
SOMOS SEQUENCES, CONTINUED FRACTIONS,
AND HYPERELLIPTIC CURVES ceNTRe

Sydney, Australia 2071

ALFRED J. VAN DER POORTEN

ABSTRACT. I detail the continued fraction expansion of the square root of a
monic polynomials of even degree. In the quartic and sextic cases I observe
explicitly that parameters appearing in the continued fraction expansion yield
integer sequences defined by relations instancing sequences of Somos type.
Because each step in the expansion corresponds to addition by the divisor
at infinity on (the Jacobian of) the relevant curve I recover the link between
Somos sequences and the $\mathrm{c}$ -ordinates of the multiples of a point on certain
curves.

The notes below are in fact the reformatted transcript of a six months later version
of the talk I actually gave at the RIMS Meeting on October 20, 2004. Interested
readers can click through a more colourful display version of the talk below after
downloading it at http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . maths. $\mathrm{m}\mathrm{q}.\mathrm{e}\mathrm{d}\mathrm{u}.\mathrm{a}\mathrm{u}/\sim \mathrm{a}\mathrm{l}\mathrm{f}/\mathrm{S}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{s}$. pdf.

I am particularly grateful for an incidental remark made to me at the meeting
which led me to rethink my method and to find significant simplifications of part
of my arguments.

1. Two SURPRISING ALLEGATIONS

A pseudo-elliptic integral.

$\int^{x}t^{4}+4t^{3}-=6t^{2}+4t+1dt6t=\log(x^{6}+12x^{5}+45x^{4}+44x^{3}-33x^{2}+43$

$+(x^{4}+10x^{3}+30x^{2}+22x-11)\sqrt{x^{4}+4x^{3}-6x^{2}+4x+1})$ .

A Somos sequence of width 5. The sequence $(B_{h})_{-\infty<h<\infty}=\ldots,$ $3,2,1,1$ ,
1, 1, 1, 2, 3, 5, 11, 37, 83, $\ldots$ is produced by the recursive definition

$B_{h+3}=(B_{h-1}B_{h+2}+B_{h}B_{h+1})/B_{h-2}$

and consists entirely of integers. .....
Studying the first surprise led me to stumble on to the second.
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2. MICHAEL SOMOS’ SEQUENCES

Some fifteen years ago, Michael Somos noticed that the two-sided sequence
$C_{h-2}C_{h+2}=C_{h-}{}_{1}C_{h+1}+C_{h}^{2}$ ,

which I refer to as 4-Somos in his honour, apparently takes only integer values if
we start from $C_{-1},$ $C_{0},$ $C_{1},$ $C_{2}=1$ .

Indeed Somos goes on to investigate also the width 5 sequence, $B_{h-2}B_{h+3}=$

$B_{h-1}B_{h+2}+B_{h}B_{h+1}$ , now with five initial $1\mathrm{s}$ , the width 6 sequence $D_{h-3}D_{h+3}=$

$D_{h-2}D_{h+2}+D_{h-1}D_{h+1}+D_{h}^{2}$ , and so on, testing whether each –when initiated
by an appropriate number of ls –yields only integers. Naturally, he asks: “What
is going on here?”

By the way, while 4-Somos (A006720), 5-Somos (A006721), 6-Somos (A006722),
and 7-Somos (A006723), do yield only integers; 8-Somos does not.

The codes in parentheses refer to Neil Sloane’s On-line encyclopedia of integer
sequences.

Zagier’s Comments. Concerning $(B_{h})$ –thus 5-Somos–Don Zagier inter alia
writes:

“One computes the first few (in my case, 300) terms $B_{n}$ numerically, studies
their numerical growth, and tries to fit this data by a nice analytic expression.
One quickly finds that the growth is roughly exponential in $n^{2}$ , but with some
slow fluctuations around this and also with a dependency on the parity of $n$ . This
suggests trying the Ansatz $B_{n}=C\pm^{b^{n}a^{n^{2}}}$ , where $(-1)^{n}=\pm 1$ . This is easily seen
to give a solution to our recursion if $a$ is the root of $a^{12}=a^{4}+1$ , and the numerical
value $a=1.07283$ (approx) does indeed give a reasonably good fit to the data, but
eventually fails more and more thoroughly. Looking more carefully, we try the same
Ansatz but with $c_{\pm}$ replaced by a function $c_{\pm}(n)$ which lies berween fixed limits
but is almost periodic in $n$ , and this works, but with a new value $a=$ 1.07425
(approx). . . .

