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Abstract

We consider families of parametrized Thue equations

$F_{a}(X,\mathrm{Y})=\pm 1$ , $a\in \mathrm{N}$,

where $F_{a}\in \mathrm{Z}[a][X,\mathrm{Y}]$ is a binary irreducible form with coefficients which are polynomials in some
parameter $a$ .

We give a survey on known results.

1 Thue Equations
Let $F\in \mathrm{Z}[X, \mathrm{Y}]$ be a homogeneous, irreducible polynomial of degree $n\geq 3$ and $m$ be a nonzero integer.
Then the Diophantine equation

$F(X, Y)=m$ (1)

is called a Thue $eq\mathrm{u}$ation in honour of A. Thue, who proved in 1909 [57]:

Theorem 1 (Thue). (1) has only a finite number of solutions $(x,y)\in \mathbb{Z}^{2}$ .
Thue’s proof is based on his approximation theorem: Let $\alpha$ be an algebraic number of degree $n\geq 2$

and $\epsilon>0$ . Then there exists aconstant $c_{1}(\alpha, \epsilon)$ , such that for all $p\in \mathbb{Z}$ and $q\in \mathrm{N}$

$| \alpha-\frac{p}{q}|\geq\frac{c_{1}(\alpha,\epsilon)}{q^{n/2+1+\epsilon}}$ .

Since this approximation theorem is not effective, Thue’s theorem is neither effective.

2 Number of Solutions
We call a solution $(x, y)$ to $F(x, y)=m$ primitive, if $x$ and $y$ are coprime integers. The problem of
giving upper bounds (depending on $m$ and the degree $n$) for the number of primitive solutions goes back
to Siegel. Such a bound has first been given by Evertse [14]. An improved version has been given by
Bombieri and Schmidt [6]:
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Theorem 2 (Bombieri-Schmidt [6]). There is an absolute constant $c_{2}$ such that for all $n\geq c_{2}$ the
Diophantine equation $F(X, Y)=m$ has at most 215. $n^{1+\omega(m)}$ primitive solutions, where ($o(m)$ denotes
the number of prime factors of $m$ and solutions $(x,y)$ and $(-x, -y)$ are regarded as the same.

At least for $m=\pm 1$ , this result is best possible (up to the constant 215), since the equation

$X^{n}+(X-Y)(2X-Y)\ldots(nX-\mathrm{Y})=\pm 1$

has at least the $n+1\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\pm\{(1,1), \ldots, (1, n), (0,1)\}$ .
Sharper bounds have been obtained for special classes of Thue equations.
If only $k$ coefficients of $F(X,\mathrm{Y})$ are nonzero, the number of solutions depends on $k$ and $m$ only (and

not on $n$). For $k=3$ , this is proved by Mueller and Schmidt [41]: There are at most $O(m^{2/n})$ solutions.
The general case $k\geq 3$ is proved in Mueller and Schmidt [42]: There are at most $O(k^{2}m^{2/n}(1+\log m^{1/n}))$

solutions. Thomas [56] gives absolute upper bounds for the number of solutions for $m=1$ and $k=3$ : If
$n\geq 38$ , then there are at most 20 solutions ($x,$ $y\rangle$ with $|xy|\geq 2$ , where solutions $(x, y)$ and $(-x, -y)$ are
only counted once. For smaller $n$ , similar bounds are given.

If only 2 coefficients of $F(X, Y)$ are nonzero, we arrive at the special case $ax^{n}$ $– by”=\pm 1$ and we
consider only the case $ab\neq 0,$ $x>0,$ $y>0$ . This equation has been studied by many authors, starting
with Delone [11] and Nagell [43], who proved that there is at most one solution for $n=3$ . Several authors
have contributed to this question. Finally, Bennett [4] could prove that there is at most one solution
$(x,y)$ .

