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1 Introduction
Our purpose is to summarize recently proposed numerical methods concerning
simplified system of chemotaxis $[7, 6]$ and is to examine their validity. A typical
example of such system is

$\{$

$u_{t}=\nabla\cdot(\nabla u-u\nabla v)$ in $\Omega\cross(0,T)$

$- \Delta v=u-\frac{1}{|\Omega|}\int_{\Omega}u$ in $\Omega \mathrm{x}(0,T)$

$\frac{\partial u}{\partial\nu}-u\frac{\partial v}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on ast $\mathrm{x}(0,T)$

$u|_{t=0}=u_{0}$ on $\overline{\Omega}$,

(1)

where $u=u(x,t),$ $v=v(x,t)$ are unknown functions of $(x, t)\in\overline{\Omega}\cross[0,T),$ $\Omega\subset$

$\mathbb{R}^{d}(d=1,2,3)$ is a bounded domain with the boundary OSt usually supposed
to be smooth, $\nu$ is the outer unit normal vector to $\partial\Omega$ , and $u_{0}=u_{0}(x)\geq 0,$ $\not\equiv 0$

is a given function defined on $\overline{\Omega}$. This system describes aggregation of cellular
slime molds resulting $\mathrm{h}\mathrm{o}\mathrm{m}$ their chemotactic features, and $u$ and $v$ denote the
density of cellular slime molds and the concentration of chemical substance,
respectively, whereby the diffusion of $u$ is supposed to be much faster than that
$\mathrm{o}\mathrm{f}v$ .

In more detail, the first equation stands for mass conservation and the flux
$j=-\nabla u+u\nabla v$ of $u$ is composed of the terms of diffusion and chemotaxis
indicated $\mathrm{b}\mathrm{y}-\nabla u$ and $u\nabla v$ , respectively, using phenomenolocial relation. The
second equation, on the other hand, describes the formation of the field dis-
tribution $v$ by the particle density $u$ . Henceforth, this law is referred to as
$v=(-\Delta_{JL})^{-1}u$ , where

$- \Delta v=u-\frac{1}{|\Omega|}\int_{\Omega}u$ in $\Omega$ , $\frac{\partial v}{\partial\nu}|_{\partial\Omega}=0$, $\int_{\Omega}v=0$ .

Actually, system (1) is a combination of the Smoluchowski-Poisson equations
describing nean field motion ofmany self-gravitating particles [10]. The classical
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microscopic modelling adopts the Kramers-Moyal expansion [8], while the other
derivation uses the renormalized master equation [5] or the kinetic theory [3].
In any case, this system is consistent to the second law of thermodynamics, i.e.,
mass conservation

$||u(\cdot, t)||_{L^{1}(\Omega)}=||u_{0}||_{L^{1}(\Omega)}$

and the decrease of Helmholtz’ free energy

$\frac{d}{dt}F(u(\cdot,t))\leq 0$ $t\in[0, T)$ , (2)

where
$F(u)= \int_{\Omega}(u\log u-u)-\frac{1}{2}\langle(-\Delta)_{JL}^{-1}(u),u\rangle$

with the duality paring $\langle$ , $\rangle$ identified with the $L^{2}$-inner product.
This is not surprising becas.ue (1) is the model (B) equation [10] formulated

by this free energy:

$u_{t}=\nabla\cdot(u\nabla\delta \mathcal{F}(u))$ , $u \frac{\partial}{\partial\nu}\delta \mathcal{F}(u)|_{\partial\Omega}=0$ ,

where $\delta F(u)$ deflned by

$\frac{d}{ds}\mathcal{F}(u+sw)|_{\epsilon=0}=\langle\delta F(u), w\rangle$

is identified with $\log u-(-\Delta_{JL})^{-1}u$ . Then, we obtain the formation of collapse
with quantized mass [9], where $T=T_{\max}\in(0, +\infty]$ denotes the blowup time.
Theorem 1.1. If $d=2$ and $T_{\max}<+\infty$ , then it holds that

$u(x, t)d_{X-\iota} \sum_{x_{0}\in S}m_{*}(x_{0})\delta_{x_{0}}(dx)+f(x)dx$

as $t\uparrow T=T_{\iota \mathrm{n}\mathrm{a}\mathrm{x}}$ in $\mathcal{M}(\overline{\Omega})$ , where $S$ is the blowup set,

$m_{*}(x_{0})=\{$

$8\pi$ $(x_{0}\in\Omega)$

$4\pi$ $(x_{0}\in\partial\Omega)$ ,

and $0\leq f=f(x)\in L^{1}(\Omega)\cap C(\overline{\Omega}\backslash S)$.
Study of such profiles of the solution has a long history [9], but the structures

of dual variation and scalling invariance are fundamental tools and motivations.
Although we have not examined all possibilities, there is also emergence. More
precisely, local free energy gets $\mathrm{t}\mathrm{o}+\infty$ inside the blowup envelope. Still there
are several open problems and recent developments [10].

Meanwhile we have tried to realize these profiles in numerical computation.
In this respect, it seems to be reasonable to reproduce the properties of mass
conservation and free energy decreasing in the numerical scheme. and first, we
shall describe such trials. Thus, in \S 2, we propose a time discretization provided
with a discrete version of (2), and then we consider a finite difference scheme
which satisfies the total mass conservation also (\S 3). In \S 4, an application to
tumor angiogenesis model is presented, and in \S 5, finite element method is also
examined.

