examples of simplicial complexes which satisfy Theorem 1.2 or 2.3.
Example 3.1. Put $F_{i,j} = \{1, 2, \ldots, \hat{i}, \ldots, d, j\}$ for each $i = 1, \ldots, d; j = d + 1, \ldots, n$. For a given integer e with $1 \leq e \leq cd$, we choose e faces (say, F_1, \ldots, F_e) from $\{F_{i,j} : 1 \leq i \leq d, d + 1 \leq j \leq n\}$, which is a set of the facets of the simplicial join of $2^{[d]} \setminus \{[d]\}$ and c points.

Let Δ be the simplicial complex spanned by F_1, \ldots, F_e and all elements of $\binom{[n]}{d-1}$. Then $k[\Delta]$ is a d-dimensional Stanley–Reisner ring with $\operatorname{indeg} I_{\Delta} = \operatorname{rt}(I_{\Delta}) = d$ and $e(k[\Delta]) = e$.

In particular, when $e \leq 2d - 1$, $k[\Delta]$ has d-linear resolution by Theorem 2.3. Thus their Alexander dual complexes provide examples satisfying the hypothesis of Theorem 1.2.

The following example shows that the assumption $e(k[\Delta]) \leq 2d - 1$ is optimal in Theorem 2.3(2).

Example 3.2. There exists a complex Δ on $V = [n]$ for which $k[\Delta]$ does not have d-linear resolution with $\dim k[\Delta] = \operatorname{indeg} I_{\Delta} = \operatorname{rt}(I_{\Delta}) = d$ and $e(k[\Delta]) = 2d$.

In fact, let Δ_0 be a complex on $V_0 = [d+2]$ such that $k[\Delta_0]$ is a complete intersection defined by $(X_1 \cdots X_d, X_{d+1}X_{d+2})$. Let Δ be a complex on V such that

$$I_{\Delta} = (X_1 \cdots X_d)S + (X_{i_1} \cdots X_{i_{d-2}}X_{d+1}X_{d+2} : 1 \leq i_1 < \cdots < i_{d-2} \leq d)S
+ (X_{i_1} \cdots X_{j_d} : 1 \leq j_1 < \cdots < j_d \leq n, j_d \geq d+3)S.$$

Then $\tilde{H}_{d-1}(\Delta) \cong \tilde{H}_{d-1}(\Delta_0) \neq 0$ since $a(k[\Delta_0]) = 0$. Hence $k[\Delta]$ does not have d-linear resolution.

Remark 3.3. The case $n = d + 2$ in the above example is also obtained by considering the case $c = 2, e = 2d$ in Example 3.1.

The simplicial complex Δ_0 can be also characterized as a pure complex with Δ such that $e(k[\Delta]) = 2d, \operatorname{rt}(I_{\Delta}) = d$ and $\tilde{H}_{d-1}(\Delta) \neq 0$.

In fact, if Δ is such a complex, then Δ has no free faces. Let $X_1 \cdots X_d$ be a generator of I_{Δ} and put $G_i = \{1, \ldots, \hat{i}, \ldots, d\}$ for each $i = 1, \ldots, d$. Since G_i is not a free face, there exist two distinct points $p_i, p_i' \in V$ such that $F_i := G_i \cup \{p_i\}, F'_i := G_i \cup \{p'_i\}$ are facets of Δ. Then $\{F_i, F'_i : i = 1, \ldots, d\}$ becomes the set of all facets of Δ. Since $F_i \setminus \{i\}$ is also not a free face, it is contained in some facet in Δ except F_1. But such a facet must be either F_1 or F'_1. Consequently, we may assume that $p_i = p_1$ and $p'_i = p'_1$ for all $i = 1, \ldots, d$.

Then one can easily see that $\Delta = (2^{[d]} \setminus \{[d]\}) * (2^{[p,q]} \setminus \{p, q\})$ by the purity of Δ and $e(k[\Delta]) = 2d$. In other words, $k[\Delta]$ is a complete intersection of type $(d, 2)$: $k[\Delta] \cong k[X_1, \ldots, X_d, Y_1, Y_2]/(X_1 \cdots X_d, Y_1Y_2)$.