We now consider cubic Thue equations $F(X, Y)=1$ . If the discriminant of $F$ is negative, there are
at most 5 solutions, and the cases of 4 and 5 solutions can be listed explicitly. This has been shown
independently by Delaunay [10] and Nagell [44] in the $1920’ \mathrm{s}$ . If the discriminant is positive, there are
at most 10 solutions, as it has been proved by Bennett [3]. Okazaki [47] proves that if the discriminant
is at least 5.65 $\cdot 10^{65}$ , then there are at most 7 solutions. It is conjectured by Nagell [45], $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{h}\acute{\acute{\mathrm{o}}}[48]$, and
Lippok [35] that there are at most 5 solutions except for five equations (modulo equivalence) which have
6 or 9 solutions. We note that there are two families of cubic Thue equations which have exactly five
solutions, cf. items 2 and 3 in the list in Section 4.1.

Okazaki [46] considers the analogous problem for quartic Thue equations $F(X, Y)=\pm 1$ . If all roots
of $F(x, 1)$ are real and the discriminant is larger than a computable constant $c_{3}$ , this equation has at
most 14 solutions, where solutions $(x, y)$ and $(-x, -y)$ are counted once.

3 Algorithmic Solution of Single Thue Equations
Studying linear forms in logarithms of algebraic numbers, A. Baker could give an effective upper bound
for the solutions of such a Thue equation in 1968 [1]:

Theorem 3 (Baker). Let $\kappa>n+1$ and $(x,y)\in \mathbb{Z}^{2}$ be a solution of (1). Then

$\max\{|x|, |y|\}<c_{4}e^{\log^{\kappa}|m|}$ ,

where $c_{4}=c_{4}(n, \kappa, F)$ is an effectively computable number.

Since that time, these bounds have been improved; Bugeaud and $\mathrm{G}\mathrm{y}6\mathrm{r}\mathrm{y}[7]$ give the following bound:

Theorem 4 (Bugeaud-Gy6ry). Let $B \geq\max\{|m|, e\}$ , $a$ be a root of $F(X, 1),$ $K:=\mathbb{Q}(\alpha),$ $R:=R_{K}$

the regulator of $K$ and $r$ the unit rank of K. Let $H\geq 3$ be an upper bound for the absolute values of the
coefficients of $F$ .

Then all solutions $(x, y)\in \mathbb{Z}^{2}$ of (1) satisfy

$\max\{|x|, |y|\}<\exp(c_{5}\cdot$ R. $\max\{\log R, 1\}\cdot(R+\log(HB)))$
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and

$\max\{|x|, |y|\}<\exp$ ($c_{6}\cdot H^{2n-2}\cdot\log^{2n-1}$ H. $\log B$),
$wi$th $c_{5}=3^{\mathrm{r}+27}(r+1)^{7t+19}n^{2n+6r+14}$ and $c_{6}=3^{3(n+9)}n^{18(+1)}"$ .

The bounds for the solutions obtained by Baker’s method are rather large, thus the solutions practi-
cally cannot be found by simple enumeration. For a similar problem Baker and Davenport [2] proposed
a method to reduce drastically the bound by using continued fraction reduction. Peth\’o and Schulenberg
[50] replaced the continued fraction reduction by the LLL-algorithm and gave a general method to solve
(1) for the totally real case with $m=1$ and arbitrary $n$ . Tzanakis and de Weger [61] describe the general
case. Finally, Bilu and Hanrot [5] were able to replace the LLL-algorithm by the much faster continued
fraction method and solve Thue equations up to degree 1000.

4 Families of Thue Equations
We study families of Thue equations

$F_{a}(X, Y)=\pm 1$ , $a\in \mathrm{N}$ (2)

where $F_{a}\in \mathbb{Z}[a][X,Y]$ is an irreducible binary form of degree of at least 3 with coefficients which are
integer polynomials in $a$ . In the investigation of such families usually only two types of solutions appear:
Firstly, there are polynomial solutions $X(a),$ $\mathrm{Y}(a)\in \mathbb{Z}[a]$ which satisfy (2) in $\mathrm{Z}[a]$ , and secondly, there
occur (sometimes) single solutions for a few small values of the parameter $a$ . However, Lettl [30] points
out that the family $X^{6}-(a-1)\mathrm{Y}^{6}=a^{2}$ does not have any polynomial solution, but there are sporadic
solutions for infinitely many values of the parameter $a$ .

