Circular Codes and Petri Nets

Genjiro Tanaka

Dept. of Computer Science, Shizuoka Institute of Science and Technology,
Fukuroi-shi, 437-8555 Japan

Abstract

The purpose of this paper is to investigate the relationship between limited codes and Petri nets. For a given Petri net with an initial marking \(\mu \), we can naturally define an automaton \(A \) which has the initial marking \(\mu \) as an initial state, the reachability set \(\text{Re}(\mu) \) as a set of states, and the set of transitions as a set of inputs. We can define prefix codes by considering the set of firing sequences which arrive from the positive initial marking of a Petri net to a certain subset of the reachability set [10,12]. The set \(M \) of all positive firing sequences which start from the positive initial marking \(\mu \) of a Petri net and reach \(\mu \) itself forms a pure monoid. Our main interest is in the base \(D \) of \(M \). The family of pure monoids contains the family of very pure monoids, and the base of a very pure monoid is a circular code. Therefore, we can expect that \(D \) may be a circular code. Here, for "small" Petri nets, we discuss under what conditions \(D \) is circular.

Key words: Petri net, Code, Prefix code, Circular code, Limited code.

1. Introduction

Let \(A \) be an alphabet, \(A^* \) the free monoid over \(A \), and \(1 \) the empty word. A word \(v \in A^* \) is a left factor of a word \(u \in A^* \) if there is a word \(w \in A^* \) such that \(u = vw \). The left factor \(v \) of \(u \) is called proper if \(v \neq u \). A right factor and a proper right factor of a word are defined in a symmetric manner.

For a word \(w \in A^* \) and a letter \(x \in A \) we let \(|w|_x \) denote the number of \(x \) in \(w \). The length of \(w \) is the number of letters in \(w \). A non-empty subset \(C \) of \(A^+ \) is said to be a code if for \(x_1, \ldots, x_p, y_1, \ldots, y_q \in C, p, q \geq 1, \)

\[
x_1 \cdots x_p = y_1 \cdots y_q \text{ implies } p=q \text{ and } x_1 = y_1, \ldots, x_p = y_p.
\]

A subset \(M \) of \(A^* \) is a submonoid of \(A^* \) if \(M^2 \subseteq M \) and \(1 \in M \). Every submonoid \(M \) of a free monoid has a unique minimal set of generators

\[
C = (M - \{1\}) - (M - \{1\})^2.
\]

\(C \) is called the base of \(M \).

This is the abstract and the details will be published elsewhere.
A submonoid M is right unitary in A^* if for all $u, v \in A^*$,
\[u, uv \in M \implies v \in M. \]

M is called left unitary in A^* if it satisfies the dual condition. A submonoid M is biunitary if it is both left and right unitary.

Definition 1.1. Let M be a submonoid of a free monoid A^*, and C its base. If $CA^* \cap C = \emptyset$ (resp. $A^*C \cap C = \emptyset$), then C is called a prefix (resp. suffix) code over A. C is called a bifix code if it is a prefix and suffix code.

A submonoid M of A^* is right unitary (resp. biunitary) if and only if its minimal set of generator is a prefix code (bifix code) ([1, p.46]).

Definition 1.2. A Petri net is a 5-tuple, $PN = (P, A, F, W, \mu_0)$ where:
- $P = \{p_1, p_2, \ldots, p_m\}$ is a finite set of places,
- $A = \{t_1, t_2, \ldots, t_n\}$ is a finite set of transitions,
- $F \subseteq (P \times A) \cup (A \times P)$ is a set of arcs,
- $W : F \rightarrow \{1, 2, \ldots\}$ is a weight function,
- $\mu_0 : P \rightarrow \{0, 1, 2, \ldots\}$ is the initial marking,
- $P \cap A = \emptyset$ and $P \cup A \neq \emptyset$.

