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Abstract

The mutual entropy (information) denotes an amount of information
transmitted correctly from the input system to the output system through
a channel. The (semi-classical) mutual entropies for classical input and
quantum output were defined by several researchers. The fully quantum
mutual entropy, which is called Ohya mutual entropy, for quantum input
and output by using the relative entropy was defined by Ohya in 1983.

In this paper, we $\mathrm{c}o$mpare with mutual $\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}_{\Psi}$-type measures and
show some resuls for quantum capacity.

1 Introduction
The development of communication theory is closely connected with study of
entropy theory. The signal of the input system is carried through a physi-
cal device, which is called a channel. The mathematical representation of the
channel is a mapping from the input state space to the output state space.
In classical communication theory, the mutual entropy was formulated by us-
ing the joint probability distribution between the input system and the output
system. The (semi-classical) mutual entropies for classical input and quantum
output were defined by several researchers $[7, 8]$ . In fully quantum system, there
does not exist the joint probability distribution in general. Instead of the joint
probability distribution, Ohya took the measure theoretic expression by (KYG)
Kolmogorov-Gelfand-Yaglom and defined Ohya mutual entropy [10] by means
of quantum relative entropy of Umegaki [24] in 1983, he extended it [11] to gen-
eral quantum systems by using the relative entropy of Araki [2] and Uhlmann
[25].[23] and Bennet et al [3, 4, 21, 22] took the coherent entropy and defined
the mutual type entropy to discuss a sort of coding theorem for communication
processes.

In this paper, we compare with mutual entropy-type measures and show
some resuls for quantum capacity for the attenuation channel. $\mathcal{H}$
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2 Quantum Channels
The concept of channel has been carried out an important role in the progress
of the quantum communication theory. In particular, an attenuation channel
introduced in [10] is one of the most inportaint model for discussing the infor-
mation transmission in quantum optical communication. Here we review the
definition of the quantum channels.

Let $\mathcal{H}_{1},\mathcal{H}_{2}$ be the complex separable Hilbert spaces of an input and an
output systems, respectively, and let $\mathrm{B}(\mathcal{H}_{k})$ be the set of all bounded linear
operators on $\mathcal{H}_{k}$ . We denote the $s$et of all density operators on $\mathcal{H}_{k}$ $(k=1,2)$
by

6 $(\mathcal{H}_{k})\equiv\{\rho\in \mathrm{B}(\mathcal{H}_{k});\rho\geq 0,tr\rho=1\}$ . (1)

A map $\Lambda^{*}\mathrm{h}\mathrm{o}\mathrm{m}$ the quantum input system to the quantum output system is
called a (fully) quantum channel.

1. $\Lambda^{*}$ is called a linear channel if it satisfies the affine property, i.e.,

$\sum_{k}\lambda_{k}=1(\forall\lambda_{k}\geq 0)\Rightarrow\Lambda^{*}(\sum_{k}\lambda_{k\rho_{k}})=\sum_{k}\lambda_{k}\Lambda^{*}(\rho_{k}),\forall\rho_{k}\in S(\mathcal{H}_{1})$ .

2. $\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H}_{1})arrow \mathfrak{S}(\mathcal{H}_{2})$ is called a completely positive $(\mathrm{C}\mathrm{P})$ channel
if its dual map A satisfies

$\sum_{j,k=1}^{n}B_{j}^{*}\Lambda(A_{j}^{*}A_{k})B_{k}\geq 0$ (2)

for any $n\in \mathrm{N}$, any $B_{j}\in \mathrm{B}(\mathcal{H}_{1})$ and any $A_{k}\in \mathrm{B}(\mathcal{H}_{2})$ , where the dual map
$\Lambda$ : $\mathrm{B}(\mathcal{H}_{2})arrow \mathrm{B}(\mathcal{H}_{1})$ of $\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H}_{1})arrow \mathfrak{S}(\mathcal{H}_{2})$ satisfies $tr\rho\Lambda(A)=tr\Lambda^{*}(\rho)A$

for any $\rho\in \mathfrak{S}(\mathcal{H}_{1})$ and any $A\in \mathrm{B}(\mathcal{H}_{2})$ .