However, the fundamental question, what to extent we can believe the sim-
ulation, is still open. This will be discussed in the flnal section.
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2 Time discretization
First observation is that the free energy $F(u)$ is a difference of two functionals,

$I(u)= \int_{\Omega}u(\mathrm{i}\mathrm{o}\mathrm{g}u-1)$ and $K(u)= \frac{1}{2}\langle(-\triangle_{JL})^{-1}u,u\rangle$ ,

realized as proper, lower semi-continuous, convex functionals in $X=H^{1}(\Omega)$ ,
provided with the domains D$(I)=\{u\in X|u\geq 0, I(u)<+\infty\}\mathrm{a}\mathrm{n}\mathrm{d}D(K)=$

X. Fhrom this structure, combining backward and forward schemes to $I$ and $K$

guarantees the decreasing of $F$ for the discretized solution in time. Henceforth,
we adopt the irregular mesh because we are dealing with the blowup phenomena.
Thus, taking positive constants $\tau_{1},\tau_{2},$ $\ldots$ , we put

$t_{n}=\tau_{1}+\cdots+\tau_{n}$ (3)

and consider the time discrete scheme: Find $\{u^{n}\}_{n\geq 0}$ such that

$\{$

$\frac{u^{n}-u^{n-1}}{\tau_{n}}=\nabla\cdot u^{n}\nabla(I’(u^{n})-K’(u^{n-1}))$ in $\Omega$

$u^{n}\nabla(I’(u^{n})-K’(u^{n-1}))\cdot\nu=0$ on $\partial\Omega$ .
$.(4)$

Remark 2.1. Each step of the approximate solution $u^{n}$ becomes regular so
that the sub-differentials $\partial I(u^{n})$ and $\partial K(u^{n-1})$ are single-valued and identified
with regular functions denoted by $I’(u^{n})$ and $K’(u^{n-1})$ , respectively.

Theorem 2.1. If $u^{n},u^{n-1}\in X$ satish (4), then

$\frac{1}{\tau_{n}}[\mathcal{F}(u^{n})-F(u^{n-1})]\leq 0$. (5)

Proof. Since $I’\mathrm{a}\mathrm{n}\mathrm{d}-K’$ are convex, it holds that

$F(u)-F(\hat{u})\leq\langle I’(u)-K’(\hat{u}), u-\hat{u}\rangle$ , $(u,\hat{u}\in X)$ ,

and therefore,

$F(u^{n})-\mathcal{F}(u^{n-1})$

$\leq\tau_{n}\int_{\Omega}(I’(u^{n})-K’(u^{n-1}))[\nabla\cdot u^{n}\nabla(I’(u^{n})-K’(u^{n-1}))]$

$=- \tau_{n}\int_{\Omega}u^{n}|\nabla(I’(u^{n})-K’(u^{n-1}))|^{2}\leq 0$ .

This leads to (5). $\square$

System (4) may be written as

$\{$

.
$\frac{u^{n}-u^{n-1}}{\tau_{n}}=\nabla\cdot(\nabla u^{n}-u^{n}\nabla(Gu^{n-1}))$ in $\Omega$

$(\nabla u^{n}-u^{n}\nabla(Gu^{n-1}))\cdot\nu=0$ on $\partial\Omega$ ,
(6)
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for $G=(-\triangle_{JL})^{-1}$ , or equivalently,

$\{$

$\frac{u^{n}-u^{n-1}}{\tau_{n}}=\nabla\cdot(\nabla u^{n}-u^{n}\nabla v^{n-1})$ in $\Omega$

$- \triangle v^{n-1}=-u^{n-1}\frac{\partial u^{n}}{\partial\nu}-u^{n}\frac{\partial v^{n-1}u^{n-1}}{\partial\nu}=\frac{\frac\int_{\partial v^{n’-}}|\Omega|1\mathrm{q}}{\partial\nu}=0$
$\mathrm{o}\mathrm{n}\partial\Omega \mathrm{i}\mathrm{n}\Omega$

.

(7)

This is a linear elliptic equation of $u^{n}$ , and its numerical implementation is easy.
Actually, this type of time discretization has been often adopted. For instance, it
preserves nonincreases of the number of peaks of solutions to parabolic equations
for $d=1([11])$ . To our knowledge, however, no emphasis on (5) has been made
by now.

3 Space discretization: Upwind FDM
To describe the idea and numerical simulations in detail, we shall concentrate
on the one dimensional problem with a slightly different field formation law, i.e.,

$\{$

$u_{t}=(u_{x}-\mu uv_{x})_{x}$ $(0<x<1,0<t<T)$
$0=v_{xx}-v+u$ $(0<x<1,0<t<T)$
$(u_{x}-\mu uv_{x})|_{x=0,1}=0$ $(0<t<T)$
$v_{x}|_{x=0,1}=0$ $(0<t<T)$
$u(x, 0)=u_{0}(x)\geq 0,$ $\not\equiv 0$ $(0\leq x\leq 1)$ ,

(8)

where $\mu>0$ is a constant. Nothing changes in Theorem 1.1 even in this system
if $d=2$. First, we use time discretization defined by (7) and (3), and take
$h=1/N$, where $N$ is a positive integer. Next, we introduce two kinds of mesh
points over $(0,1)$ as