Expanding the function $\mathrm{C}\pm(n)$ numerically into a Fourier series, we discover that
it is a Jacobi theta function, and since theta functions (or quotients of them) are
elliptic functions, this leads quickly to elliptic curves.. . .”

3. $\mathrm{P}\mathrm{S}\mathrm{E}\mathrm{U}\mathrm{D}\mathrm{O}-\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{I}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{C}$ INTEGRALS

The surprising integral

$\int^{X}t^{4}+4t^{3}-=6t^{2}+4t+16tdt=\log(X^{6}+12X^{5}+45X^{4}+44X^{3}-33X^{2}+43$

$+(X^{4}+10X^{3}+30X^{2}+22X-11)\sqrt{X^{4}+4X^{3}-6X^{2}+4X+1})$

is a nice example of a class of pseudo-elliptic integrals

$(*)$ $\int^{X}\frac{f(t)dt}{\sqrt{D(t)}}=\log(a(X)+b(X)\sqrt{D(X)})$ .

Here we take $D$ to be a monic polynomial defined over $\mathbb{Q}$ , of even degree $2g+2$ ,
and not the square of a polynomial; $f,$ $a$ , and $b$ denote appropriate polynomials.
We suppose $a$ to be nonzero, say of degree $m$ at least $g+1$ . We will see that
necessarily $\deg b=m-g-1$ , that $\deg f=g$ , and that $f$ has leading coefficient
$m$ .
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In our example, $m=6$ and $g=1$ .

Plainly, if $(*)$ holds then it remains true with $\sqrt{D}$ replaced by its conjugate
$-\sqrt{D}$ . Adding the two conjugate identities we see that

$(\dagger)$ $\int 0dt=\log(a^{2}-Db^{2})$ .

Thus $a^{2}-Db^{2}$ is some constant $k$ , and must be nonzero because $D$ is not a
square. In other words, $u=a+b\sqrt{D}$ is a nontrivial unit in the function field
$\mathbb{Q}(X, \sqrt{D(X)})$ ; and $\deg a=m$ implies $\deg b=m-g-1$ is immediate.

Differentiating (\dagger ) yields $2aa’-2bb’D-b^{2}D’=0$ . Hence $b|aa’$ , and since $a$ and
$b$ must be relatively prime because $u$ is a unit, it follows that $b|a’$ . Set $f=a’/b$ ,
noting that indeed $\deg f=g$ and that $f$ has leading coefficient $m$ because $a$ and
$b$ must have the same leading coefficient. “

Moreover,
$u’=a’+b’\sqrt{D}+bD’/2\sqrt{D}=a’+(2bb’D+b^{2}D’)/2b\sqrt{D}=a’+aa’/b\sqrt{D}$ .

So, remarkably, $u’=f(b\sqrt{D}+a)/\sqrt{D}=fu/\sqrt{D}$ .
Thus, to verify $(*)$ it suffices to make the not altogether obvious substitution

$u(x)=a+b\sqrt{D}$ , of course given that $\mathrm{u}$ is a unit of the order $\mathbb{Q}[X, \sqrt{D(X)}]$ .
Remark. The case $g=0$ , say $D(X)=X^{2}+2vX+w$ , is useful for orienting
oneself. Here $(X+v)+\sqrt{D(X)}$ is a unit, of norm $v^{2}-w$ , and indeed

$\int_{=X^{2}+2vX+w}dX=\mathrm{a}\mathrm{r}\sinh\frac{X+v}{\sqrt{w-v^{2}}}=\log(X+v+\sqrt{X^{2}+2vX+w})$ .