2.1 Attenuation channel
Let us consider the communication processes including noise and loss systems.
Let $\mathcal{K}_{1}$ , $\mathcal{K}_{2}$ be the complex separable Hilbert spaces for the noise and the loss
systems, respectively. The quantun communication channel

$\Lambda_{0}^{*}(\rho)\equiv tr\kappa_{2}\pi_{0}^{*}(\rho\otimes\xi_{0})$ , $\xi_{0}\equiv|0\rangle\langle 0|$ and $\pi_{0}^{*}(\cdot)\equiv V_{0}(\cdot)V_{0}^{*}$ (3)

is called the attenuation channel, where $|0\rangle\langle$$0|$ is vacuum state in $\mathcal{H}_{1}$ and $V_{0}$ is
a linear mapping from $\mathcal{H}_{1}\otimes \mathcal{K}_{1}$ to $\mathcal{H}_{2}\otimes \mathcal{K}_{2}$ given by

$V_{0}(|n \rangle\otimes|0\rangle)\equiv\sum_{j=0}^{n}C_{j}^{n}|j\rangle\otimes|n-j\rangle$ , $C_{j}^{n}=\sqrt{\frac{n!}{j!(n-j)!}}\dot{d}\overline{\beta}^{n-\mathrm{j}}$ (4)
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for any $|n\rangle$ in $\mathcal{H}_{1}$ and $\alpha,\beta$ are complex numbers satisfying $|\alpha|^{2}+|\beta|^{2}=1$ . $\eta=$

$|\alpha|^{2}$ is the transmission rate of the channel. $\pi_{0}^{*}\mathrm{i}\mathrm{s}$ called a beam spl\’ittings, which
means that one beam comes and two beams appear after passing $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}\pi_{0}^{*}$.
This attenuation channel is generalized by Ohya and Watanabe such as noisy
optical channel $[17, 18]$ . After that, Accardi and Ohya [1] reformulated it by
using liftings, which is the dual map of the transition expectation by mean
of Accardi. It contains the concept of beam splittings, which is extended by
Fichtner, Freudenberg and Libsher [6] concerning the mappings on generalized
Fock spaces. For the attenuation channel $\Lambda_{0}^{*}$ , one can obtain the following
theorem:

Theorem 1 The attenuation channel $\Lambda_{0}^{*}$ is descnibed by

$\Lambda_{0}^{*}(\rho)=‘\sum_{\=0}^{\infty}O_{i}V_{0}Q\rho Q^{*}V_{0}^{*}O_{i}^{*}$ , (5)

where $Q \equiv\sum_{l=0}^{\infty}(|y\iota\rangle\otimes|0\rangle)\langle y\iota|, O_{i}\equiv\sum_{k=0}^{\infty}|z_{k}\rangle(\langle z_{k}|\otimes\langle i|),$ $\{|y\iota\rangle\}$ is a CONS
$in\mathcal{H}_{1},$ $\{|z_{k}\rangle\}$ is a CONS in $\mathcal{H}_{2}$ and $\{|i\rangle\}$ is the set of number states in $\mathcal{K}_{2}$ .

3 Ohya $S$-Mixing Entropy

The quantum entropy was introduced by von Neumann around 1932 [9], which
is defined by

$S(\rho)\equiv-trp$ log $\rho$

for any density operators $\rho$ in $S(\mathcal{H}_{1})$ . It denotes the amount of information of
the quantum state $\rho$ . It was extended by Ohya [12] for general quantum systems
as follows.

Let $(A, S(A))$ be a $\mathrm{C}^{*}$-system. The entropy of a state $\varphi\in S$ seen from the
reference system, a $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}*$-compact convex $s$ubset of the whole state space $S(A)$

on the $\mathrm{C}^{*}$-algebra $A$, was introduced by Ohya, which is called a Ohya S-mixing
entropy. This Ohya $S$-mixing entropy contains von Neumann’s entropy and
classical entropy as special cases.