$x_{j}=(j- \frac{1}{2})h$ and $\hat{x}_{j}=jh$ $(j=1, \ldots,N)$ ,

treating virtual mesh points $x_{0}=-h/2,$ $x_{N+1}=(N+1/2)h,\hat{x}_{-1}=-h$, and
$\hat{x}_{N+1}=(N+1)h$ . Then, we find the approximations of $u(\cdot, t_{n})$ and $v_{x}(\cdot,t_{n})$

$\mathrm{o}\grave{\mathrm{v}}$er main mesh points $\{x_{j}\}_{j=1}^{N}$ ;

$u_{j}^{n}\approx u(x_{j}, t_{n})$ and $b_{j}^{n}\approx v_{x}(x_{j},t_{n})$ ,

while compute the approximations of $v(\cdot, t_{n})$ and $(u_{x}-uv_{x})(\cdot,t_{n})$ over the dual
mesh points indicated by $\{\hat{x}_{j}\}_{j=0}^{N}$ ;

$v_{j}^{n}\approx v(\hat{x}_{j}, t_{n})$ and $F_{j}^{n}\approx(u_{x}-uv_{x})(\hat{x}_{j}, t_{n})$ .

More precisely, let $\{u_{j}^{n-1}\}_{j=1}^{N}$ be obtained. Then, we define $\{v_{j}^{n-1}\}_{j=0}^{N}$ by
the standard finite difference scheme, i.e.,

$- \frac{v_{j-1}^{n-1}-2v_{j}^{n-1}+v_{j-1}^{n}}{h^{2}}+v_{j}^{n-1}=\tilde{\mathrm{u}}_{j}^{n-1}$ $(j=0,1, \ldots,N)$ (9)
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with $v_{-1}^{n-1}=v_{1}^{n-\perp}\neg$ and $v_{N+1}^{n-1}=v_{N-1}^{n-1}\forall$ , where

$\tilde{u}_{j}^{n-1}=\{$

$u_{1}^{n-1}$ $(j=0)$
$(u_{j+1}^{n-1}+u_{j}^{n-1})/2$ $(j=1,2, \ldots, N-1)$

$u_{N}^{n-1}$ $(j=N)$ .
Next, we approximate $v_{x}(\cdot, t_{n-1})$ by

$b_{j}^{n-1}= \frac{v_{j}^{n-1}-v_{j-1}^{n-1}}{h}$ $(j=1,2, \ldots, N)$ ,

and set
$b_{j}^{n-1,+}= \max\{0, b_{j}^{n-1}\}$ , $b_{j}^{n-1,-}= \max\{0, -b_{j}^{n-1}\}$ .

Here, we use the method of upwind approximation, observing that $u_{j}^{n}$ and $u_{j+1}^{n}$

are carried into $\hat{x}_{j}$ by the flows $b_{j}^{n-1,+}$ and $-b_{j+1}^{n-1,-}$ , respectively. In more
precise, the approximation $F_{j}^{n}$ of the flux $u_{x}-\mu uv_{x}$ at $(\hat{x}_{j}, t_{n})$ is defined by

$F_{j}^{n}= \frac{u_{j+1}^{n}-u_{j}^{n}}{h}-\mu b_{j}^{n-1,+}u_{j}^{n}+\mu b_{j+1}^{n-1,-}u_{j+1}^{n}$ $(j=1,2, \ldots,N)$ ,

and thus, our scheme is represented as follows:

$\frac{u_{j}^{n}-u_{j}^{n-1}}{\tau_{n}}=\frac{F_{j}^{n}-F_{j-1}^{n}}{h}$ . (10)

This means that

(12)

$\frac{u_{j}^{n}-u_{j}^{n-1}}{\tau_{n}}=\Delta_{h}u_{j}^{n}-D_{h}(b_{j}^{n-1,+}u_{j}^{n})+D_{h}^{*}(b_{j}^{n-1,-}u_{j}^{n})$ , (11)

where

$D_{h}w_{j}= \frac{w_{j}-w_{j-1}}{h}$ , $D_{h}^{*}w_{j}= \frac{w_{j+1}-w_{j}}{h}\theta$ $\Delta_{h}w_{j}=D_{h}^{*}D_{hw_{j}}$ ,

and the boundary and initial values are prescribed by

and
$u_{j}^{0}=u_{0}(x_{j})$ $(j=1, \ldots, N)$ , (13)

respectively.
This scheme is provided with mass conservation, positivity conservation, and

well-posedness [7].

Theorem 3.1. Relations (10) and (12) imply

$\sum_{j=1}^{N}u_{j}^{n}h=\sum_{j=1}^{N}u_{j}^{n-1}h$. (14)
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Theorem 3.2. Given $\{u_{j}^{n-1}\}_{j=1}^{N}$ satisfying $u_{j}^{n-1}\geq 0$ for $1\leq j\leq N$ , and take
$\tau>0$ and $\epsilon\in(0,1]$ . Then, (10) with (12), defined for

$\tau_{n}=\min\{\tau,$ $\frac{\sigma h}{2b_{\max}^{n-1}}\}$ and $b_{\max}^{n-1}= \max_{1\leq j\leq N}|b_{j}^{n-1}|$ , (15)

admits a unique solution $\{u_{j}^{n}\}_{j=1}^{N}$ such that $u_{j}^{n}>0$ , where $1\leq j\leq N$ .
Remark 3.1. The a priori estimate

$0< \min_{1\leq j\leq N}u_{j}^{n}\leq\max_{1\leq j\leq N}u_{j}^{n}\leq\sum_{j=1}^{N}u_{j}^{0}\leq\frac{1}{h}\max_{\leq 0x\leq 1}u_{0}(x)$

holds and hence $\{u_{j}^{n}\}$ never blows up in finite time. In other words, there is
a $c_{h}>0$ such that $\tau_{n}>c_{h}$ . Figure 1 shows numerical experiments for several
$(\mu, \lambda)’ \mathrm{s}$ for $\lambda=||u_{0}||_{L^{1}}$ , where highly concentrated solutions are captured.

