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1. INTRODUCTION

In [4, Problem 45], L. Fuchs posed the following problem:

Which rings $R$ satisfy $R\cong End(R^{+})$ ? The author presents

In 1973, P. Schultz [5] gave a partial solution to this problem. In
particular, he studied commutative rings $R$ satisfying $R\cong End(R^{+})$

and he called such rings $\mathrm{E}$-rings. For $\mathrm{E}$-rings, see the book“Additive
Groups of Rings I ([3])” by S. Feigelstock.. Recently, in [2] R. G\"obel,
S. Shelah and L. $\mathrm{S}\mathrm{t}\mathrm{r}\ddot{\mathrm{n}}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}$ constructed noncommutative rings $R$ sat-
isfying $R\cong End(R^{+})$ .

2. RELATIVE E-RINGS

Let $R$ be a ring with identity. By $R^{+}$ we denote the additive group
of the ring $R$ . For an element $a\in R$ , we have the mapping $a_{l}$ : R– $R$

defined by $xarrow ax$ . $a_{l}$ is called the left multiplication induced by $a$ .
Similarly we have the right multiplication induced by $a$ . Obviously the
sets $\{a_{l}|a\in R\}$ and $\{a_{r}|a\in R\}$ form rings. We denote thses rings
by $R_{l}$ and $R_{r}$ , respectively.

Definition 2.1. A ring $R$ is called an $\mathrm{E}$-ring if $R_{l}=End(R^{+})$ .
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This notion is generalized as follows.

Definition 2.2. Let $S$ be a ring and let $R$ be a ring such that $R$

is a right $S$-module. A ring $R$ is called a left $\mathrm{E}$-ring relative to $S$ if
$R_{l}=End_{S}(R_{S})$ .

Let $\mathrm{Z}$ denote the ring of rational integers. Then a left $\mathrm{E}$-ring relative
$\mathrm{Z}$ is nothing else but an $\mathrm{E}$-ring. Let $S$ be a ring and let $R$ be a ring

such that $R$ is a right $S$-module. Then $End_{S}(R_{S})$ always contains $R_{l}$ .
Hence we can say that left $\mathrm{E}$-rings relative to $S$ are those rings $R$ such

that $End_{S}(R_{S})$ is small as possible.

From the definition of a relative $\mathrm{E}$-ring, the following is obvious.

Proposition 2.3. Let $S$ be a ring and let $R$ be a ring such that $R$ is a
right $S$ -module. If $R$ is a left $E$-ring relative to $S$ and if $f\in End(R_{S})f$

then $f(R)$ is a principal right ideal of $R$ .

Also we can easily see the following:

Proposition 2.4. Let $S$ be a ring and let $R$ be a ring such that $R$ is
a right S-module.

(1) The ring $R$ is a left $E$-ring relative to $S$ .
(2) Every element of $R_{r}$ commutes with any element of $End_{S}(R_{S})$ .

As a corollary, we have the following charactrizations of an E-algebra

relative to a commutative ring.

Corollary 2.5. Let $S$ be a commutative ring and $R$ be an S-algebra.
Then the following are equivalent:

(1) $R$ is an $E$-ring relative to $S$ .
(2) $R_{r}=End_{S}(R_{S})$ .
(3) $R$ is a commutative ring and $R\cong End_{S}(R_{S})$ .

(4) $End_{S}(R_{S})$ is a commutative ring.
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Example 2.6. Let $R$ be a commutative ring and let $S=R[x, y]$ .

Consider the ring $A=S/(x)\oplus S/(y)$ . Then A is a $S$-algebra, but A

is not a cyclic $S$-module. Clearly $End_{S}(A)\cong A$ and so $End_{S}(A)$ is

commutative. Therefore $A$ is a relative $\mathrm{E}$-algebra over $S$ .

Example 2.7. Let $R$ be a commutative ring and let $S$ be a multi-

plicatively closed subset of $R$ . Then $S^{-1}R$ is a relative $\mathrm{E}$-algebra over
$s$ .

Let $R$ be a commutative ring and let $\{I_{n}\}_{n\geq 0}$ be a fimily of ideals of
$R$ satisfying the condition that $I_{n}\subseteq I_{m}$ whenever $n\geq m$ . We can then

define a topology on the set $R$ with an open basis $\{a+I_{n}|a\in R,$ $n\geq$

$0\}$ . This topology is called the linear topology defined by a family of
ideals $\{I_{n}\}_{n\geq 0}$ . Then we can construct the completion $\hat{R}$ of $R$ . It is
well-known that

$\hat{R}\cong\lim_{arrow n}R/I_{n}$ .

Example 2.8. Let $R$ be a commutative ring and consider the linear
topology defined by a family of ideals $\{I_{n}\}_{n\geq 0}$ . Then the completion $\hat{R}$

of $R$ is a relative $\mathrm{E}$-algebra over $R$ .
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