Every state $\varphi\in S$ has a maximal measure $\mu$ pseudosupported on $\mathrm{e}\mathrm{x}S$ (ex-
treme points in $S$) such that

$\varphi=\int_{\mathrm{e}\mathrm{x}S}\omega d\mu$. (6)

The measure $\mu$ giving the above decomposition is not unique unless $S$ is a
Choquet simplex, so that we denote the set of all such measures by $M_{\varphi}(S)$ .
Take

$D_{\varphi}(S)$ $\equiv$ { $\mu\in M_{\varphi}(S);\exists\{\mu_{k}\}\subset \mathbb{R}^{+}$ and $\{\varphi_{k}\}\subset \mathrm{e}\mathrm{x}S\mathrm{s}.\mathrm{t}$ . (7)

$\sum_{k}\mu_{k}=1,$
$\mu=\sum_{k}\mu_{k}\delta(\varphi_{k})\}$ ,
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where $\delta(\varphi)$ is the delta measure concentrated on $\{\varphi\}$ . Put

$H( \mu)=-\sum_{k}\mu_{k}\log\mu_{k}$ (8)

for a $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mu\in D_{\varphi}(S)$.
Ohya $S$-mixing entropy of a general state $\varphi\in S$ w.r.t. $S$ is defined by

$S^{S}(\varphi)=\{$
$\inf\{H(\mu);\mu\in D_{\varphi}(S)\}$ $(D_{\varphi}(S)\neq\emptyset)$

$\infty$ $(D_{\varphi}(S)=\emptyset)$
(9)

When $S$ is the total space $S(A)$ , we simply denote $S^{S}(\varphi)$ by $S(\varphi)$ . This entropy
(mixing $S$-entropy) of a general state $\varphi$ satisfies the following properties [12].

Theorem 2 When $A=\mathrm{B}(\mathcal{H})$ and $\alpha_{t}=Ad(U_{t})(i.e,,$ $\alpha_{t}(A)=U_{t}^{*}AU_{t}$ for
$anyA\in A)$ with a unitary $ope7\mathrm{u}torU_{t}$ , for any state $\varphi giv$en by $\varphi(\cdot)=tr\rho$. with
a density operator $\rho$, the following facts holXl:

(1) $S(\varphi)=$ -trplogp.
(2) If $\varphi$ is an $\alpha$-invariant faithfixl state and every eigenvalue of $\rho$ is non-

degenerate, then $S^{I(\alpha)}(\varphi)=S(\varphi)$ , where $I(\alpha)$ is the set of all $\alpha$-invariant faith-
ful states.

(3) If $\varphi\in K(\alpha)$ , then $S^{K(\alpha)}(\varphi)=0$ , where $K(\alpha)$ is the set of all $KMS$

states.

Theorem 3 For any $\varphi\in K(\alpha)$ , we have
(1) $S^{K(\alpha)}(\varphi)\leq S^{I(\alpha)}(\varphi)$ .
(2) $S^{K(\alpha)}(\varphi)\leq S(\varphi)$ .
This OhyaS-mixing entropy gives a measure of the uncertainty observed

from the reference system $S$ so that it has the following merits: Even if the
total entropy $S(\varphi)$ is infinite, $S^{S}(\varphi)$ is finite for some $S$ , hence it explains a sort
of symmetry breaking in $S$ . Other similar propertie$s$ as $S(\rho)$ hold for $S^{S}(\varphi)$ .
This entropy can be applied to characterize normal states and quantum Markov
chains in von Neumann algebras.

The relative entropy for two general states $\varphi$ and $\psi$ was introduced by Araki
and Uhlmann and their relation is considered by Donald and Hiai et al.

4 Quantum Relative Entropy

4.1 Umegaki’s deflnition
Let $\mathrm{B}(\mathcal{H})$ be the set of all bounded linear operators on a Hilbert space $\mathcal{H}$ and
$\rho,\sigma$ be density operators on $\mathcal{H}$ . The Umegaki’s relative entropy [24] with respect
to $\rho$ and $\sigma$ is defined by

$S(\rho,\sigma)\equiv\{$
$tr\rho$ ($\log\rho-\log$ a) (when $\overline{ran\rho}\subset\overline{ran\sigma}$)

$\infty$ (otherwise)
(10)

It represents a certain difference between two quantum states $\rho,\sigma$ . There were
several trials to extend the relative entropy to more general quantum systems
and apply it to some other fields [2, 12, 13, 25].
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4.2 Araki’s definition
Let $N$ be a-finite von Neumann algebra acting on a Hilbert space $\mathcal{H}$ and $\varphi,\psi$

be normal states on $N$ given by $\varphi(\cdot)=\langle x, \cdot x\rangle$ and $\psi(\cdot)=\langle y, \cdot y\rangle$ with $x,y\in \mathcal{K}$