Notice that $\deg f=0$ and has leading coefficient 1, as predicted.

4. UNITS

Units and torsion. The notion unit entails that $u$ be trivial at other than infinite
places (absolute values). That is, the divisor of zeros and poles of the function
$u=a+b\sqrt{D}$ is supported only at infinity.

But, speaking plainly, the quartic $C:Y^{2}=X^{4}+4X^{3}-6X^{2}+4X+1$ has two
points at infinity, which I shall call $S$ , and $O$ –the latter being the zero of the
group law on the elliptic curve $C$ . In general, for $C:\mathrm{Y}^{2}=D(X)$ of genus $g$ , I had
best speak of the point $S-O$ on the Jacobian of the hyperelliptic curve $C$ .

Whatever, there is a positive integer $m$ so that $m(S-O)$ is the divisor of the
unit $u$ , showing that $S-O$ is a torsion point of order $m$ on $\mathrm{J}\mathrm{a}\mathrm{c}(C)$ .
Units in quadratic flelds and continued fractions. One finds a unit $u$ in the
domain $\mathbb{Q}[X, \mathrm{Y}]$ by studying the continued fraction expansion of $\mathrm{Y}=\sqrt{D(X)}$ .
The principle is that a period of the expansion produces a unit and, conversely, the
existence of a unit entails the periodicity of the continued fraction expansion.

Thus–because periodicity is equivalent to torsion at infinity–each step in the
continued fraction expansion of $\mathrm{Y}$ must somehow add some multiple of the divisor
at infinity. This fact is nicely ‘explicited’ by Bill Adams and Mike Razar (1981).

’That common coefficient is 1 without loss of generality since we may freely choose the
constant produced by the indefinite integration.
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It’s pretty obvious that torsion at infinity is unusual in characte$r\dot{\mathrm{u}}stic$ zero. So
periodicity of the expansion of $Y$ must therefore be exceptional.

In the numerical case, and for congruence function fields, periodicity is always
forced by the box principle. But, over an infinite field, there are infinitely many
polynomials of bounded degree. . . . Periodicity $is$ rare happenstance.

5. CONTINUED FRACTION OF THE SQUARE ROOT OF A POLYNOMIAL

Set $\mathrm{Y}^{2}=D(X)$ where $D\neq\square$ is a monic polynomial of degree $2g+2$ . Then we
may write

$D(X)=(A(X))^{2}+4R(X)$ ,
where $A$ is the polynomial part of the square root $\mathrm{Y}$ of $D$ and $4R$ , with $\deg R\leq g$ ,
is the remainder. We then take

$Y=A(1+4R/A^{2})^{1/2}=A(X)+c_{1}X^{-1}+c_{2}X^{-2}+\cdots$

thereby viewing $Y$ as an element of $K((X^{-1}))$ , Laurent series in the variable $1/X$ .
Here we ask only that the base field $K$ be infinite.

However, below we deal with the quadratic irrational function $Z$ defined by

(\ddagger ) $C$ : $Z^{2}-AZ-R=0$ .
Then $\deg Z=\deg A=g+1$ , while its conjugate satisfies $\deg\overline{Z}<0$ . Note that $Z$

makes sense in arbitrary characteristic, including characteristic two.
Now, for... , $-1,$ $h=0,1,2,$ $\ldots$ , set

$Z_{h}=(Z+P_{h})/Q_{h}$ ,

where $P_{h}$ and $Q_{h}$ are polynomials satisfying $d\mathrm{e}\mathrm{g}P_{h}\leq g-1,$ $d\mathrm{e}\mathrm{g}Q_{h}\leq g$ and $Q_{h}$

divides the norm $(Z+P_{h})(\overline{Z}+P_{h})$ .
Then, $\deg Z_{h}>0$ and $\deg\overline{Z}_{h}<0$ –one says that $Z_{h}$ is reduced –and the