Remark 3.2. In case that the central difference formula $\tilde{D}_{h}$ gi $=(\varphi_{i+1}$ -

$\varphi_{i-1})/(2h)$ is employed for the upwind approximation, we obtain

$\frac{u_{i}^{n+1}-u_{i}^{n}}{\tau_{n}}=\Delta_{h}u_{i}^{n+1}-\tilde{D}_{h}\{b_{i}^{n}u_{i}^{n+1}\}$

for (11) with the correspondence of a modified boundary condition. Then, the
conditions

$hb_{\max}^{n-1}\leq 2$ and $\tau_{n}b_{\max}^{n-1}\leq h$

are required in order to guarantee the conservation of positivity, which, however
is unrealistic becasue we do not know any a priori estimate for $b_{\max}^{n}$ .
Remark 3.3. The discrete analogue of $J$ is, for example,

$J_{h}(u_{h}^{n})= \sum_{j=1}^{N}(u_{j}^{n}\log u_{j}^{n}-u_{j}^{n})h-\frac{1}{2}\sum_{j=1}^{N}\frac{v_{j-1}^{n}+v_{j}^{n}}{2}u_{j}^{n}h$,

where $\{(u_{h}^{n},v_{h}^{n})\}$ denote a solution of (10) and (12). It is natural to expect that

$\frac{1}{\tau_{n}}[J_{h}(u_{h}^{n})-J_{h}(u_{h}^{n-1}.)]\leq 0$ . (16)

However, the previous argument fails in this case, and the numerical result
indicates that (16) is not valid if A and $\mu$ are large enough. In Fig. 2, we plot
$(t_{n}, J_{h}(u_{h}^{n}))$ for several $(\mu, \lambda)’ \mathrm{s}$ . In the case of $(\mu, \lambda)=(1,1),$ $(1,50),$ $(1,100)$ ,
Inequality (16) really takes place. However, in the case of $(\mu, \lambda)=(50,100)$ ,
we can observe that there is a time interval such that $J_{h}(u_{h}^{n})>J_{h}(u_{h}^{n-1})$ holds
there. Lyapunov’s property in fully discrete cases has room for further study.

4 Tumor angiogenesis simulation
The above described concept is applicable to the tumor angiogenesis $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}_{r}$ .

tion [5] in $S^{1}=\mathrm{R}/\mathbb{Z}$ :

$\{$

$P_{t}=(P_{x}-aPW_{x})_{x}$ $(x\in S^{1},0<t<T)$ ,
$W_{t}=P$ $(x\in S^{1},0<t<T)$ ,
$P(x, \mathrm{O})=P_{0}(x)\geq 0,$ $\not\equiv 0$ , $(x\in S^{1})$

$W(x, \mathrm{O})=W_{0}(x)$ . $(x\in S^{1})$ .
(17)
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(i) $\mu=1.0,$ $\lambda=1.0,$ $T=0.05$ (ii) $\mu=1.0,$ $\lambda=50.0,$ $T=0.05$

$(\ddot{\mathrm{v}}\mathrm{i})\mu=1.0,$ $\lambda=100.0,$ $T=0.1$ (iv) $\mu=5.0,$ $\lambda=100.0,$ $T=0.05$

Figure 1: Behavior of numerical solutions for $u(x,t)$ with $\lambda=||u_{0}||_{L^{1}}$ .

(1] $\mu=\perp.\cup$ , A $=$ L. $\cup,$ $\mathit{1}=$ U.Ub

(u1) $\mu=\perp.\cup,$ $\wedge=\perp\cup \mathrm{U}.\cup,$ $4=\mathrm{u}.1$

$(11[]\mu=\perp.\cup,$ $\mathrm{A}=0\cup.\cup,$ $\mathit{1}=\cup.\perp$

$(\mathrm{i}_{\mathrm{V}}l\mu=0.\cup,$
$\mathrm{A}=\perp\cup\cup.\cup,$

$\mathit{1}=\cup.\cup 5$

Figure 2: Behavior of $J(u(t))$ .

112



In Fig. 3, we plot numerical solutions to $P(x, t)$ for $a=-1,$ $-50,$ $\lambda=$

$||P_{0}||_{L^{1}(S^{1})}=1,100$ and $W_{0}(x)\equiv 0$ . There are decaying traveling waves when
the effect of chemotaxis is stronger than that of diffusion.

(i) $a=-1.0,$ $\lambda=1.0,$ $T=0.1$ (ii) $a=-1.0,$ $\lambda=100.0,$ $T=0.1$

(iii) $a=-50.0,$ $\lambda=10.0,$ $T=0.1$ (iv) $a=-50.0,$ $\lambda=100.0,$ $T=0.03$

Figure 3: Behavior of numerical solutions for $P(x, t)$ with $\lambda=||P_{0}||_{L^{1}(S^{1})}$ .