The first infinite parametrized families of Thue equations were considered by Thue [58] himself: He
proved that the equation

$(a+1)X^{n}-aY^{n}=1$ , $X>0,$ $\mathrm{Y}>0$ (3)

has only the solution $x=y=1$ for $a$ suitably large in relation to prime $n\geq 3$ . For $n=3$ , the equation
(3) has only this solution for $a\geq 386$ . Of course, Bennett’s result [4] cited in Section 2 implies that this
is true for all $n\geq 3$ and $a\geq 1$ .

For a description of the techniques used to solve families of Thue equations, we refer to Heuberger [20].
Some automated procedures are presented in [26].

4.1 Families of Fixed Degree
In 1990, Thomas [53] investigated for the first time a parametrized family of cubic Thue equations of
positive discriminant. Since 1990, the following particular families of Thue equations have been studied:

1. $X^{3}-(a-1)X^{2}Y-(a+2)XY^{2}-Y^{3}=1$ .
Thomas [53] and Mignotte [36] proved that for $a\geq 4$ , the only solutions are $(0.-1),$ $(1,0)$ and
$(-1, +1)$ , while for the cases $0\leq a\leq 4$ there exist some nontrivial solutions, too, which are given
explicitly in [53]. For the same form $F_{a}(X, \mathrm{Y})$ , all solutions of the Thue inequality $|F_{a}(X, \mathrm{Y})|\leq$

$2a+1$ have been found by Mignotte, $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{h}\acute{\acute{\mathrm{o}}}$, and Lemmermeyer [39].

2. $X^{3}-aX^{2}Y-(a+1)XY^{2}-Y^{3}=X(X+Y)(X-(a+1)Y)-Y^{3}=1$ .
Lee [29] and independently Mignotte and Tzanakis [40] proved that for $a\geq 3.33\cdot 10^{23}$ there are
only the solutions

$(1, 0)$ , $(0, -1),$ $(1, -1),$ $(-a-1, -1),$ $(1, -a)$ .
Mignotte [37] could prove the same result for all $a\geq 3$ .
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3. Wakabayashi [66] proved that for $a\geq 1.35\cdot 10^{14}$ , the equation $X^{3}-a^{2}XY^{2}+Y^{3}=1$ has exactly
the five solutions $(0,1),$ $(1,0),$ $(1,$ $a^{2}\rangle,$ $(\pm a, 1)$ .

4. Togbe [60] considered the equation $X^{3}-(n^{3}-2n^{2}+3n-3)X^{2}Y-n^{2}X\mathrm{Y}^{2}-Y^{3}=\pm 1$ . If $n\geq 1$ ,
the only solutions are $(\pm 1,0)$ and $(0, \pm 1)$ .

5. Wakabayashi [64]: $|X^{3}+aX\mathrm{Y}^{2}+b\mathrm{Y}^{3}|\leq a+|b|+1$ for arbitrary $b$ and $a\geq 360b^{4}$ as well as for
$b\in\{1,2\}$ and $a\geq 1$ . He uses Pad\’e approximations.

6. Thomas [55]: Let $b,$ $c$ be nonzero integers such that the discriminant of $t^{3}-bt^{2}+ct-1$ is negative,
$\Delta=4c-b^{2}>0$ , and $c \geq\min\{4.2\mathrm{x}10^{41}\cross|b|^{2.32},3.6\mathrm{x}10^{41}\mathrm{x}\Delta^{1.1582}\}$. Then the Thue equation
$X^{3}-bX^{2}Y+cXY^{2}-Y^{3}=1$ only has the trivial solutions $(1, 0)$ , $(0, -1)$ .

