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$\mathrm{A}\mathrm{b}\mathrm{s}\mathrm{U}\mathrm{a}\mathrm{c}\mathrm{t}$

We consider a class oftiming game which is suggested from a timing problem for putting some
kind of farm products on the market. $\mathrm{N}$ players, Player 1, 2, $\cdots,$ $\mathrm{n}$, take possession of the right
to put some kind of farm products at any time in $[0,1]$ . The price of them increases with time
so long as none of the $\mathrm{n}$ players do not sell them, however, if one of the $\mathrm{n}$ players puts his farm
products on the market the price 中皿 s discontinuously and then increase with time. Such
discontinuous falls in the price of farm product arise successively until $\mathrm{n}$ players complete to
$\mathrm{s}\mathrm{e}\mathrm{U}$. All players have to put their farm product within the unit interval 10, 11. In such a
situation, each player wishes to delay action as late as possible, but does not wish to delay so
late that his opponents can put earlier. We assume that all players do not learn when nor
whether their opponents have put their arm products on the market. Each of the $\mathrm{n}$ players
has to decide his action time. This model yields us a $\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}$ class of $\mathrm{n}\cdot \mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{o}\mathrm{n}\cdot \mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}$ sum
infinite game.

1. Introduction We consider a class of game which is suggested from correlative
phenomena between the price and supply in a market on farm products. $\mathrm{N}$ players,
Player 1, $\cdots,$ $\mathrm{n}$ take possession of the right to put some kind of firm products on
the market with same ratio. We call such kind of products product $\mathrm{F}$ in this paper.
We can harvest product $\mathrm{F}$ at a specific season every year periodically. Each of the
$\mathrm{n}$ players wants to decide the optimal time to put his product $\mathrm{F}$ on the market
until the next harvest season. We consider one time period where the harvest time
in each year is the beginning and the next harvest time is the end. The price of
product $\mathrm{F}$ increases with time so long as none of the players don’t put on the
market and keep their own products. But, when one of the players put his product
$\mathrm{F}$ on the market, the price of product $\mathrm{F}$ possessed by the other n-l players falls
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discontinuously and then increases with time continuously. Such discontinuous
falls in the price on product $\mathrm{F}$ possessed by the other players arise successively
whenever one of the rest players put his product $\mathrm{F}$, until all on the $\mathrm{n}$ players
complete to sell. In such a situation, each player wishes to delay action as late as
possible to increase the price of his product $\mathrm{F}$, but does not wish to delay so late
that the price falls discontinuously several times without knowing the current
price. Each player has to decide his optimal action time considering the current
price and his opponents’ action times, each other.

As well as the usual games of timing [1, 21, there are two $\mathrm{k}_{\dot{\mathrm{i}}}\mathrm{d}$ of information
available to the players. If a player is informed of his opponents’ action times as
soon as one of his opponents put his product $\mathrm{F}$ on the market, we say they are in a
noisy version. If neither player learns when or whether each of the $\mathrm{n}\cdot 1$ players has
put his product $\mathrm{F}$ on the market, we say they are in a silent version. We consider
the case where $\mathrm{n}\cdot \mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}$ are in a silent version in this paper.

This model yields us a certain class of $\mathrm{n}\cdot \mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{o}\mathrm{n}\cdot \mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}$ sum infinite games
on the hyper $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}\cdot \mathrm{c}\mathrm{u}\mathrm{b}\mathrm{e}$ . The equilibrium strategies express the proper balance
between the desire for delay and the danger of delaying. Related to our model, we
can point out three works [3, 4, 5].

2. Notations and Assumptions Since we consider one period game, we express
the period as the unit interval $[0,1]$ . Throughout of this paper, we use the
following notations:

$v(t)$ is the price of product $\mathrm{F}$ at time $t\in[0,1]$ , when any of the $\mathrm{n}$-players doesn’t
put his product F. We assume that $v(t)\mathrm{i}\mathrm{s}$ differentiable and $v’(t)>0$ for $t\in(0,1)$ .
It is natural to assume $0<v(\mathrm{O})<\infty$ .