$K[X]$ -module ( $Q_{h},$ $Z+P_{h}\rangle$ is in fact an ideal of the domain $K[X, Z]$ .
Finally, denote by $a_{h}$ the polynomial part of $Z_{h}$ . Then the continued fraction

expansion of, say, $Z_{0}$ is a sequence of lines (or steps)

$(Z+P_{h})/Q_{h}=a_{h}-(\overline{Z}+P_{h+1})/Q_{h}$ in brief: $Z_{h}=a_{h}-\mathrm{R}_{h}$ ,
where, $-Q_{h}/(\overline{Z}+P_{h+1})=(Z+P_{h+1})/Q_{h+1}$ . Necessarily

$P_{h}+P_{h+1}+A=a_{h}Q_{h}$ and $(Z+P_{h+1})(\overline{Z}+P_{h+1})=-Q_{h}Q_{h+1}$ ,

and one easily verifies that the conditions on the $P_{h}$ and $Q_{h}$ are sustained.
There is a minor miracle. Because the complete quotients $Z_{h}$ all are reduced

it follows that also all the $R_{h}$ are reduced. Thus the partial quotients $a_{h}$ , which
begin life as the polynomial parts of the $Z_{h}$ , also are the polynomial parts of the
$R_{h}$ .

Thus also the ‘conjugate line’
$R_{h}=(Z+P_{h+1})/Q_{h}=a_{h}-(\overline{Z}+P_{h})/Q_{h}=a_{h}-\overline{Z}_{h}$

is a line in an admissible continued fraction expansion, explaining why I can refer
to the original expansion as $bi$-directional infinite.

Given that the base field $K$ is infinite, I assert that a generic choice of $P_{0}$ and
$Q_{0}$ is so that all the $a_{h}$ are linear –equivalently, so that all the $Q_{h}$ are of degree
$g$ –indeed, a teeny bit less obviously, so that all the $P_{h}$ are of their maximal
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degree $g-1$ . That’s so because the probability of an element of $K$ being zero –
$is$ zero.

If one prefers, a gene$r\dot{\tau}c$ divisor of $C$ is defined by a $g$-tuple of elements of an
algebraic extension of $K$ .

I should point out that any actual expansion is very messy. I give the list of
partial quotients of two very different examples.

$\sqrt{X^{4}-2X^{3}+3X^{2}+2X+1}+(X^{2}-X+1)$

$=[\overline{2(X^{2}-X+1),*X-*,2X-2,*X^{2}-*X+*,2X-2,*X-\mathrm{b}}]$

Here, I’ve lazily copied the expansion of $2Z$ in a periodic case (so, there’s a
pseudo-elliptic integral with $D=X^{4}-2X^{3}+3X^{2}+2X+1$ ). Note that the
quasi-period already supplies a unit. In fact

$\int^{X}t^{4}-2t^{3}+=3t^{2}+2t+1dt4t-1$

$=\log(X^{4}-3X^{3}+5X^{2}-2X+(X^{2}-2X+2)\sqrt{X^{4}-2X^{3}+3X^{2}+2X+1})$ .
On the other han$d$ , if we replace $D$ by $D+1$ then we obtain a generic expansion

nicely illustrating the behaviour of N\’eron-Tate height.

$\sqrt{X^{4}-2X^{3}+3X^{2}+2X+2}+(X^{2}-X+11$

Even a compurer $\mathrm{c}\mathrm{n}\mathrm{o}\kappa \mathrm{e}\mathrm{s}$ on numoers growing at sucn a pace.

6. THE CONTINUED FRACTION EXPANSIONS
In the course of studying continued fraction expansions

$(Z+P_{h})/Q_{h}=a_{h}-(\overline{Z}+P_{h+1})/Q_{h}$ , $h\in \mathbb{Z}$

in quadratic function fields I eventually learned by experience that the various
parameters detailing the $P_{h}$ and $Q_{h}$ are best described in terms of the leading
coefficients $d_{h}$ , say, of the polynomials $P_{h}$ .