7. $X(X-a^{d_{2}}\mathrm{Y})(X-a^{d_{3}}Y)\pm \mathrm{Y}^{3}=1$ .
This family was investigated by Thomas [54]. He proved that for $0<d_{2}<d_{3}$ and

$a\geq(2\cdot 10^{6}\cdot(d_{2}+2d_{3}))^{4.85/(d_{\mathrm{S}}-d_{2})}$

nontrivial solutions cannot exist. He also investigated this family with $a^{d_{1}}$ and $a^{d_{2}}$ replaced by
monic polynomials in $a$ of degrees $d_{1}$ and $d_{2}$ , respectively (see Theorem 5).

8. $X^{4}-aX^{3}\mathrm{Y}-X^{2}Y^{2}+aX\mathrm{Y}^{3}+\mathrm{Y}^{4}=X(X-\mathrm{Y})(X+\mathrm{Y})(X-a\mathrm{Y})+\mathrm{Y}^{4}=\pm 1$.
This quartic family was solved by Peth6 [49] for large values of $a$ ; Mignotte, Peth\’o, and Roth
[38] solved it completely: The only solutions $\mathrm{a}\mathrm{r}\mathrm{e}\pm\{(0,1), (1,0), (1,1), (1, -1), (a, 1), (1, -a)\}$ for
$|a|\not\in\{2,4\}$ . If $|a|=4$ , four more solutions exist. If $|a|=2$ , the family is reducible.

9. $X^{4}-aX^{3}Y-3X^{2}\mathrm{Y}^{2}+aX\mathrm{Y}^{3}+\mathrm{Y}^{4}=\pm 1$ has been solved for $a\geq 9.9\cdot 10^{27}$ by Peth6 [49].

10. $|bX^{4}-aX^{3}Y-6bX^{2}Y^{2}+aXY^{3}+bY^{4}|\leq N$ .
For $b=1$ and $N=1$ , this equation has been solved completely by Lettl and Peth\’o [31]; Chen
and Voutier [9] solved it independently by using the hypergeometric method. For the same form
binary form $F_{a,b}(X,$ $Y\rangle$ , Lettl, Peth\’o and Voutier [33] proved that $|F_{a}(X,$ $\mathrm{Y}\rangle$ $|\leq 6a+7$ has only
trivial primitive solutions for $a\geq 58$ , if $b=1$ . Furthermore, $x^{2}+y^{2} \leq\max\{25a^{2}/(64b^{2}\rangle,4N^{2}/a\}$ if
$a>308b^{4}$ , cf. Yuan [67].

11. Togb\’e [59] gives all solutions to $X^{4}-a^{2}X^{3}\mathrm{Y}-(a^{3}+2a^{2}+4a+2)X^{2}\mathrm{Y}^{2}-a^{2}X\mathrm{Y}^{3}+Y^{4}=1$ for
$a\geq 1.191\cdot 10^{19}$ and $a,$ $a+2,$ $a^{2}+4$ squarefree.

12. $|X^{4}-a^{2}X^{2}\mathrm{Y}^{2}+\mathrm{Y}^{4}|=|X^{2}(X-a)(X+a)+Y^{4}|\leq a^{2}-2$

This family of Thue inequalities has only trivial solutions with $|y|\leq 1$ for $a\geq 8$ (Walabayashi [62]).

13.
[$\leq a^{2}$ has been solved for $a\geq 205$ by Chen and Voutier

14. Dujella and Jadrijevi\v{c} [12], [13] prove that $|X^{4}-4cX^{3}Y+(6c+2)X^{2}Y^{2}+4cXY^{3}+Y^{4}|\leq 6c+4$

has only trivial solutions for all $c\geq 3$ .
15. $X(X-\mathrm{Y})(X-aY)(X-bY)-Y^{4}=\pm 1$ .

All solutions of this two-parametric family are known for $10^{2\cdot 10^{26}}<a+1<b\leq a(1+(\log a)^{-4})$ , cf.
Peth\’o and Tichy [51]. The case of $b=a+1$ has been considered by Heuberger, Peth6 and Tichy
[23], where all solutions could be determined for all $a\in$ Z.