$r$ is the discount factor after one of the $\mathrm{n}$-players has already put his product $\mathrm{F}$

on the market and is assumed $0<r<1$ . That is, if one of the $\mathrm{n}\cdot \mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}$ sells his
product $\mathrm{F}$ at time $t\in[0,1]$ , the price of product $\mathrm{F}$ possessed by other $\mathrm{n}\cdot 1$ players
falls down from $v(t)$ to $rv(t)$ immediately. Hence if $\mathrm{k}$ players have already put
their product $\mathrm{F}$ in the market before time $t\in[0,1]$ , the price of it possessed by other
n-k players decreases to $r^{k}v(t)$ at time $t\in[0,1]$ .

If $\mathrm{k}$ players put their product $\mathrm{F}$ at a same time $t\in[0,1]$ , each of the $\mathrm{k}$ players can
get the current price $\hat{v}(t)$ , and then the price of product $\mathrm{F}$ decreases to $r^{k}\hat{v}(t)$ .

We now denote the expectations for the real valued function $M_{j}(x_{1}$ , —, $x_{n})$

over [$0$ , llx $\mathrm{x}[0,1]$ when player $i$ uses $cdfF_{i}(x_{l})$ over $[0,1]$ as his mixed
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strategy as follows:

$M_{i}(F_{1},F_{2},---,F_{n})= \int--- \mathrm{J}M_{i}(x_{1},x_{2},---,x_{n})dF_{1}(x_{1})dF_{2}(x_{2})--- dF_{n}(x_{n})$

and

$M_{i}(x_{1},F_{2},---,F_{n})= \int M_{i}(x_{1},x_{2}.---,x_{n})dF_{2}(x_{2})--- dF_{n}(x_{n})$ .

3. Formulations and Analysis Since each of the $\mathrm{n}\cdot \mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}$ can’t observe the
other $\mathrm{n}\cdot 1$ players’ action time, he decide his putting time in advance and then he
can find the value of his product $\mathrm{F}$ after putting on the market. Hence we
establish the pure strategy for Player $i$ as $x_{i}\in[0,1],$ $i=1,2,—,n$ Then the
expected payoffkernel to Player 1 $M_{1}(x_{1},x_{2},---,x_{n})$ is given by

$\mathfrak{l}_{l}^{\mathrm{J}}.\prime\prime$

$\mathrm{v}(\mathrm{x}_{\mathrm{i}})$ , $0\leqq \mathrm{X}\iota\leqq \mathrm{y}_{(1\rangle}$

$.\mathit{1}^{t}|_{1?_{\iota_{\dot{l}}}}\mathrm{r}^{2}\mathrm{v}(\mathrm{x}_{1})\mathrm{r}\mathrm{v}(\mathrm{x}_{1})$

$\mathrm{y}_{(1)}<\mathrm{x}_{1}\leqq \mathrm{y}_{(2)}$

$\mathrm{y}_{(2)}<\mathrm{x}_{1}\leqq \mathrm{y}_{(3)}$

$\mathrm{M}_{1}$

$(\mathrm{x}_{1},\mathrm{x}_{2},-.. ’ \mathrm{x}_{n})=$
$\backslash _{1}’$

-. $—-$ -.....-...–..... $—-$ (1)

$.\}tfd$

’
$\mathrm{r}^{\iota}\mathrm{v}(\mathrm{x}_{1})$

$\mathrm{y}_{\langle k)}<\mathrm{x}_{1}\leqq \mathrm{y}_{(k+1)}$

$\mathrm{i}\mathrm{I}_{i\{}$

..................-.........

$:\backslash ^{\mathrm{r}^{n- 1}\mathrm{v}(\mathrm{x}_{1})}$ $\mathrm{y}_{n- 1}<\mathrm{x}_{1}\leqq 1$ ,

where $y_{(l\rangle}$ denotes the $i$ th smallest of $x_{2},---,x_{n-1},$ $i=1,—,n-1$ . Hence, we

suppose that $\mathrm{y}_{(1)}\leqq \mathrm{y}_{(2)}\leqq\ldots\leqq \mathrm{y}_{(n- 1)}$ .