Denote a typical zero of $Q_{h}$ by $\omega_{h}$ and recall the recursion relations

$P_{h}+P_{h+1}+A=a_{h}Q_{h}$ and
$-Q_{h}Q_{h^{j}- 1}.=(Z+P_{h+1})(\overline{Z}+P_{h+1})=-R+P_{h+1}(A+P_{h+1})$ .

Thus $P_{h}(\omega_{h})+P_{h+1}(\omega_{h})+A(\omega_{h})=0$ and so $R(\omega_{h})=-P_{h+1}(\omega_{h})P_{h}(\omega_{h})$ .
Hence $Q_{h}(X)$ divides $R(X)+P_{h+1}(X)P_{h}(X)$ , and so

$C_{h}(X)/u_{h}=(R(X)+P_{h+1}(X)P_{h}(X))/Q_{h}(X)$
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defines a polynomial $C_{h}$ . Here $u_{h}$ denotes the leading coefficient of $Q_{h}$ . It’s useful
that $\deg C_{h}=\max(g, 2(g-1))-g$ ; so $\deg C_{h}=0$ if $g=1$ or $g=2$ .

Now suppose that $R(X)=u(X^{2}-vX+w)$ if $g=2$ and $R(X)=u(X-w)$
if $g=1$ (an$d$ recall that $d_{h}$ is the leading coefficient of $P_{h}(X)$ ). It follows that,
identically, $C_{h}(X)=u$ if $g=1$ and $C_{h}(X)=d_{h}d_{h+1}+u$ if $g=2$ .

It also follows from $Q_{h}(\omega_{h})=0$ that, for $h\in \mathbb{Z},$ $(\omega_{h}, -P_{h}(\omega_{h}))$ specifies a
sequence $(M_{h})$ of divisors on the Jacobian of the curve $C:Z^{2}-AZ-R=0$ .

We may set $M_{h}=M+S_{h}$ (so $M=M_{0}$ ). It then turns out that $S_{h}=hS$ –

with $S$ the class of the divisor at infinity. In other words, each step of the continued
fraction $e\varphi ansion$ is just addition of the divisor at infinity.

As for our discussion: If $g=2$ then, if $P_{h}(\epsilon_{h})=0$ ,

$C_{h}Q_{h}(\epsilon_{h})=u_{h}R(\epsilon_{h})$ and so $C_{h-1}C_{h}Q_{h-1}(\epsilon_{h})Q_{h}(\epsilon_{h})=u_{h-1^{f}}u_{h}R(\epsilon_{h})^{2}$ .
From the recursion formulae, $u_{h-1}u_{h}=-d_{h}$ , and $Q_{h-1}(\epsilon_{h})Q_{h}(\epsilon_{h})=R(\epsilon_{h})$ . Hence
$C_{h-1}C_{h}=(d_{h-1}d_{h}+u)(d_{h}d_{h+1}+u)=R(\epsilon_{h})$ , a formula that seemed inexplicably
miraculous when I first stumbled upon it. Sadly, my taming it has not yet been
enough for me fully to understand the $g=2$ case.

7. THE ELLIPTIC CASE

When $g=1$ we have $\deg P_{h}=0$ and set $P_{h}=d_{h}$ , and $\deg Q_{h}=1$ , say with
$Q_{h}(X)=\mathrm{u}_{h}(X-w_{h})$ . We have $\deg A=2$ and set, say, $R=u(X-w)$ .

Happily, the birational transformation $U=Z,$ $V-u=XZ$ , transforms our
quartic curve into a cubic model passing through the origin

$\mathcal{E}$ : $V^{2}-\mathrm{u}V=\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}$ cubic in $U$ with zero constant term;

the points $(w_{h}, -d_{h})$ on $C$ become $(-d_{h},u-w_{h}d_{h})$ on S. The point $S$ is now
$(0,0)$ . It is then easy to use the continued fraction recursion formulae to verify
explicitly that $S_{h}=hS$ .