(a positive natural cone). The operator $S_{x,\mathrm{y}}$ is defined by

$S_{x,y}(Ay+z)=s^{N}(y)A^{*}x,$ $A\in N,$ $s^{N’}(y)z=0$ , (11)

on the domain $\Re y+(I-s^{\Re’}(y))\mathcal{H}$ , where $s^{\mathfrak{R}}(y)$ is the projection from $\mathcal{H}$ to
$\{\Re’y\}^{-}$ , the $\Re$ -support $\mathrm{o}\mathrm{f}y$ . Using this $S_{x,y}$ , the relative modular operator
$\Delta_{x,y}$ is defined as $\underline{\Delta_{xy}}=(S_{xy})^{*}\overline{S_{x,y}}$, whose spectral decomposition is denoted
by $\int_{0}^{\infty}\lambda de_{x,y}(\lambda)$ ( $S_{x,y}$ is the closure of $S_{x,y}$ ). Then the Araki relative entropy
[2] is given by

$S(\psi, \varphi)=\{$

$\int_{0}^{\infty}\log\lambda d\langle y,e_{x,y}(\lambda)y\rangle$ $(\psi\ll\varphi)$

$\infty$ (otherwise) ‘ (12)

where $\psi\ll\varphi$ means that $\varphi(A^{*}A)=0$ implies $\psi(A^{*}A)=0$ for $A\in\Re$ .

4.3 Uhlmann’s deflnition
Let $L$ be a complex linear space and $p,$ $q$ be two seminorms $\mathrm{o}\mathrm{n}\mathcal{L}$ . Moreover, let
$H(L)$ be the set of all positive hermitian forms $\alpha$ on $\mathcal{L}$ satisfying $|\alpha(x,y)|\leq$

$p(x)q(y)$ for all$x,y\in L$ . Then the quadratical mean $QM(\mathrm{p}, q)$ of $p$ and $q$ is
defined by

$QM(p,q)(x)= \sup\{\alpha(x, x)^{1/2};\alpha\in H(L)\},$ $x\in \mathcal{L}$ , (13)

and there exists a function $p_{t}(x)$ of $t\in[0,1]$ for each $x\in L$ satisfying the
following conditions:

1. For $\mathrm{a}\mathrm{n}\mathrm{y}x\in \mathcal{L},$ $p_{t}(x)$ is continuous in $t$ ,

2. $p_{1/2}=QM(p, q)$ ,

3. $p_{t/2}=QM(p,p_{t})$ ,

4. $p_{(t+1)/2}=QM(p_{t},q)$ .
This seminorm $p_{t}$ is denoted by $QI_{t}(p, q)$ and is called the quadratical in-

terpolation &om $p\mathrm{t}\mathrm{o}q$ . It is shown that for any positive hermitian $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}\alpha,\beta$ ,
there exists a unique function $QF_{t}(\alpha, \beta)$ of $t\in[0,1]$ with values in the set $H(\mathcal{L})$

such that $QF_{t}(\alpha, \beta)(x,x)^{1/2}$ is the quadratical interpolation from $\alpha(x,x)^{1/2}$

$\mathrm{t}\mathrm{o}\beta(x,x)^{1/2}$ . The relative entropy functional $S(\alpha,\beta)(x)$ of $\alpha$ and $\beta$ is defined as

$S( \alpha,\beta)(x)=-\lim_{tarrow}\inf_{0}\frac{1}{t}\{QF_{t}(\alpha,\beta)(x,x)-\alpha(x,x)\}$ (14)

forx $\in$ L. Let $L$ be $\mathrm{a}*$-algebra $A$ and $\varphi$ , Cb be positive linear functionals on $A$

defining two hermitian forms $\varphi^{L},\psi^{R}s$uch as $\varphi^{L}(A,B)=\varphi(A^{*}B)\mathrm{a}\mathrm{n}\mathrm{d}\psi^{R}(A,B)=$

$\psi(BA^{*})$ .
The Uhlmanns relative entropy [25] of $\varphi$ and th is defined by

$S(\psi, \varphi)=S(\psi^{R},\varphi^{L})(I)$ . (15)
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5 Ohya Mutual Entropy for Genaral Quantum
Systems

The classical mutual entropy is determined by an input state and a channel,
so that we denote the quantum mutual entropy with respect to the input state
$\varphi$ and the quantum channel $\Lambda^{*}$ by $I(\varphi;\Lambda^{*})$ . This quantum mutual entropy
$I(\varphi;\Lambda^{*})$ should satisfy the following three conditions:

(1) The quantum mutual entropy is well-matched to the von Neumann en-
tropy. That is, if a channel is trivial, i.e., $\Lambda^{*}=\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}$ map, then the mutual
entropy equals to the von Neumann entropy: $I(\varphi;id)=S(\varphi)$ .