5 Space discretization: Upwind FEM
Finite element method is also applicable to realize our concept [6]. We take the
case that $\Omega\subset \mathbb{R}^{d},$ $d=2,3$ , is a convex polyhedral domain, noting that mass of
collapse formed at the corner of $\partial\Omega$ with the angle $\theta\in(0,2\pi)$ is equal to $4\theta$ .

First, we take $W^{m,p}=W^{m,p}(\Omega),$ $H^{m}=W^{m,2},$ $L^{\mathrm{P}}=L^{\mathrm{P}}(\Omega),$ $||\cdot||_{m,p}=$

$||\cdot||_{W^{m,\mathrm{p}}},$ $||\cdot||_{p}=||\cdot||_{L^{p}}$ for $m\in \mathrm{N}$ and $p\in[1, \infty]$ . The.standard inner product
in $L^{2}$ is denoted as $(\cdot, \cdot)$ . Then, we put, for $p\in[1, \infty)$ ,

$\mathcal{W}_{p}=\{v\in W^{2,p}|\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\}$ .

Given $f\in L^{2}$ , we define $v\in H^{1}$ by

$(\nabla v, \nabla\chi)+(v,\chi)=(f, \chi)$ $\forall\chi\in H^{1}$ .
Writing $v=Gf$, we obtain $G:L^{2}arrow \mathcal{W}_{2}\subset L^{2}$ by the elliptic regularity. We
use also the trilinear form $b$ on $L^{2}\cross H^{1}\cross H^{1}$ defined by

$b(w,u, \chi)=-\int_{\Omega}u\nabla Gw\cdot\nabla\chi dx$ $(w\in L^{2}, u\in H^{1}, \chi\in H^{1})$ .

Then, it holds that

$|b(w, u, v)|\leq||u||\mathrm{s}||\nabla Gw||_{6}||\nabla\chi||_{2}$ (H\"older’s inequality)
$\leq||u||_{1,2}||\nabla Gw||_{1,2}||\nabla\chi||_{2}$ (Sobolev’s inequality)
$\leq||u||_{1,2}||w||_{2}||\nabla\chi||_{2}$ (elliptic regularity)
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for $w\in L^{2},$ $u\in H^{1},$ $\chi\in H^{1}$ . Although full-weak form derived from the sym-
metrization is useful in theoretical study $[9, 10]$ , semi-weak form is sufficient for
our purpose: Find $u\in C^{1}([0, T)$ : $H^{1}$ ) such that

$( \frac{du(t)}{dt},$ $\chi)+(\nabla u(t), \nabla\chi)+\mu b(u(t), u(t),$ $\chi)=0$ , $\forall\chi\in H^{1},$ $\forall t\in(\mathrm{O},T)$

$u(0)=u_{0}\in H^{1}$ . (18)

Let $\{\mathcal{T}_{h}\}=\{\mathcal{T}_{h}\}_{h\downarrow 0}$ be a regular family of triangulations $\mathcal{T}_{h}$ of $\Omega$ : (i) $\mathcal{T}_{h}$

is a set of closed $d$-simplices (elements), and $\overline{\Omega}=\cup\{J|J\in \mathcal{T}_{h}\};(\mathrm{i}\mathrm{i})$ any two
elements of $\mathcal{T}_{h}$ meet only in entire common faces or sides or in vertices; (iii)
there exists a posit\’ive constant $\gamma_{1}$ such that

$h_{J}\leq\gamma_{1}\rho_{J}$ , $\forall J\in \mathcal{T}_{h}\in\{\mathcal{T}_{h_{J}^{\}_{h}}}$,

where $h_{J}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(J)$ and $\rho_{J}=\max${ $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(S)|S$ is a ball included in $J$}. Here,
we employ $h= \max\{h_{J}|J\in \mathcal{T}_{h}\}$ as the size parameter. Let $P_{h}=\{P_{i}\}_{i=1}^{N}$ be
the set of all vertices of $\mathcal{T}_{h},$ $N$ being a positive integer. Although $N$ depends
on $h$ , we shall not explicitly express the dependence. We divide $P_{h}$ into two
subsets $\{P_{i}\}_{i=1}^{N_{I}}\subset\Omega$ and $\{P_{N_{t}+i}\}_{i=1}^{N_{B}}\subset\partial\Omega$ , where $N=N_{I}+N_{B}$ . With $P_{i}$ ,
we associate a function $\hat{\phi}_{i}\in C(\overline{\Omega})$ such that $\hat{\phi}_{i}$ is linear on each $J\in \mathcal{T}_{h}$ and
$\hat{\phi}_{i}(P_{j})=\delta_{1j}$ , where $\delta_{ij}$ denotes Kronecker’s delta. We define as

$X_{h}=$ the vector space spanned by $\{\hat{\phi}_{i}\}_{i=1}^{N}$

and regard it as a closed subspace of $H^{1}$ . We also consider space $X_{h}$ , which
is equipped with the topology induced from $L^{2}$ , and indicate it using the same
symbol $X_{h}$ . The barycentric domain $D_{i}$ corresponding to $P_{i}$ is defined as

$D_{\mathfrak{i}}= \bigcup_{J\in S}$. $\{x\in J|\phi_{j}^{J}(x)\leq\phi_{i}^{J}(x), (P_{j}\in \mathcal{V}(J), P_{j}\neq P_{i})\}$
,

where $S_{i}=\{S\in T_{h}|P_{i}\in S\},$ $\mathcal{V}(J)=\{P_{j}\in P_{h}|P_{j}\in J\}$ , and $\{\phi^{J}.\cdot\}_{i=1}^{d+1}$

is the barycentric coordinates of $J$ with respect to $P_{i}$ . Let $\overline{\phi}_{i}\in L^{\infty}$ be the
characteristic function of $D_{i}$ . We introduce a Hilbert space $\overline{X}_{h}\subset L^{2}$ spanned
by $\{\overline{\phi}_{i}\}_{i=1}^{N}$ . We use the lumping operator $M_{h}$ : $X_{h}arrow\overline{X}_{h}$ defined by

$M_{hv_{h}}= \sum_{i=1}^{N}v_{h}(P_{i})\overline{\phi}_{i}$ , $(v_{h}\in X_{h})$ .