We use the following notations for a pre-set and a post-set:
\[t = \{p | (p, t) \in F\}, \quad t^{-} = \{p | (t, p) \in F\}, \]

In this paper we shall assume that a Petri net has no isolated transitions, i.e., no t such that $t \cup t^{-} = \emptyset$. A marking μ_0 can be represented by a vector:
\[\mu_0 = (\mu_0(p_1), \mu_0(p_2), \ldots, \mu_0(p_n)), \quad p_i \in P, \quad n = |P|. \]

For every $t \in A$ the vector Δt is defined by
\[\Delta t = (\Delta t(p_1), \Delta t(p_2), \ldots, \Delta t(p_n)), \quad n = |P|, \]

where
\[\Delta t(p) = \begin{cases}
-W(p, t) + W(t, p) & \text{if } p \in t \cap t^{-}, \\
-W(p, t) & \text{if } p \in t - t^{-}, \\
W(t, p) & \text{if } p \in t - t^{-}, \\
0 & \text{if } p \notin t \cup t^{-}.
\end{cases} \]

A transition $t \in A$ is said to be enabled in μ_0, if $W(p, t) \leq \mu_0(p)$ for all $p \in t$. A firing of an enabled transition t removes $W(p_1, t)$ tokens from each input place $p_1 \in t$, and adds $W(t, p_2)$ tokens to each output place $p_2 \in t$. Firing of an enabled transition t at μ_0 produces a new
marking μ_1 such that

$$
\mu_1(p) = \begin{cases}
\mu_0(p) - W(p, t) & \text{if } p \in t - t, \\
\mu_0(p) + W(t, p) & \text{if } p \in t \cdot t, \\
\mu_0(p) - W(p, t) + W(t, p) & \text{if } p \in t \cdot t, \\
\mu_0(p) & \text{otherwise.}
\end{cases}
$$

If we obtain the marking μ' that results from a firing of t at μ, we write $\delta(\mu, t) = \mu'$. A word $w = t_1t_2\ldots t_r, (t_i \in A)$, of transitions is said to be a (firing) sequence from μ_0 if there exist markings $\mu_i, 1 \leq i \leq r$, such that $\delta(\mu_{i-1}, t_i) = \mu_i$ for all $i, (1 \leq i \leq r)$. In this case, μ_r is reachable from μ_0 by w and we write $\delta(\mu_0, w) = \mu_r$. The set of all possible markings reachable from μ_0 is denoted by $Re(\mu_0)$, and the set of all possible sequences from μ_0 is denoted by $Seq(\mu_0)$.

The function $\delta : Re(\mu_0) \times T \rightarrow Re(\mu_0)$ is called a next-state function of a Petri net PN. We note that the above condition for $r = 0$ is understood to be $\mu_0 \in Re(\mu_0)$.

A marking μ is said to be positive if $\mu(p) > 0$ for all $p \in P$. A sequence $t_1t_2\ldots t_n \in Seq(\mu_0)$, $(t_i \in T)$, is called a positive sequence from μ_0 if $\delta(\mu_0, t_1t_2\ldots t_i)$ is positive for all $i, (1 \leq i \leq n)$. The set of all positive sequences from μ_0 is denoted by $PSeq(\mu_0)$.

By $PRe(\mu_0)$ we denote the set of all positive markings reachable from μ_0; $PRe(\mu_0) = \{\delta(\mu_0, w) | w \in PSeq(\mu_0)\}$.

2. Some codes related to Petri nets

For a Petri net $PN = (P, T, F, W, \mu_0)$ and a subset $X \subseteq Re(\mu_0)$ we can define a deterministic automaton $A(PN)$ as follows: $Re(\mu_0), T, \delta : Re(\mu_0) \times T \rightarrow Re(\mu_0), \mu_0$, and X, are regarded as a state set, an input set, a next-state function, an initial state, and a final set of $A(PN)$, respectively. By using such automata, in [10,12] we defined four kinds of prefix codes and examined fundamental properties of these codes.