(2) When the system is classical, the quantum mutual entropy reduces to
classical one.

(3) Shannon’s fundamental inequality $0\leq$ $0\leq I(\varphi;\Lambda^{*})\leq S(\varphi)$ is held.
In order to define such a quantum mutual entropy, we need the quantum

relative entropy and the joint state, which is called a compound state, describing
the correlation between an input state $\varphi$ and the output state $\Lambda^{*}\varphi$ through a
channelA*. For $\varphi\in S\subset S(A)$ and $\Lambda^{*}$ : $S(A)arrow S(\overline{A})$ , the compound states are
define by

$\Phi_{\mu}^{S}=\int_{S}\omega\otimes\Lambda^{*}\omega d\mu$ (16)

and
$\Phi_{0}=\varphi\otimes\Lambda^{*}\varphi$. (17)

The first compound state, which is called a Ohya compund state, generalizes the
joint probability in classical dynamical system and it exhibits the correlation
between the initial state $\varphi$ and the final state $\Lambda^{*}\varphi$ .

Ohya mutual entropy w.r.t. $S$ and $\mu$ is

$I_{\mu}^{S}(\varphi;\Lambda^{*})=S(\Phi_{\mu}^{S}, \Phi_{0})$ (18)

and Ohya mutual entropy [12] w.r.t. $S$ is defined by

$I^{S}( \varphi;\Lambda^{*})=\lim_{\epsilonarrow}\sup_{0}\{I_{\mu}^{S}(\varphi;\Lambda^{*});\mu\in F_{\varphi}^{\epsilon}(S)\}$ , (19)

where

$F_{\varphi}^{\epsilon}(S)=\{$

$\{\mu\in D_{\varphi}(S);S^{S}(\varphi)\leq H(\mu)\leq S^{S}(\varphi)+\epsilon<+\infty\}$

$M_{\varphi}(S)$

$t_{s^{s_{(\varphi)=+\infty}}}^{S^{S}(\varphi)<+\infty})$

(20)
The following fundamental inequality is satisfied for almost all physical caeae
[13].

$0\leq I^{S}(\varphi;\Lambda^{*})\leq S^{S}(\varphi)$ (21)

In the case that the $\mathrm{C}^{*}$-algebra is $\mathrm{B}(\mathcal{H})$ and $S$ is the set of all density operators,
the above Ohya mutual entropy goes to

$I( \rho;\Lambda^{*})=\sup\{\sum_{\mathrm{n}}S(\Lambda^{*}E_{\mathrm{n}}, \Lambda^{*}\rho),$ $\rho=\sum_{n}\lambda_{n}E_{n}\}$ , (22)
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where $p$ is a density operator (state), $S(\Lambda^{*}E_{n}, \Lambda^{*}\rho)\mathrm{i}\mathrm{s}$ Umegaki’s relative entropy
and $p= \sum_{\Sigma}nE_{n}$ is Schatten-von Neumann (one dimensional spectral) decom-
position. As was mentioned above, it satisfies the Shannon’s type inequality as
$\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}:0\leq I(\rho, \Lambda^{*})\leq\min\{S(\rho), S(\Lambda^{*}\rho)\}$ . It is easily shown that we can take
orthogonal decomposition instead of the Schatten-von Neumann decomposition
[20].