We put
$(v_{h}, \chi_{h})_{h}=(M_{h}v_{h}, M_{h}\chi_{h})$ , $(v_{h},\chi_{h}\in X_{h})$ ,

whereby $(\cdot, \cdot)_{h}^{1/2}$ is equivalent to $||\cdot||_{2}$ on $X_{h}$ . Given $f_{h}\in X_{h}$ , we define $v_{h}=$

$G_{h}f_{h}\in X_{h}$ by

$(\nabla v_{h}, \nabla\chi_{h})+(v_{h}, \chi_{h})=(f_{h}, \chi_{h})$ , $\forall\chi_{h}\in X_{h}$ .
This induces the discrete Green operator $G_{h}$ : $X_{h}arrow X_{h}$ .
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To state our approximation of the trilinear form $b$ , we need more notation.
Let $P_{i},$ $P_{j}\in P_{h}$ . If $P_{i}\neq P_{j}$ and they share an edge, we set:

$S_{h}^{ij}$ $=$ { $J\in \mathcal{T}_{h}|P_{i},$ $P_{j}\in J\grave{f}$ ;
$\Gamma_{ij}$ $=$ $\partial D_{i}\cap\partial D_{j;}$ and

$\nu_{ij}$ $=$ the outer unit normal vector to $\Gamma_{ij}$ , outgoing from $D_{i}$ .

Otherwise, we set $S_{h}^{ij}=\emptyset,$ $\Gamma_{ij}=\emptyset$ and $\nu_{ij}=0$ . Restrictions of $\Gamma_{ij}$ and $\nu_{ij}$

on $J\in S_{h}^{ij}$ are denoted by $\Gamma_{ij}^{J}$ and $\nu_{ij}^{J}$ , respectively. Then we introduce $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$

functionak $\sqrt{}^{\pm}ij$ on $X_{h}$ by

$\beta_{:j}^{\pm}(w_{h})=\int_{\Gamma_{ij}}[\nabla G_{h}w_{h}\cdot\nu_{ij}]_{\pm}dS=\sum_{J\in S_{h}^{f}}$

‘

meas $(\Gamma_{ij}^{J})[(\nabla G_{h}w_{h})_{J}\cdot\nu_{ij}^{J}]_{\pm}$ ,

where $[a]_{\pm}= \max\{\mathrm{o},$ $\perp_{a\}}$” and meas $(\Gamma_{ij}^{J})=$ meas $a(\Gamma_{ij}^{J})$ is the d-dimensional
Lebesgue measure. At this stage, writing

$\Lambda_{i}=\{P_{j}\in P_{h}|S_{h}^{ij}\neq\emptyset\}$ ,

we introduce a trilinear form $b_{h}$ on $X_{h}\cross X_{h}\cross X_{h}$ by

$b_{h}(w_{h}, u_{h}, \chi_{h})=\sum_{i=1}^{N}\chi_{h}(P_{i})\sum_{j\in\Lambda_{1}}\{u_{h}(P_{i})\sqrt{}^{+}ij(w_{h})-u_{h}(P_{j})\sqrt{}^{-}ij(w_{h})\}$ .

This is a direct application of Baba and Tabata’s scheme [1]; see [6]. Finally,
we introduce the backward Euler difference quotient by setting

$\partial_{\tau_{n}}w_{h}^{n}=\frac{w_{h}^{n}-w_{h}^{n-1}}{\tau_{n}}$ , $(\{w_{h}^{n}\}_{n\geq 1}\subset X_{h})$ .

Now we can state our finite element scheme to (18): Find $\{u_{h}^{n}\}_{n\geq 0}\subset X_{h}$

such that

$(\partial_{\tau}.u_{h}^{n}, \chi_{h})_{h}+(\nabla u_{h}^{n}, \nabla\chi_{h})+b_{h}(u_{h}^{n-1}, u_{h}^{n}, \chi_{h})=0$, $\forall\chi_{h}\in X_{h},$ $\forall n\geq 1$

$u_{h}^{0}=u_{0h}$ , (19)

where $u_{0h}\in X_{h}$ is a suitable approximation of $u_{0}$ .
Remark 5.1. The first equality of (19) includes two linear systems. Thus, at
each time step, we initially solve a linear system for $G_{h}u_{h}^{n-1}$ and then that of
$u_{h}^{n}$ . We note that $G_{h}u_{h}^{n}$ is an approximation of $v(t_{n})=Gu(t_{n})$ .

We obtain mass conservation in this scheme.