Let $PN = (P, A, F, W, \mu)$ be a Petri net. The set

$$
Stab(PN) = \{w | w \in Seq(\mu) \text{ and } \delta(\mu, w) = \mu\}
$$

forms a submonoid of A^*. If $Stab(PN) \neq \{1\}$, then we denote the base of $Stab(PN)$ by $S(PN)$. Since $S(PN)A^+ \cap S(PN) = \emptyset$, $S(PN)$ is a prefix code over A.

A submonoid M of A^* is called pure [7] if for all $x \in A^*$ and $n \geq 1$,

$$
x^n \in M \implies x \in M.
$$

A subsemigroup H of a semigroup S is extractable in S [9, p.191] if

$$
x, y \in S, z \in H, xyz \in H \implies xyz \in H.
$$

Proposition 2.1. If $Stab(PN) \neq \emptyset$, then $Stab(PN)$ is a biunitary extractable pure monoid.
Definition 2.1. Let $PN = (P, A, F, W, \mu)$ be a Petri net with a positive marking μ. Define the subset $D(PN)$ as a set of all positive sequence w of $S(PN)$.

Since $D(PN)$ is a subset of $S(PN)$, $D(PN)$ is a bifix code over A.

Proposition 2.2. If $D(PN) \neq \emptyset$, then $D(PN)^*$ is a biunitary extractable pure monoid.

Example 2.1. Let $PN = (\{p, q\}, \{a, b\}, F, W, \mu_0)$ be a Petri net defined by $W(a, p) = W(p, b) = W(q, a) = W(b, q) = 1$, $\mu_0(p) = \mu_0(q) = 2$. Then $D(PN) = \{ab, ba\}$, therefore $\{ab, ba\}^*$ is pure [1, p.324, Ex.1.3].

Proposition 2.3. If $z, xzy \in D(PN), x, y \in A^+$, then $xz^*y \in D(PN)$.

A code D is infix if $w, xwy \in D$ implies $x = y = 1$ [8, p.129].

Proposition 2.4. If $D(PN)$ is a non-empty finite set, then $D(PN)$ is an infix code.

3. Limited code

A submonoid M of A^* is very pure if for all $u, v \in A^*$,

$$u, v \in A^*, uv, vu \in M \Rightarrow u, v \in M.$$

The base of a very pure monoid is called a circular code.

Let $p, q \geq 0$ be two integers. If for any sequence $u_0, u_1, \ldots, u_{p+q}$ of words in A^*, the assumptions $u_{i-1}u_i \in M$ ($1 \leq i \leq p + q$) imply $u_p \in M$, then a submonoid M is said to satisfy condition $C(p,q)$. If a submonoid M of A^* satisfies condition $C(p,q)$, then M is very pure [1, p.329, Proposition 2.1], and its base is called a (p,q)-limited code.

If a subset D of A^* is a bifix $(1,1)$-limited code, then for any $u_0, u_1, u_2 \in A^*$ such that $u_0u_1, u_1u_2 \in D$ we have $u_1 \in D$. Thus $u_0u_1, u_1, u_2 \in D$. This implies that $u_0, u_1, u_2 \in D$, since D is bifix. Therefore D is $(2,0)$-, $(1,1)$- and $(0,2)$-limited.

Let $PN_0 = (\{p\}, \{a, b\}, F, W, \mu_0)$ be a Petri net such that $W(a, p) = \alpha, W(p, b) = \beta, \mu_0 = (\lambda_p), \lambda_p > 0$.

Consider the set \(\Omega \) of positive markings in \(PN_0 \):

\[
\Omega = \{ \mu | \mu = \mu_0 + \Delta(w), w \in PSeq(\mu_0) \}.
\]

\(\alpha \) and \(\beta \), and let \(N = \{0, 1, 2, \ldots\} \) be a set of non-negative integers. Then we have

(0) \(D(PN_0) \) is dense.

(1) If \(\lambda_p < g \), then \(\Omega = \{ \lambda_p + ng | n \in N \} \).