5.1 Semi-classical mutual entropy
When the input system is classical, the state $\varphi$ is a probability distribution
and the Schatten-von Neumann decomposition is unique with delta measures
$\delta_{n}$ such that $\varphi=\sum_{n}\lambda_{n}\delta_{n}$ . In this case we need to code the classical state $\varphi$ by
a quantum state $\psi$ , whose process is a quantum coding described by a channel
$\Gamma^{*}$ such that $\Gamma$

“
$\delta_{n}=\psi_{n}$ (quantum state) $\mathrm{a}\mathrm{n}\mathrm{d}\psi\equiv\Gamma$

‘
$\varphi=\sum_{n}\lambda_{n}\psi_{n}$ . Then Ohya

mutual entropy $I$ $(\varphi;\Lambda^{*}0\Gamma‘)$ becomes Holevo’s one, that is,

$I( \varphi;\Lambda^{*}0\Gamma^{*})=S(\Lambda^{*}\psi)-\sum_{n}\lambda_{n}S(\Lambda^{*}\psi_{n})$ (23)

when $\sum_{n}\lambda_{n}S(\Lambda^{*}\psi_{n})$ is finite. These Ohya mutual entropy (ME) are com-
pletely quantum, namely, it represents the information transmission from a
quantum input to a quantum output. The quantum system is described by a
noncommutative structure. The classical system is expressed by a commuta-
tive construction. In the mathematical point of view, the commutative $s$ystems
are contained in the noncommutative framework. One can obtain the following
diagram.

$\swarrow’$ Semi-classical ME $arrow$ Ohya ME
$\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{o}\mathrm{n}’\mathrm{s}$ ME $\uparrow$

X ME (GKY) $arrow$ Ohya ME for GQS

6 Quantum Mutual Type Entropies
Recently Shor [23] and Bennet et al $[3, 4]$ took the coherent entropy and de-
fined the mutual type entropy to discuss a sort of coding theorem for quantum
communication. In this section, we compare these mutual types entropy.

Let us $\mathrm{d}\mathrm{i}s$cuss the entropy exchange [21]. For a $s\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\rho$ , a channel $\Lambda^{*}$ is
denoted by using an operator valued measure $\{A_{\mathrm{j}}\}$ such as

$\Lambda^{*}(\cdot)\equiv\sum_{\mathrm{j}}A_{j}^{*}\cdot A_{\mathrm{j}}$ , (24)

which is called a $\mathrm{S}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}g-\mathrm{S}\mathrm{u}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{n}$-Kraus form. Then one can define a
matrix $W=(W_{1j}’)_{i,j}$ with

$W_{ij}\equiv trA_{i}^{*}\rho A_{j}$ , (25)

by which the entropy exchange is defined by

$S_{e}(\rho, \Lambda^{*})=-trW\log$ W. (26)
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By using the entropy exchange, two mutual type entropies are defined as follows:

$I_{C}(\rho;\Lambda^{*})\equiv S(\Lambda^{*}\rho)-S_{e}(\rho, \Lambda^{*})$ , (27)

$I_{L}(\rho;\Lambda^{*})\equiv S(p)+S(\Lambda^{*}\rho)-S_{e}(\rho, \Lambda^{*})$ . (28)

The first one is called the coherent entropy $I_{C}(\rho;\Lambda^{*})[22]$ and the second one is
called the Lindblad entropy $I_{L}(\rho;\Lambda^{*})[4]$ . By comparing these mutual entropies
for quantum information communication processes, we have the following theo
rem [19]:

Theorem 4 Let $\{A_{j}\}$ be a projection valued measure with $dimA_{j}=1$ . For
arbitrary state $\rho$ and the quantum channel $\Lambda^{*}(\cdot)\equiv\sum_{j}A_{j}\cdot A_{j}^{*}$ , one has

(1) $0 \leq I(p;\Lambda^{*})\leq\min\{S(\rho), S(\Lambda^{*}\rho)\}$ ($Ohya$ mutual entropy),
(2) $I_{C}(p;\Lambda^{*})=0$ (coherent entropy),
(3) $I_{L}(\rho;\Lambda^{*})=S(\rho)$ (Lindblad entropy).

For the attenuation channel $\Lambda_{0}^{*}$ , one can obatain the following theorems [19]:

Theorem 5 For any state $p= \sum_{n}$ $\mathrm{A}_{n}|n\rangle\langle$ $n|$ and the auenuation channel $\Lambda_{0}^{\mathrm{s}}$

with $| \alpha|^{2}=|\beta|^{2}=\frac{1}{2}$ , one has
(1) $0 \leq I(p;\Lambda_{0}^{*})\leq\min\{S(\rho), S(\Lambda_{0}^{*}p)\}$ ($Ohya$ mutual entropy),
(2) $I_{C}(\rho;\Lambda_{0}^{*})=0$ (coherent entropy),
(3) $I_{L}(\rho;\Lambda_{0}^{*})=S(\rho)$ (Lindblad entropy).