16. Jadrijevi\v{c} [27] proves that for every $0.5<s\leq 1$ , there is an effectively computable constant $P(s)$

such that if $a\neq 0$ and $\max\{|a|, |b|\}\geq P(s)$ and $\mathrm{g}\mathrm{c}\mathrm{d}(a.b)\geq\max\{|a|^{s}, |b|^{s}\}$ , then the equation
$X^{4}-2abX^{j3}\mathrm{Y}+2(a^{2}-b^{2}+1)X^{2}Y^{2}+2abXY^{3}+\mathrm{Y}^{4}=1$ only has trivial solutions. In particular,
$P(0.999)=10^{27}$ and $P(0.501)=10^{36836}$ .

85



17. Wakabayashi [63] found all solutions of $|X^{4}-a^{2}X^{2}Y^{2}-bY^{4}|\leq a^{2}+b-1$ for $a\geq 5.3\cdot 10^{10}b^{6.22}$ .
18. $X(X^{2}-\mathrm{Y}^{2})(X^{2}-a^{2}\mathrm{Y}^{2})-Y^{5}=\pm 1$ .

For $a>3.6\cdot 10^{19}$ , all solutions have been found by Heuberger [18].

19. Ga\’al and Lettl [15] investigated the family $X^{5}+(a-1)X^{4}Y-(2a^{3}+4a+4)X^{3}Y^{2}+(a^{4}+a^{S}+$

$2a^{2}+4a-3)X^{2}Y^{3}+(a^{3}+a^{2}+5a+3)X\mathrm{Y}^{4}+\mathrm{Y}^{5}=\pm 1$ and found all solutions for $|a|\geq 3.3\cdot 10^{15}$ .
The remaining cases have been solved in Ga\’al and Lettl [16].

20. Levesque and Mignotte [34] found all solutions of the equation $X^{5}+2X^{4}Y+(a+3)X^{3}Y^{2}+(2a+$

$3)X^{2}Y^{3}+(a+1)X\mathrm{Y}^{4}-Y^{5}=\pm 1$ for sufficiently large $a$ .

21. $X^{6}-2aX^{5}\mathrm{Y}-(5a+15)X^{4}\mathrm{Y}^{2}-20X^{3}Y^{3}+5aX^{2}\mathrm{Y}^{4}+(2a+6)X\mathrm{Y}^{5}+Y^{6}\in\{\pm 1, \pm 27\}$ was investigated
by Lettl, $\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{h}\acute{\acute{\mathrm{o}}}$, and Voutier. They found all solutions for $a\geq 89$ by hypergeometric methods
[33] and all solutions for $a<89$ by using Baker’s method [32]. In [33], they also proved that
$|F_{a}(X, \mathrm{Y})|\leq 120a+323$ (for the form $F_{a}(X,$ $Y)$ considered) has only trivial primitive solutions for
$a\geq 89$ .

22. $X^{8}-8nX^{7}Y-28X^{6}\mathrm{Y}^{2}+56nX^{5}\mathrm{Y}^{3}+70X^{4}\mathrm{Y}^{4}-56nX^{3}Y^{5}-28nX^{2}\mathrm{Y}^{6}+8nX\mathrm{Y}^{7}+\mathrm{Y}^{8}=\pm 1$ has
only trivial solutions for $n\in\{a\in \mathrm{Z} : a+b\sqrt{2}=(1+\sqrt{2})^{2k+1}, k\in \mathrm{N}\}$ with $n\geq 6.71\cdot 10^{32}$ .
(Heuberger, Togb\’e and Ziegler [26]).

A more detailed survey on cubic families is contained in Wakabayashi [65].

4.2 Families of Relative Thue Equations
A few families of relative Thue equations have also been solved, i.e., families where the parameters and
the solutions are elements of the same imaginary quadratic number field.