We have $-R(w_{h})=d_{h}d_{h+1},$ $C_{h}=u$ an$d$ that $-C_{h-1}C_{h}Q_{h-1}(w)Q_{h}(w)$ is both
$u^{2}P_{h}(w)(A(w)+P_{h}(w))$ and $-u_{h-1}u_{h}d_{h-1}d_{h}^{2}d_{h+1}$ . Thus

$d_{h-1}d_{h}^{2}d_{h+1}=u^{2}(d_{h}+A(w))$ ;

a recusion formula involving the $d_{h}$ only. But, the $d_{h}$ are very messy. . . .
The $-d_{h}$ are in fact $U$ co–ordinates of points on $\mathcal{E}$ (specifically, of the points

$M+hS)$ ; therefore they are rationals whose denominators $A_{h}^{2}$ , say, are the squares
of integers. Accordingly, define a sequence $(A_{h})$ by

$A_{h-1}A_{h+1}=d_{h}A_{h}^{2}$ .
Conveniently, this immediately yields $A_{h-2}A_{h+2}=d_{h-1}d_{h}^{2}d_{h+1}A_{h}^{2}$ . So

$d_{h-1}d_{h}^{2}d_{h+1}=v^{2}(d_{h}+A(w))$ is $A_{h-2}A_{h+2}=v^{2}A_{h-1}A_{h+1}+v^{2}A(w)A_{h}^{2}$ ,

showing that all integer Somos 4 sequences come from (at most quadratic twists
of) rational elliptic curves.

A careful look (for example: the theses of Rachel Shipsey and of Christine Swart)
at the behaviour of points $M+hS$ on an elliptic curve confirms that the $A_{h}$ will
all be S-integers–with the primes of the finite set $S$ coming from the factors of
the initial values $A_{0},$ $A_{1},$ $A_{2},$ $A_{3}$ and the denominators of $v$ and $A(w)$ .

As it happens, a combinatorial result –a corollary of Fomin and Zelevinsky’s
theory of cluster $algebras-\mathrm{g}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{s}$ that elements of Somos 4, . . . , Somos 7
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sequences are Laurent polynomials in the initial values and with coefficient ring
polynomials in the coefficients of the defining recursion.

Somos 5 sequences also come from elliptic curves. It’s easy to see that also

$A_{h-1}A_{h+2}=d_{h}d_{h+1}A_{h}A_{h+1}$ ,

and now the observation that

$d_{h+1}d_{h}+u^{2}/d_{h}+d_{h}d_{h-1}$

is independent of $h$ ; that is, it is a discrete integ$\mathrm{m}l$ of the diffebrrence equation for
the $d_{h}$ , readily yields an identity providing the width 5 recursion

$A_{h-2}A_{h+3}=-u^{2}A(w)A_{h-1}A_{h+2}+u^{3}(u+2wA(w))A_{h}A_{h+1}$ .
A Somos 5 may be a Somos 4. In any case, its two subsequences $(A_{2h+1})$ and
$(A_{2h})$ are different Somos 4 sequences deriving from the one elliptic curve and
addition by $S_{\mathcal{E}}=(\mathrm{O}, 0)$ but with initial translations $M$ differing by $\frac{1}{2}S$ .

Elliptic Divisibility Sequences. Now consider the singular case, $M=O$ : thus
the continued fraction expansion of $Z$ itself. It will be convenient to write $e$ in
place of $d$ , and –in honour of Morgan $\mathrm{W}\mathrm{a}\mathrm{r}\mathrm{d}-(W_{h})$ in place of $(A_{h})$ . A brief
computation reveals $a_{0}(X)=A,$ $e_{1}=0,$ $Q_{1}(X):=u(X-w),$ $e_{2}=-A(w)$ ,
sufficing –using the recursion for the sequence $(d_{h})$ , it being independent of $M$

–to set $W_{1}=1,$ $W_{2}=\mathrm{u}$ , leading to $W_{3}=-u^{2}A(w),$ $W_{4}=-u^{4}(u+2wA(w))$ ,

We notice that in fact $(W_{h})$ supplies the coefficients in

$A_{h-2}A_{h+2}=W_{2}^{2}A_{h-1}A_{h+1}-W_{1}W_{3}A_{h}^{2}$ .