Theorem 6 For the attenuation channel $\Lambda_{0}^{*}$ and the input statep $=\lambda|0\rangle$ $\langle 0|+$

$(1-\lambda)|\theta\rangle\langle\theta|$ , we have
(1) $0 \leq I(p;\Lambda_{0}^{*})\leq\min\{S(\rho), S(\Lambda_{0}^{*}p)\}$ ($Ohya$ mutual entropy),
(2) $-S(\rho)\leq I_{C}(\rho;\Lambda_{0}^{*})\leq S(p)$ (coherent entropy),
(3) $0\leq I_{L}(\rho;\Lambda_{0}^{*})\leq 2S(\rho)$ (Lindblad entropy).

Therem 4.3 shows that the coherent entropy $I_{C}(\rho;\Lambda_{0}^{*})$ takes a minus value
for $|\alpha|^{2}<|\beta|^{2}$ and the Lindblad entropy $I_{L}(p;\Lambda_{0}^{*})$ is grater than the von Neu-
mann entropy of the input state $p$ for $|\alpha|^{2}>|\beta|^{2}$ .

From these theorems, Ohya mutual entropy $I(\rho;\Lambda^{*})$ only satisfies the in-
equality held in classical systems, so that Ohya mutual entropy can be a most
suitable candidate as quantum extension of the classical mutual entropy.

7 Quantum Capacity
The capacity means the ability of the information transmission of the channel,
which is used as a measure for construction of channel$s$ . The fully quantum
capacity is formulated by taking the supremum of the fully quantum mutual
entropy with respect to a certain subset of the initial state space. The capacity
of purely quantum channel was studied in [14, 15, 16, 17].

Let $S$ be the set of all input states satisfying some physical conditions. Let
us consider the ability of information transmission for the quantum channelA’.
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The answer of this question is the capacity of quantum channel $\Lambda^{*}$ for a certain
set $S\subset S(\mathcal{H}_{1})$ defined by

$C_{q}^{S}( \Lambda^{*})\equiv\sup\{I(\rho;\Lambda^{*});\rho\in S\}$ . (29)

When $S=S(\mathcal{H}_{1})$ , the capacity of quantum channel $\Lambda^{*}$ is denoted by $C_{q}(\Lambda^{*})$ .
Then the following theorem for the attenuation channel was proved in [19].

Theorem 7 For a subset $S_{n}\equiv\{p\in S(\mathcal{H}_{1});\dim s(\rho)=n\}$ , the capacity of the
attenuation channel $\Lambda_{0}^{*}sa\hslash sfies$

$C_{q}^{S_{\iota}}’(\Lambda_{0}^{*})=\log n$,

where $s(\rho)$ is the support projection of $\rho$ .

When the mean energy of the input state vectors $\{|\tau\theta_{k}\rangle\}$ can be taken
infinite, i.e., $\lim_{\tauarrow\infty}|\tau\theta_{k}|^{2}=\infty$ , the above theorem tells that the quantum
capacity for the attenuation channel $\Lambda_{0}^{*}$ with $\mathrm{r}\mathrm{e}s$pect to $S_{n}$ becomes $\log n$ . It is
a natural result, however it is impossible to take the mean energy of input state
vector infinite. Therefore we have to compute the quantum capacity

$C_{q}^{S_{e}}( \Lambda^{*})=\sup\{I(p;\Lambda^{*});p\in S_{e}\}$ (30)

under some constraint $S_{\mathrm{e}}\equiv\{\rho\in S;E(p)<e\}$ on the mean energy $E(\rho)$ of the
input state $\rho$ . In $[11, 14]$ , we also considered the pseudo-quantum capacity
$C_{pq^{\epsilon}}^{S}(\Lambda^{*})$ defined by

$C_{pq^{\epsilon}}^{S}$ (A$*$ ) $= \sup\{I_{p}(\rho;\Lambda^{*});\rho\in S_{e}\}$ (31)

with the pseudo-mutual entropy $I_{pq}(\rho;\Lambda^{*})$

$I_{pq}( \rho;\Lambda^{*})=\sup\{\sum_{k}\lambda_{k}S(\Lambda^{*}\rho_{k}, \Lambda^{*}\rho);\rho=\sum_{k}\lambda_{kp_{k}}$ , finite $\mathrm{d}\mathrm{e}\mathrm{c}o\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\}$ ,