So let $D>0$ be an integer, $k:=\mathbb{Q}(\sqrt{-D}),$
$\mathit{0}_{k}$ its ring of algebraic integers, and $\mu$ a root of unity in

$0_{k}$ .
1. For $t\in \mathit{0}_{k}$ with $|t|\geq 3.03\cdot 10^{9}$ , the only solutions $(x, y)\in 0_{k}^{2}$ to $X^{3}-(t-1)X^{2}Y-(t+2)X\mathrm{Y}^{2}-\mathrm{Y}^{3}=\mu$

satisfy $\max\{|x|, |y|\}\leq 1$ and can be listed explicitly (Heuberger, Peth6, and Tichy[24]).

2. For $t\in \mathit{0}_{k}$ with $|t|>2.88\cdot 10^{33}$ , the only solutions $(x, y)\in 0_{k}^{2}$ to $X^{3}-tX^{2}\mathrm{Y}-(t+1)X\mathrm{Y}^{2}-Y^{3}=\mu$

satisfy $\min\{|x|, |y|\}\leq 1$ and can be listed explicitly (Ziegler [68]).

3. For $s,t\in \mathit{0}_{k}$ with $|t|\geq 5.3\cdot 10^{1}0|s|^{12.44}$ or $s=1$ and $|t|>\sqrt{550}$, all solutions $(x,y)\in \mathit{0}_{k}^{2}$ to
$|X^{4}-t^{2}X^{2}\mathrm{Y}^{2}+s^{2}Y^{4}|\leq|t|^{2}-|s|^{2}-2$ are explicitly known (Ziegler [69]).

4.3 Families of Arbitrary Degree

Moreover, some general families of arbitrary degree have been considered. Apart from (3), the investigated
general families are of the shape

$F_{\mathrm{o}}(X, \mathrm{Y}):=\prod_{;_{=1}}^{n}(X-p.(a)\mathrm{Y})-Y^{n}=\pm 1$, (4)

where $p_{1},$ $\ldots,p"\in \mathbb{Z}[a]$ are polynomials, which have been called split families by E. Thomas [54]. For
$i=1,$ $\ldots,$

$n$ it can easily be seen that (X, Y) $\in\{\pm(p:, 1), (\pm 1,0)\}$ are solutions. Thomas conjectured
that if

$p_{1}=0$ , $\deg p_{2}<\cdots<\deg p_{n}$

and the polynomials are monic, there are no further solutions for sufficiently large values of the parameter
$a$ . In [54] he proved this conjecture for $n=3$ under some technical hypothesis:
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Theorem 5. Let $u=\pm 1,$ $a(t),$ $b(t)\in \mathbb{Z}[t]$ be monic polynomials and a $:=\deg a(t),$ $b:=\deg b(t)$ with
$0<a<b$ . We wrzte $A(t):=a(t)/t^{a}-1$ and $B(t):=b(t)/t^{b}-1$ and define for $n\geq 1$

$W(n)j= \sum_{j=1}^{\infty}\frac{(-1)^{j+1}}{j}(b\cdot A(n)^{j}-a\cdot B(n)^{j})$ ,

which can be written in powers of $1/n$ as $W(n)= \sum_{j=1}^{n}w_{j}n^{-j}$ . $h\hslash her$ we define $J:= \min\{j\in \mathrm{N}:w_{j}\neq$

$0\}$ .
If $J\neq b-a$ or $J=b-a\wedge 3w_{J}+2b+a\neq 0\wedge 3w_{J}-2(b-a)\neq 0$, then there is an effectively

computable constant $C_{7}^{}$ depending on the coefficients of $a(t)$ and $b(t)$ such that for $n\geq c_{7}$ the family of
Thue equations

$X(X-a(n)Y)(X-b(n)\mathrm{Y})+uY^{3}=\pm 1$

only has the solutions
$\pm\{(1,0), (0,u), (a(n\rangle u,u), (b(n)u, u)\}$ .