Using the boundary complex of a stacked d-polytope, let us construct an example which shows the condition $e(k[\Delta]) \leq 3d - 2$ is optimal in Theorem 2.4.
Example 3.4. Let d, n be integers with $d \geq 2$ and $c = n - d \geq 3$. Let Δ_0 be a simplicial complex on $V_0 = [d + 3]$ spanned by the following d-subsets of V:
\[
\{1, 2, \ldots, i, d, d + 1\}, \quad i = 2, 3, \ldots, d; \\
\{1, \ldots, i, d, d + 2\}, \quad i = 1, 2, \ldots, d; \\
\{2, \ldots, i, d + 1, d + 3\}, \quad i = 2, 3, \ldots, d + 1.
\]

Let Δ_1 be a complex defined by $\Delta_1 = \Delta_0 \cup \{d + 4, \ldots, \{n\}\}$ (Its geometric realization $|\Delta_1|$ is a disjoint union of $|\Delta_0|$ and $(n - d - 3)$ isolated points.). Then Δ_1 is a $(d - 1)$-dimensional simplicial complex on $V = [n]$ and $e(k[\Delta_1]) = e(k[\Delta_0]) = 3d - 1$.

Note that Δ_0 can be regarded as the boundary complex of a stacked d-polytope with $d + 3$ vertices. Thus the graded minimal free resolution of $k[\Delta_0]$ can be written as in the following shape ([4]):
\[
\begin{align*}
0 & \rightarrow S(-d - 3) \rightarrow S(-3)^{\beta_{2,3}} \oplus S(-d - 1)^{\beta_{2,d+1}} \\
& \quad \rightarrow S(-2)^{\beta_{1,2}} \oplus S(-d)^{\beta_{1,d}} \rightarrow S \rightarrow k[\Delta_0] \rightarrow 0.
\end{align*}
\]
In particular, $\beta_{2,d+2}(k[\Delta_1]) = \beta_{2,d+2}(k[\Delta_0]) = 0$, but $\text{reg } k[\Delta_1] = \text{reg } k[\Delta_0] = d$.

Let Δ be the simplicial complex spanned by all facets of Δ_1 and all $(d - 1)$-subsets of V. Then $k[\Delta]$ satisfies $(N_{d,2})$ and $e(k[\Delta]) = 3d - 1$, but does not have linear resolution. See also Theorem 2.4.

Using the Alexander dual complex of Δ, one can find a $(d - 1)$-dimensional simplicial complex Γ which satisfies (S_2) and $e(k[\Gamma]) = \binom{n}{d} - 3(n - d) + 1$, but it is not Cohen–Macaulay for given integers $d \geq 3$ and $n - d \geq 3$.

The next example shows that it is not enough to assume "pure and connected in codimension 1" instead of (S_2) in Theorem 1.2.

Example 3.5. Let $\Delta = (2^{[4]} \setminus \{4\}) \cup \text{Span}\{\{1, 2, 5\}, \{3, 4, 5\}\}$ be a simplicial complex on $V = [5]$. Then $\dim k[\Delta] = 3$, $e(k[\Delta]) = \binom{5}{3} - 3(5 - 3) + 2 = 6$. Moreover, $k[\Delta]$ is pure and connected in codimension 1, but not (S_2).

Proof. Since $\text{link}_\Delta(5)$ is spanned by $\{1, 2\}$ and $\{3, 4\}$, it is disconnected. Hence $k[\Delta]$ does not satisfy (S_2).

If we put $F_1 = \{1, 2, 5\}$, $F_2 = \{1, 2, 4\}$, $F_3 = \{1, 2, 3\}$, $F_4 = \{2, 3, 4\}$, $F_5 = \{1, 3, 4\}$ and $F_6 = \{3, 4, 5\}$, then $\{F_1, \ldots, F_6\}$ is the set of all facets of Δ such that $\dim F_i \cap F_{i-1} = \dim \Delta - 1 = 1$. Hence Δ is pure and connected in codimension 1.

\[\square\]

References