Remarkably, Ward introduces his sequence $(W_{h})$ in effect as satisfying $W_{-h}=-W_{h}$

and the multi-recursion

$W_{n}^{2}W_{h-m}W_{h+m}=W_{m}^{2}W_{h-n}W_{h+n^{-}}W_{m-n}W_{m+n}W_{h}^{2}$ .
Yet, the special case $n=1,$ $m=2$ , and the values $W_{1},$ $W_{2}$ , $W_{3},$ $W_{4}$ already
determine the sequence.

Ward proves the coherence of his definition by showing there does exist a solution
sequence defined in terms of Weierstrass $\sigma$ -functions.

Recently, Christine Swart and I $\mathrm{r}$ -explored this matter and found a direct proof
that for all integers $m$ and $n$

$W_{n}^{2}A_{h-m}A_{h+m}=W_{m}^{2}A_{h-n}A_{h+n}-W_{m-n}W_{m+n}A_{h}^{2}$ .
Our argument relies on the amusingly symmetrical identity

$(d_{h-1}-e_{m})d_{h}^{2}(d_{h+1^{-e_{m}}})=(e_{m-1}-d_{h})e_{m}^{2}(e_{m+1}-d_{h})$ .

We have a similar argument and analogous result in the $\mathit{0}$dd gap case.
Andy Hone, I comment on his work below, reacted to our work by giving a direct

proof of our re\S ults in terms of identities in Weierstrass a-functions.
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Elliptic Division Polynomials. I insisted that the cubic model $\mathcal{E}$ of our elliptic
curve contain $(0,0)$ . In fact we may suppose we had obtained our $\mathcal{E}=\mathcal{E}(x,y)$ from
a more general elliptic curve by translating a notional point $S=(x, y)$ on it to the
origin. Then the coefficients of $\mathcal{E}$ are polynomials in $x$ and $y$ and with coefficients
polynomials in the original coefficients defining the curve.

This makes the $W_{h}$ polynomials in $x$ and $y$ . More, if and only if $S=(a, b)$ is
a torsion point of order $m$ on $\mathcal{E}$ then $mS=0$ , and $W_{m}(a, b)=0$ .

It follows that the polynomial $W_{h}(x,y)$ is the h-th division polynomial. That
inter alia entails $\mathrm{g}\mathrm{c}\mathrm{d}(W_{r}(x, y),$ $W_{s}(x, y))=W_{\mathrm{g}\mathrm{c}\mathrm{d}(\mathrm{r},\epsilon)}(x, y)$ , explaining the division
properties of the $W_{h}(0,0)\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{y}-\mathrm{t}\mathrm{h}\mathrm{e}$rapid growth of the coefficients
of the division polynomials.

By the way, Rachel Shipsey proves directly that if $W_{1}=1$ and $W_{2}|W_{4}$ then $r|s$

entails $W_{r}|W_{s}$ ; hence: elliptic dinisibility sequence.

-Somos: Suppose $(C_{h})=(\ldots, 2,1,1,1,1,2,3,7, \ldots)$ with $C_{h-2}C_{h+2}=$

$C_{h-1}C_{h+1}+C_{h}^{2}$ . My formulaire quickly reveals that $u=\pm 1,$ $w=\mp 2,$ $A(w)=1$ ,
and thus that $(C_{h})$ arises from

$\mathrm{Y}^{2}=(X^{2}-3)^{2}+4(X-2)$ with $M=(1,0)$ ;

equivalently $\mathrm{b}\mathrm{o}\mathrm{m}\mathcal{E}$ : $V^{2}-V=U^{3}+3U^{2}+2U$ with $M_{\mathcal{E}}=(-1,1)$ .
5-Somos: The case $(B_{h})=(.$ . . , 2, 1, 1, 1, 1, 1, 2, 3, 5, 11, . . . $)$ with $B_{h-2}B_{h+3}=$

$B_{h-1}B_{h+2}+B_{h}B_{h+1}$ is trickier. One needs to define $c_{h}B_{h-1}B_{h+1}=e_{h}B_{h}^{2}$ with
$c_{h}c_{h+1}$ independent of $h$ .