Halter-Koch, Lettl, Peth6 and Tichy [17] considered (4) for $\mathrm{p}_{1}=0,p_{2}=d_{2},$
$\ldots,$

$\mathrm{p}_{n-1}=d"-1$ and
$p”=a$ , where $d_{2},$

$\ldots,$
$d_{n-1}$ are fixed distinct integers. They found all solutions for sufficiently large values

of $a$ assuming a conjecture of Lang and Waldschmidt [28]–which is a very sharp bound for linear forms
in logarithms of algebraic numbers–:

Theorem 6. Let $n\geq 3,$ $p_{1}=0,p_{2}=d_{2,\ldots,p_{n-1}}=d_{n-1}$ be distinct integers and $p”=a$. Let $a=\alpha(a)$

be a $zem$ of $P(x)= \prod_{:=1}^{n}(x-\mathrm{p}_{i})-d$ with $d=\pm 1$ and suppose that the index I of $\langle\alpha-d_{1}, \ldots,\alpha-d_{n-1}\rangle$

in $\mathrm{O}^{\mathrm{x}}$ , the group of units of $\mathrm{O}:=\mathbb{Z}[a]$ , is bounded by a constant $J=J(d_{1}, \ldots, d_{n-1},n)$ for every a
fivm some subset $\Omega\in \mathrm{Z}$ . Assume further that the Lang-Waldschmidt conjectuoe is true. Then for all but
finitely many values $ofa\in\Omega$ the Diophantine equation

$\prod_{*=1}^{n}(x-\mathrm{p}:y)-dy^{n}=\pm 1$

has only solutions $(x,y)\in \mathrm{Z}^{2}$ with $|y|\leq 1$ , except for the cases of $n=3$ and $|d_{2}|=1$ or $n=4$ and
$(d_{2},d_{3})\in\{(1, -1), (\pm 1, \pm 2)\}$ , where it has $exacu_{y}$ one more solution for every value of a.

If $\mathbb{Q}(\alpha)$ is primitive over $\mathbb{Q}$ –especially if $n$ is prime –then there exists a bound $J=J(d_{1},$ $\ldots$ ,
$d_{n-1},$ $n)$ for the index $I$ by lower bounds for the regulator of $\mathrm{O}$ (cf. Pohst and Zassenhaus [52], chapter
5.6, (6.22) $)$ . Applying the theory of Hilbertian fields and results on thin sets, primitivity is proved for
almost all choices (in the sense of density) of the parameters, cf. [17].

The two exceptional families are those considered under 2 and 8 in the list in Section 4.1.
A similar family has been considered by Heuberger in [19], however, in this case, the result is uncon-

ditionally true:

Theorem 7. Let $n\geq 4$ be an integer, $d_{2},$
$\ldots$ , $d_{n-1}paif\tau vise$ distinct integers and $a$ an intprt parameter.

nnhermooe we assume

$d_{2}+\cdots+d"-1\neq 0$ or $d_{2}\cdots d_{n-1}\neq 0$ .

Let
$F_{a}(X, Y):=(X+aY)(X-d_{2}\mathrm{Y})(X-d_{3}\mathrm{Y})\cdots(X-d_{n-1}\mathrm{Y})(X-a\mathrm{Y})-\mathrm{Y}^{n}$.

Then there exists a (computable) constant $c_{8}$ depending only on the degree $n$ and $d_{2},$ $\ldots,d_{n-1}$ , such that
for all $a\geq c_{8}$ , the only solutions $(x,y)\in \mathbb{Z}^{2}$ of the Diophantine equation

$F_{\alpha}(X, \mathrm{Y})=\pm 1$

$a\mathrm{r}e\pm\{(1,0), (-a, 1), (d_{2},1), (d_{3},1), \ldots, (d_{n-1},1), (a, 1)\}$ .
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In [25], Heuberger and Tichy considered a multivariate version of (4):

Theorem 8. Let $n\geq 4,$ $r\geq 1,$ $p_{\dot{f}}\in \mathbb{Z}[A_{1}, \ldots, A_{f}]$ for $1\leq i\leq n$ . We make the following assumptions on
the polynomials $p_{i}$ :

$\deg p_{1}<\cdots<\deg p_{n-2}<\deg p_{n-1}=\deg p_{n}$ ,
$\mathrm{L}\mathrm{H}(p_{n})=\mathrm{L}\mathrm{H}(p"-1)$ , but $p_{n}\neq p_{n-1}$ .