Theorem 5.1. Let $\{u_{h}^{n}\}_{n\geq 0}\subset X_{h}$ be a solution of (19). Then

$(u_{h}^{n}, 1)_{h}=(u_{0h}, 1)_{h}$ (20)

for $n\geq 0$ .
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To proceed to the well-posedness and positivity conservation, we put

$\kappa_{h}=\min_{J\in T_{h}}\kappa_{J}$ , ( $\mathit{1}\sigma_{J}=$ the minimal perpendicular length of $J$)

and assume the acuteness.

(H1) It holds that

$\max\{\cos(\nabla\phi_{i}^{J}, \nabla\phi_{j}^{J})|1\leq i,j\leq d+1\}\leq 0$, $\forall J\in \mathcal{T}_{h}\in\{\mathcal{T}_{h}\}$ ,

where $\{\phi_{i}^{J}\}_{i=1}^{d+1}$ represents the barycentric coordinates of $J$ with respect to the
vertices of $J$ .
Remark 5.2. For $d=2$ , (H1) is equivalent to a statement that each triangle
of $\mathcal{T}_{h}$ is a right or an acute triangle. For $d=3$, (H1) is satisfied if and only if
all angles made by two faces of each tetrahedron of $T_{h}$ are less than or equal to
$\pi/2$ .
Theorem 5.2. We assume $(Hl)$ and $u_{0h}\in X_{h}\geq 0,$ $\not\equiv 0$ , and take $\tau>0$ and
$\epsilon\in(0,1]$ . Then, (19) with a time step-size control

$\tau_{n}=\min\{\tau$, $\frac{3(d-1)\epsilon\kappa_{h}}{d^{2}(d+1)||\nabla G_{h}u_{h}^{n-1}||_{\infty}}\}$

admits a unique solution $\{u_{h}^{n}\}_{n\geq 0}\subset X_{h}$ such that $u_{h}^{n}>0$ for $n\geq 1$ .

Combining this with Theorem 5.1, we immediately obtain

Corollary 5.1. Let $\{u_{h}^{n}\}_{n\geq 0}\subset X_{h}$ be a solution of (19) as in Theorem 5.2.
Then,

$|1u_{h}^{n}||_{1}=||u_{0h}||_{1}$

for $n\geq 0$ .
Remark 5.3. Because all norms are equivalent on $X_{h}$ , we have

$||\nabla G_{h}u_{h}^{n-1}||_{\infty}\leq c_{h}||u_{0h}||_{1}$ ,

where $c_{h}$ is a positive constants depending on $h$ . Therefore, there is a $d_{h}>0$

such that $\tau_{n}\geq\min\{\tau, c_{h}’\}$ . Thus $\tau_{n}$ never converges to zero as $n$ increases; the
algorithm always works. Consequently, $u_{h}^{n}$ actually exists for all $n\geq 1$ .

To derive convergence, we require the inverse assumption and elliptic regu-
larity.

(H2) There exists a positive constant $\gamma_{2}$ such that

$\gamma_{2}h\leq h_{J}$ , $\forall J\in \mathcal{T}_{h}\in\{\mathcal{T}_{h}\}$ .

(R) There exists $\sigma\in(d, \infty)$ such that the following holds true: For any $p\in(1, \sigma)$

and $f\in L^{p}(\Omega)$ , a linear elliptic problem

$-\Delta v+v=f$ in $\Omega$ , $\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega$ (21)

admits a unique solution $v\in \mathcal{W}_{\mathrm{p}}$ that satisfies
$||v||_{2,p}\leq C||f||_{\mathrm{p}}$ (22)

with a constant $C=C(p,\cdot\Omega)>0$ .
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Remark 5.4. When $\Omega\subset \mathbb{R}^{2}$ is a convex polygon, (R) is always satisfied. On the
other hand, when $\Omega\subset \mathbb{R}^{3}$ is a convex polyhedron, it is satisfied, if all edges and
all vertices of $\Omega$ are sufficiently small. For complete descriptions, see Theorems
8.2.1.2 and 8.2.2.8 of [2].

Theorem 5.3. Suppose $(Hl),$ $(H\mathit{2})$ , and $(R)$ , and assume a unique solution to
(18) satisfying

$u\in C((\mathrm{O},T)$ : $\mathcal{W}_{p}$ ), $u’\in C((0, T)$ : $W^{1,\mathrm{p}}$ ) $\cap C^{\rho}((0,T)$ : $L^{p}$ )

for some $p\in(d, \sigma)$ and $\rho\in(0,1]$ . Moreover, chose $u_{0h}\in X_{h}$

$||u_{0}-u_{0h}||_{p}\leq\alpha_{0,p}h^{1-d/p}$ , (23)

with some $\alpha_{0,p}=\alpha_{0,p}(u_{0})>0$ . Then, there eaist positive constants $h_{0},$ $\tau_{0}$

depending on $\Omega,$ $T,$ $p,\cdot\rho,$ $\gamma_{i}’ s$ and $u$ such that we have the error estimates
$\sup||u(t_{n})-u_{h}^{n}||_{p}\leq C_{1}(h^{1-d/p}+\tau^{\rho})$ , (24)