(2) If \(\lambda_p = sg, s \geq 0, s \in N \), then \(\Omega = \{ng | n \geq 1, n \in N \} \).

(3) If \(\lambda_p = sg + t_p, s \geq 0, s \in N, 0 < t_p < g \), then \(\Omega = \{t_p + ng | n \geq 0, n \in N \} \).

Proposition 3.1. If \(\lambda_p > gcd(\alpha, \beta) \), then \(D(PN_0) \) is not circular.

Proposition 3.2. \(D(PN_0) \) is circular if and only if \(\lambda_p \leq gcd(\alpha, \beta) \).

Let \(PN_1 = (\{p, q\}, \{a, b\}, F, W, \mu_0) \) be a Petri net such that \(W(a, p) = \alpha, W(p, b) = \alpha', W(q, a) = \beta, W(b, q) = \beta' \), \(\mu_0(p) = \lambda_p, \mu_0(q) = \lambda_q \).

Suppose that \(D(PN_1) \neq \emptyset \) and \(w \in D(PN_1) \). Let \(n = |w|_a \) and \(m = |w|_b \), then \(\Delta(w) = n\Delta(a) + m\Delta(b) = 0 \) (zero vector). Consequently, the linear equation

\[
\begin{pmatrix}
\alpha & -\alpha' \\
-\beta & \beta'
\end{pmatrix}
\begin{pmatrix}
n \\
m
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

has a non-trivial solution in \(N \). Thus \(\alpha\beta' = \alpha'\beta \). Therefore, if \(D(PN_1) \neq \emptyset \), then \(PN_1 = (\{p, q\}, \{a, b\}, F, W, \mu_0) \) has the following forms:

\(W(a, p) = \alpha, W(p, b) = k\alpha, W(q, a) = \beta, W(b, q) = k\beta \), \(k > 0 \).

Here we assume that \(k \) is an integer. That is, we define a Petri net \(PN_1 = (\{p, q\}, \{a, b\}, F, W, \mu_0) \) as follows

\[
\Delta(a) = \begin{pmatrix}
\alpha \\
-\beta
\end{pmatrix}, \quad \Delta(b) = \begin{pmatrix}
-k\alpha \\
k\beta
\end{pmatrix},
\]

where \(k \) is a positive integer.

We define an integer \(M_p \) as follows

\[
M_p = \begin{cases}
\frac{\lambda_p}{\alpha} - 1, & \text{if } \frac{\lambda_p}{\alpha} \text{ is an integer}, \\
\lfloor \frac{\lambda_p}{\alpha} \rfloor, & \text{if } \frac{\lambda_p}{\alpha} \text{ is not an integer}.
\end{cases}
\]
where $[]$ is the symbol of Gauss. Similarly we define an integer M_q as follows, $M_q = \frac{q}{\beta} - 1$ if $\frac{q}{\beta}$ is an integer, and $M_q = [\frac{q}{\beta}]$ if $\frac{q}{\beta}$ is not an integer.

Proposition 3.3. We have

1. If $M_p + M_q > k,$ $M_p \geq k$ and $M_q \geq 1,$ then $D(PN_1)$ is not circular.
2. If $M_p + M_q > k,$ $M_p > 1, M_q > 1,$ then $D(PN_1)$ is not circular.
3. If $M_p + M_q = k,$ $M_p \geq 1,$ then $D(PN_1)$ is a singleton.
4. If $M_p + M_q \geq k,$ $M_p = 0,$ $M_q \geq k,$ then $D(PN_1)$ is $(1,1)$-limited.
5. If $M_p + M_q \geq k,$ $M_p \geq k,$ $M_q = 0,$ then $D(PN_1)$ is $(1,1)$-limited.

Corollary 3.1. Let n and k be arbitrary integers such that $n > k > 1$. Define the automaton $A_{(n,k)} = (\{1, 2, \ldots, n\}, \{a, b\}, f, 1, \{1\})$ by $f(i, a) = i + 1, 1 \leq i \leq n - 1,$ $f(j, b) = j - k,$ $k + 1 \leq j \leq n.$ Then the base of language $L(A_{(n,k)})$ recognized by $A_{(n,k)}$ is a $(1,1)$-limited code.