One finds that $(B_{h})$ arises from
$\mathrm{Y}^{2}=(X^{2}-29)^{2}-4\cdot 48(X+5)$ with $M=(-3,4)$ ;

equivalently from $\mathcal{E}:V^{2}+UV+6V=U^{3}+7U^{2}+12U$ with $M_{\mathcal{E}}=(-2, -2)$ . The
fact $\mathrm{g}\mathrm{c}d(6,12)\neq 1$ at first hit me for six but was eventually overcome.

By symmetry each respective $M$ is a point of order 2 on its curve.

8. GENUS $g\geq 2$

There surely are analogous results for higher genus curves. Indeed, more than a
dozen years ago, David Cantor showed for higher genus hyperelliptic curves that
there are analogues of the division polynomials satisfying relations given by certain
Kronecker-Hankel determinants.

My program falters almost immediately, though I can handle curves $Z^{2}-AZ-$

$R=0$ with $\deg A=3$ provided that $\deg R=-v(X-W)$ is linear (I put $u=0$

in the general $R(X)=u(X^{2}-vX+w)\ldots$ ).
In that case I find that (if $d_{h-1}d_{h}d_{h+1}\neq 0$ )

$d_{h-2}d_{h-1}^{2}d_{h}^{3}d_{h+1}^{2}d_{h+2}=v^{2}d_{h-1}d_{h}^{2}d_{h+1}-v^{3}A(w)$ ,

yielding a width 6 relation
$A_{h-3}A_{h+3}=v^{2}A_{h-2}A_{h+2}-v^{3}A(w)A_{h}^{2}$ .

Others can $do$ worse, and better. Andy Hone had noted that all is revealed by the
readily checked assertion that there are constants $\alpha$ and $\beta$ so that

$(\wp(x+y)-\wp(\mathrm{y}))(\wp(x)-\wp(y))^{2}(\wp(x-y)-\wp(y))=-\alpha(\wp(x)-\wp(y))+\beta$ ,

given $y\in \mathbb{C}$ ; particularly that $\alpha=\wp’(y)^{2},$ $\beta=\wp’(y)^{2}(\wp(2y)-\wp(y))$ .
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Notice that this is just my relation on the $-d_{h}$ (it also is a remark of Nelson
Stephens basic to Christine Swart’s thesis).

Hone et $al$ have found an analogous relation for Kleinian a-functions in genus 2
and have used it to obtain a Somos 8 (not the most general Somos 8) relation
corresponding to curves $Y^{2}=$ a quintic in $X$ .

My guess, based on Cantor’s results and my partial ones, is that for $g=2$ the
minimal relation in fact has width 6, but is cubic –rather than quadratic as in
the Somos cases.

That guess coheres with the opinion of Noam Elkies that the special cases
$Z^{2}-AZ+v(X-w)=0$

with $\deg A=g+1$ do yield Somos relations of width $2g+2$ .
A cute example \‘a la Somos. Whatever, I can show such things as that the
example $(T_{h})=(\ldots, 2,1,1,1,1,1,1,2,3,4,8,17,50, \ldots)$ , with

$T_{h-3}T_{h+3}=T_{h-2}T_{h+2}+T_{h}^{2}$ ,
may be thought of as arising from the points (thus, divisor classes)..., $M-S$ ,
$M,$ $M+S,$ $M+2S,$ $\ldots$ on the Jacobian of the genus 2 hyperelliptic curve

$C$ : $Y^{2}=(X^{3}-4X+1)^{2}+4(X-2)$ .
Here $S$ is the class of the divisor at infinity and $M$ is instanced by the divisor
defined by the pair of points $(\varphi, 0)$ and $(\overline{\varphi}, 0)$ : where $\varphi$ is the golden ratio, a
happenstance that will please adherents to the cult of Fibonacci. The symmetry
dictates that $M-S=-M$ so $2M=S$ on $\mathrm{J}\mathrm{a}\mathrm{c}(C)$ .
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