Observing the above payoff kernel, we can suppose that all of the $\mathrm{n}$ players use
same mixed strategy (cdfon $[0,1]$) $F(x)$ and also suppose that $F(x)$ consists of
its pdf $f(x)>0$ over an interval $(a, 1)\subset[0,1]$ by considering the result of two
person $\mathrm{g}\mathrm{a}\mathrm{m}\mathrm{e}[5]$ . Since the expected payoff to Player 1 $M_{1}(x,F,---,F)$ for any
$x\in(a, 1]$ is given by

$\mathrm{M}_{1}(_{\mathrm{X},\mathrm{F},\mathrm{F},-,\mathrm{F})=\mathrm{v}\mathrm{t}\mathrm{x})_{[\sum_{k\cdot 0}^{n- 1}}}$

n-l’ (2)
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we have
$\mathrm{M}_{1}(\mathrm{x},$ $\mathrm{F},$ $\mathrm{F},$

$\cdot$ -. , $\mathrm{F}\rangle$ $=v(x)$ , $0\leqq \mathrm{x}<\mathrm{a}$

$=v(x)[1-(1-r)F(x)]^{n- 1}$ , $\mathrm{a}\leqq \mathrm{x}\leqq 1$ . (8)
Putting

$M_{1}(x,F,F,---,F)=con\mathrm{s}t$ for $x\in(\mathrm{a},$ $1\rangle$ ,

we get
$v(x)[1-(1-r)F(x)]=(n-1)(1-r)f(x)v(x)$, $a<x<1$ ,

which yields
$F(x)=\{1/(1-r)\}[1-\{c/v(x)\}^{1/(n=1)}]$ , $a<x<1$ , (4)

where $c$ is $an$ integration constant. The boundary conditions
$F(a)=0$ and $F(1)=1$

give us
$c=r^{n- 1}v(1)$ $j$ $v(a)=r^{n- 1}v(a)$ .

However, the above conditions are satisfied even when $v(0)\leqq r^{n- \mathrm{l}}v(1)$ .

So we consider the case where $v(0)\leqq r^{n-1}v(1)$ first. For this case, there
exists the unique root $a$ which satisfies the equation $v(a)=r^{n-1}v(1)$ in the
interval $[0,1]$ . And then we have the following relations:

$M_{1}(x,F,F,---,F)=v(x)<v(a)=r^{n-1}v(1)$ , $0\leqq x<a^{0}$

$=v(a)=r^{n-1}v(1)$ , $a^{0}\leqq x\leqq 1$ (5)
Hence we get Theorem 1.

Theorem 1. Assume that $v(0)\leqq r^{n-1}v(1)$ . Let $a^{0}$ be the unique root of equation
of $v(a)=r^{n-1}v(1)$ in the interval [ $0,$ 11. And consider the following mixed
strategy:

$F^{0}(x)=0$ , $0\leqq x<a^{0}$

$=\{1/(1-r)\}[1-\{v(a)/v(x)\}^{1/(n-1)}]$ , $a^{0}\leqq x\leqq 1$ .
Then n-tuple of mixed strategies $(F^{0},F^{0},---,F^{0})$ is a Nash equilibrium of our
n-person non-zero sum silent game. And the corresponding equilibrium value $v_{i}$

to Player $i$ is given as

$v_{i}=M_{i}(F^{0},F^{0},---,F^{0})=r^{n-1}v(1)$ , $i=1,—,n$ .
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Now we consider the case where $v(0)>r^{n- 1}v(1)$ . Since we assumed that each of
$\mathrm{k}$ players can get the current price $\hat{v}(t)$ when $\mathrm{k}$ players put their product $\mathrm{F}$ at a
same time $t\in[0,1]$ , we have

$M_{1}(x,\mathrm{O},---,\mathrm{O})=r^{n-1}v(x)\leq rv(1)<v(\mathrm{O})$, $0<x\leq 1$ (6)
and also have

$M_{1}(0,x_{2},---,x_{n})=v(0)>r^{n-1}v(1)$ , for any $x_{2},---,\chi_{n}$ in $[0, 1]$ . (7)

Thus we get Theorem 2.

Theorem 2. Assume $v(\mathrm{O})>r^{n-1}v(\mathrm{O})$ . Then $\mathrm{n}\cdot \mathrm{t}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{e}$ (0,—,0) is a Nash
equilibrium point of this non-zero sum silent game. The corresponding

equilibrium value $v_{l}$, to Player $i$ is given as

$v_{i}=M_{i}(0,---,0)=v(0)$, $i=1,—,n$ .

If $\mathrm{n}$ is greater than some value the inequality $v(\mathrm{O})>r^{n-1}v(\mathrm{O})$ holds. It means
that when the number of participants of such a game exceeds some level, each of
them wants to $\mathrm{s}\mathrm{e}\mathrm{U}$ his product $\mathrm{F}$ at the first time of the game.
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