Proposition 3.4. Let $PN = (\{p_1, \ldots, p_n\}, \{a_1, \ldots, a_n\}, F, W, \mu_0), n \geq 2,$ be a Petri net such that $W(p_i, a_i) = \alpha_i,$ $W(a_i, p_{i+1}) = \beta_i, 1 \leq i \leq n - 1,$ and $W(p_n, a_n) = \alpha_n,$ $W(a_n, p_1) = \beta_n.$ $\mu_0 = (\lambda_1, \ldots, \lambda_n),$ $\mu_0(p_i) = \lambda_i, 1 \leq i \leq n.$ Furthermore let $g_j = gcd(\beta_{j-1}, \alpha_j), 2 \leq j \leq n.$ If $\lambda_1/\alpha_1 > 1$ and $\lambda_i \leq g_i$ for all $i = 2, \ldots, n,$ then $D(PN)$ is $(1,1)$-limited.

Let $PN_2 = (\{p_1, p_2\}, \{a, b, c\}, F, W, \mu_0)$ be a Petri net such that $W(a, p_1) = \alpha_1,$ $W(p_1, b) = \alpha_2,$ $W(b, p_2) = \beta_1,$ $W(p_1, c) = \alpha_3,$ $W(p_2, c) = \beta_2.$ $\mu_0(p_1) = \lambda_1,$ $\mu_0(p_2) = \lambda_2.$

Lemma 3.1. Let PN_2 be a Petri net mentioned above, and let $\alpha = gcd(\alpha_1, \alpha_2, \alpha_3), \beta = gcd(\beta_1, \beta_2).$ Suppose that $D(PN_2) \neq \emptyset$ and $\lambda_1 \leq \alpha, \lambda_2 \leq \beta.$ If $d \in D(PN_2)$ and v is its proper suffix, then we have one of the following:

1. $\Delta(v)(p_1) \leq -\alpha,$ $\Delta(v)(p_2) \leq -\beta.$
2. $\Delta(v)(p_1) = 0,$ $\Delta(v)(p_2) \leq -\beta.$
3. $\Delta(v)(p_1) \leq -\alpha,$ $\Delta(v)(p_2) \leq 0.$

Proposition 3.5. If $D(PN_2) \neq \emptyset$ and $\lambda_1 \leq \alpha, \lambda_2 \leq \beta,$ then $D(PN_2)$ is $(1,1)$-limited.
\[\alpha + \beta, W(b, q) = \alpha + \beta, W(c, p) = \beta, W(q, c) = \alpha, \mu_0(p) = \lambda_p, \mu_0(q) = \lambda_q. \]

Lemma 3.2. Let \(PN_3 \) be a Petri net mentioned above. Suppose that \(\beta < \lambda_p \leq \alpha + \beta \) and \(\beta < \lambda_q \leq \alpha \), then for any \(u \in PSeq(PN_3) \) we have one of the following.

1. \[\Delta(u) = \begin{pmatrix} k(\alpha - \beta) \\ k(\alpha - \beta) \end{pmatrix}, k \geq 0, \]
2. \[\Delta(u) = \begin{pmatrix} k(\alpha - \beta) + l\alpha \\ k(\alpha - \beta) - l\beta \end{pmatrix}, k \geq 0, l \geq 1, \]
3. \[\Delta(u) = \begin{pmatrix} k(\alpha - \beta) - l\beta \\ k(\alpha - \beta) + l\alpha \end{pmatrix}, k \geq 0, l \geq 1. \]

Proposition 3.6. Suppose that \(D(PN_3) \neq \emptyset \). If \(\beta < \lambda_p \leq \alpha + \beta \) and \(\beta < \lambda_q \leq \alpha \), then \(D(PN_3) \) is \((1,1)\)-limited.

References