(32)
where the supremum is taken over all finite decompositions instead of all or-
thogonal pure decompositions for purely quantum mutual entropy. A pseudo-
quantum code is a probability distribution on $\mathfrak{S}(\mathcal{H})$ with finite support in the
set of product states. So $\{(\lambda_{k}), (\rho_{k})\}$ is a pseudo-quantum code if $(\lambda_{k})$ is a prob-
ability vector and $p_{k}$ are product states of $B(\mathcal{H})$ . The quantum states $\rho_{k}$ are
sent over the quantum mechanical media, for example, optical fiber, and yield
the output quantum states $\Lambda^{*}\rho_{k}$ . The performance of coding and transmission
is measured by the pseudo-mutual entropy (information)

$I_{pq}((\lambda_{k}), (\rho_{k})$ ; A$*$ ) $=I_{pq}(\rho;\Lambda")$ (33)

with $\rho=\sum_{k}\lambda_{k\rho_{k}}$ . Taking the supremum over certain classes of pseudo-
quantum codes, we obtain various capacities of the channel. The supremum
is over product states because we have mainly product (that is, memoryless)
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channels in our mind. Here we consider a subclass of pseudo-quantum codes. A
quantum code is defined by the additional requirement that $\{\rho_{k}\}$ is a set of
pairwise orthogonal pure states [10]. However the pseudo-mutual entropy is not
well-matched to the conditions explained in Sec.3, and it is difficult to compute
numerically [15]. From the monotonicity of the mutual entropy [13], we have

$0 \leq C_{q}^{S_{0}}(\Lambda^{*})\leq C_{pq}^{S_{\mathrm{O}}}(\Lambda^{*})\leq\sup\{S(p);\rho\in S_{0}\}$ .
In order to estimate the quantum mutual entropy , we introduce the concept

of divergence center. Let $\{\omega_{i} : i\in I\}$ be a family of states and $R>0$ . We
say that the state $\omega$ is a divergence center for $\{\omega_{1} : i\in I\}$ with radius $\leq R$ if

$S(\omega_{i},\omega)\leq R$ for every $i\in I$ .
In the following discussion about the geometry of relative entropy (or divergence
as it is called in information theory) the ideas of [5] can be recognized very well.

Lemma 8 [$\mathit{1}\mathit{4}J$ Let $((\lambda_{k}), (\rho_{k}))$ be a quantum code for the channel $\Lambda^{*}$ and $\omega a$

divergence center utth radius $\leq R$ for $\{\Lambda^{*}\rho_{k}\}$ . Then

$I_{pq}((\lambda_{k}), (\rho_{k});\Lambda^{*})\leq R$.

Lemma 9[$\mathit{1}\mathit{4}J$ Let $\psi_{0},\psi_{1}$ and $\omega$ be states of $B(\mathcal{K})$ such that the Hilbert space
$\mathcal{K}$ is finite dimensional and set $\psi_{\lambda}=(1-\lambda)\psi_{0}+\lambda\psi_{1}(0\leq\lambda\leq 1)$ . If $S(\psi_{0},\omega)$ ,
$S(\psi_{1}, \omega)$ are finite and

$S(\psi_{\lambda},\omega)\geq S(\psi_{1},\omega)$ $(0\leq\lambda\leq 1)$

then
$S(\psi_{1},\omega)+S(\psi_{0},\psi_{1})\leq S(\psi_{0}, \omega)$.

Lemma 10 [141 Let $\{\omega_{\mathfrak{i}} : i\in I\}$ be a finite set of states of $B(\mathcal{K})$ such that
the Hilbert space $\mathcal{K}$ is finite dimensional. Then the exact divergence center is
unique and it is in the convex hull on the states $\omega_{i}$ .
Theorem 11 [$\mathit{1}\mathit{4}l$ Let $\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H})arrow \mathfrak{S}(\mathcal{K})$ be a channel with finite dimensional
K. Then the capacity $C_{p}(\Lambda$

‘
$)$ is the divergence radizes of the range of $\Lambda^{*}$ .
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