$0\leq n\leq \mathrm{t}$

$\sup_{0\leq n\leq l}||Gu(t_{n})-G_{h}u_{h}^{n}||_{1,\infty}\leq C_{2}(h^{1-d/p}+\tau^{\rho})$ (25)

for $h\in(0, h_{0})$ and $\tau\in(0,\tau_{0})$ , where $l=l( \tau, h)=\max\{n\in \mathrm{N}|t_{n}<J\}$ ,
$\{u_{h}^{n}\}_{n\geq 0}\subset X_{h}$ is the solution of (19) as in Theorem 5.2.
Remark 5.5. In our scheme, the point-wise value of $\nabla v_{h}^{n-1}$ is used to determine
the upwind nodal points at $t_{n}$ . Thus, we need the estimate $v_{h}^{n}-v(t_{n})$ in $W^{1,\infty}(\Omega)$

norm uniformly in $t_{n}$ .
Figure 4 shows an example of numerical computation at several time levels $t_{n}$

with the value of $||u_{h}^{n}||_{1}$ . We assume that $\Omega=(0,1)^{2}\subset \mathbb{R}^{2}$ is a unit square and
take $\mathcal{T}_{h}$ as a uniform mesh composed of $2\ell^{2}$ equal right triangles for $\ell\in \mathrm{N}$ ; each
side of $\Omega$ is divided into $\ell$ intervals of the same length. Then each small square
is decomposed into two equal triangles by a diagonal. We note $h=\sqrt{2}\ell^{-1}$ .
We take $\mu=1$ and $\epsilon=0.9$ , and then highly concentrated solution is captured.
Mass conservation is also confirmed. In Figure 5, we plot $(t_{n}, \tau_{n})$ . We see that
the more is concentrated the approximate solution, the smaller is $\tau_{n}$ .

6 Discussion
These numerical results are not reliable for $t\gg 1$ . Actually, we have con-
structed numerical schemes so that the discrete solution preserves $L^{1}$ norm.
Consequently, the discrete solution exists globally in time, because $X_{h}$ is of
finite-dimensional. Thus, we cannot look at the moment of blowup numerically.
Also, structure of the total set of stationary solutions loses the fundamental pro-
file of quantized blowup mechanism by discretization, and even nearly blowup
descritized solution cannot describe this property. We have several more im-
portant profiles of the original solution from the viewpoint of self-organization;
blowup rate, free energy transmission, and so forth, bu.t we have not been able
to reahize them numerically also. Thus, Theorem 5.3 is not satisfactory, because
it is vahid only by the blowup time of $u$ , which we are required to detect by the
numerical computation. Still, we have a fruitful interaction between numerical
computation and theoretical study concerning the movement of $\mathrm{c}\mathrm{o}\mathrm{U}\mathrm{a}\mathrm{p}\mathrm{s}\mathrm{e}$ formed
on the boundary. See [10].
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(i) $t_{0}=0.000000$

$(||u_{0h}||_{1}=50.000)$
(ii) $t_{n}=0.004538$
$(||u_{h}^{n}||_{1}=50.000)$

(iii) $t_{n}=0.008587$

$(||u_{h}^{n}||_{1}=50.000)$

(v) $t_{n}=0.089382$
$(||u_{h}^{n}||_{1}=50.000)$

(iv) $t_{n}=0.045250$

$(||u_{h}^{n}||_{1}=50.000)$

(vi) $t_{n}=0.089635$
$(||u_{h}^{n}||_{1}=50.000)$

Figure 4: Shape of $u_{h}^{n}(\mu=1;\epsilon=0.9;\tau=h/2;\ell=64):(\mathrm{i})$ , the initial function
has three peaks; (ii)(iii)(iv), they gather and produce a peak; (v)(vi), the peak
moves toward a corner.
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Figure 5: Time $t_{n}$ versus time increment $\tau_{n}$ . ($0<t_{n}<0.09;\mu=1;\epsilon=0.9$ ;
$\tau=h/2;\ell=64;||u_{0h}||_{1}=50.0$ and $u_{0h}$ is illustrated in Fig. 4.)

References
[1] K. Baba and M. Tabata: On a conservative upurind finite element scheme

for convective diffusion equations, RAIRO Anal. Num\’er. 15 (1981) 3-25.
[2] P. Grisvard: Elliptic Problems in Nonsmooth Domains, Boston, Pitman,

1983.

[3] T. Hillen and H.G. Othmer: The diffusion limit of transport equations de-
rived from velocity jump processes, SIAM J. Appl. Math. 61 (2000) 751-775.

[4] E. F. KeUer and L. A. Segel: Initiation on slime $m\dot{o}ld$ aggregation viewed as
instability, J. Theor. Biol. 26 (1970) 399-415.

[5] H. G. Othmer and A. Stevens: Aggregation, blowup, and collapse: the ABCs
of taxis in reinforced random walks, SIAM J. Appl. Math. 57 (1997) 1044-
1081.

[6] N. Saito: Conseruative upwind finite element method for a simplified Keller-
Segel system modelling chemotaxis, submitted.

[7] N. Saito and T. Suzuki: Notes on finite difference schemes to a parabolic-
elliptic system modelling chemotnis, Appl. Math. Comput. 171 (2005) 72-
90.

[8] A. Stevens: The $der\dot{\tau}vation$ of chemotnis equations as limit dynamics of
moderately interacting stochastic many-pari,icle systems, SIAM J. Appl.
Math. 61 (2000) 183-212.

[9] T. Suzuki: Free Energy and Self-Interacting Particles, Birkh\"auser, Boston,
2005.

119



[10] T. Suzuki: Mean Field Theories and Dual Variation, Elsevier, Amsterdom,
2006 (to be published).

[11] M. Tabata: A finite difference approach to the number of peaks of solutions
for semilinear parabolic problems, J. Math. Soc. Japan 32 (1980) 171-192.

120