$R4rthemooe$ we suppose that for $p\in\{p_{1}, \ldots,p"’ p_{n}-p_{n-1}\}$ , there exist positive constants $t_{\mathrm{p}},$
$c_{\mathrm{p}}$ such that

$|( \mathrm{L}\mathrm{H}(p))(a_{1}, \ldots , a_{f})|\geq c_{\mathrm{p}}\cdot(\min_{k}a_{k})^{\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{p}}$ for $a_{1},$ $\ldots,$
$a_{f}\geq t_{p}$ .

Let
$F_{a_{1},\ldots,a_{r}}(X, Y):= \prod_{i=1}^{n}(X-p_{l}’(a_{1}, \ldots, a_{f})Y)-Y^{n}$ .

For every constant $C>1$ there is a constant $t_{0}$ such that for au integers $a_{1},$ $\ldots,$
$a_{r}$ satisfying $t_{0} \leq\min_{k^{0_{k}}}$

and
$\max_{k}a_{\mathrm{k}}\leq C\cdot\min_{k}a_{k}$ ,

the Diophantine equation
$F_{a_{1},\ldots,a_{r}}(x, y)=\pm 1$

considered for $x,$ $y\in \mathbb{Z}$ only has the solutions $\{(\pm 1,0)\}\cup\{\pm(p_{i}(a_{1}, \ldots, a,), 1) : 1\leq i\leq n\}$.
In Heuberger [21] Thomas’ conjecture is proved under some technical hypothesis:

Theorem 9. Let $n\in \mathrm{N},$ $n\geq 3$ and $p:\in \mathbb{Z}[a]$ be monic polynomials for $i=1,$ $\ldots$ , $n$ . We write
$p:(a)=a^{d}\cdot+k_{i}a^{d:-1}+tems$ of lower degree, $i=2,$ $\ldots,n$ ,

allow $p_{1}=0$ and assume
$d_{1}<d_{2}<\cdots<d_{n-1}<d$“ and $n+d_{2}\geq 4$ .

Let
$\delta_{::=}\{$

1 if $d_{:}-d_{i-1}=1$ ,
$0$ otherwrise

and $e:= \sum_{:=2}^{n}d_{1}$ .

If $\delta_{4}=1$ or

$(e-d_{2}+2d_{3})(k_{2}- \delta_{2})+(-e-2d_{2}+d_{3})k_{3}+(d_{3}-d_{2})\sum_{1=4}^{n}k_{1}\not\in\{2\delta_{3}, -(e+d_{3})\delta_{3}\}$, (5)

then there is a (computable) constant $c_{9}=\mathrm{c}_{9}(p_{1}, \ldots,p_{n})$ depending on the coefficients of the polynomials
$p$: such that for all integers $a\geq c_{9}$ the Diophantine equation

$F_{a}(X, \mathrm{Y}):=.\prod_{1=1}"(X-p_{1}(a)Y)-Y^{n}=\pm 1$

only has the solutions
$(\pm 1,0)$ and $\pm(p:(a), 1),$ $1\leq i\leq n$ .

In [21], there is also a version with a stronger technical hypothesis than that in (5). For $n=3$ , that
version improves Theorem 5.

Especially there are only trivial solutions if
$\max(\deg p_{1},\mathrm{O})<\deg p_{2}<\deg p_{3}<\cdots<\deg p_{n}$

$\max(\deg p_{1},0)+\mathrm{d}\mathrm{e}gp_{2}+\ldots+\deg p_{n}<15$.
In Heuberger [22], an explicit constant $c_{9}$ for Theorem 9 is given:

$c_{9}=\exp(1.01(n+1)(n-1)!(n-1)^{n-2}\exp(1.04(n-2)(nd_{n}-n+3))(2P+1)" d_{\mathfrak{n}})$ ,

where $d_{j}=\deg \mathrm{p}_{j}$ and $P$ is an upper bound for the absolute values of the coefficients of the $p_{\mathrm{J}},$ $j=1,$ $\ldots,n$ .
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