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This survey deals with the recent appearance of $ve\eta$-well-poised hypergeometric series
as a tool for studying the diophantine nature of the values of the Riemann zeta function
at positive integers. In this context, we give examples of an important and general ex-
perimental phenomenon known as the Denominators Conjecture, and we explain the ideas
behind its proof in the case presented here, recently obtained by C. Krattenthaler and the
author.

It is an expanded version of the talk given at the symposium “Analytic Number Theory
and Surrounding Areas”, held at the RIMS of the University of Kyoto in october 2004. I
would like to thank the organizer M. Amou and also N. Hirata-Kohno for their invitation
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1. NOTATIONS

Let us first remind the reader of the definition of hypergeometric series (or functions).
These are power series defined by

$q+1Fq[_{\beta_{1},.,\beta_{q}}^{\alpha_{0},\alpha_{1},.\cdot.\cdot.,\alpha_{q}};z]= \sum_{k=0}^{\infty}\frac{(\alpha_{0})_{k}(\alpha_{1})_{k}.\cdot.\cdot\cdot(\alpha_{q})_{k}}{k!(\beta_{1})_{k}\cdot(\beta_{q})_{k}}z^{k}$ ,

where $\alpha_{j}\in \mathbb{C},$ $\beta_{j}\in \mathbb{C}\backslash \mathbb{Z}_{\leq 0}$ and $(x)_{m}=x(x+1)\cdots(x+m-1)$ is the Pochhammer symbol.
It can be proved that such series converge for all $z\in \mathbb{C}$ such that $|z|<1$ , and for $z=\pm 1$ ,
provided that ${\rm Re}(\beta_{1}+\cdots+\beta_{q})>{\rm Re}(\alpha_{0}+\alpha_{1}+\cdots+\alpha_{q})$.

The literature (see [3, 8, 14]) contains various special kind of hypergeometric series whose
parameters satisfy particular relations. For example, a hypergeometric series is said to be:

$\bullet$ balanced if $\alpha_{0}+\cdots+\alpha_{q}+1=\beta_{1}+\cdots+\beta_{q}$;
$\bullet$ nearly-poised (of the first kind) if $\alpha_{1}+\beta_{1}=\cdots=\alpha_{q}+\beta_{q}$ ;
$\bullet$ well-poised if $\alpha_{0}+1=\alpha_{1}+\beta_{1}=\cdots=\alpha_{q}+\beta_{q}$ ;
$\bullet$ very-well-poised if it is well-poised and $\alpha_{1}=\frac{1}{2}\alpha_{0}+1$ .

We will show that the very-well-poised case is of special importance.
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2. SKETCH OF SOME IRRATIONALITY PROOFS

In this section, we summarise some results on the irrationality of the values of the
Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty}1/n^{s}$ at integer values of $s\geq 2$ .

2.1. A general scheme. A simple way of proving irrationality results for zeta values is
to start with a rational function of the form

$R_{n}(k)= \frac{Q_{n}.(k)}{(k(k+1)\cdot\cdot(k+n))^{A}}=\frac{Q_{n}(k)}{(k)_{n+1}^{A}}\in \mathbb{Q}(k)$

where $n\geq 0$ and $A\geq 1$ are integers, $Q_{n}(k)\in \mathbb{Q}[k]$ , and then consider the series

$S_{n}(z)= \sum_{k=1}^{\infty}R_{n}(k)z^{-k}$

which we assume to be convergent for $z=1$ , forcing $\deg(Q_{n}(k))\leq A(n+1)-2$ . Then,
by partial fractions expansion of $R_{n}(k)$ , it is easy to prove that there exist polynomials
( $P_{j,n}(z)\rangle_{j=0,\ldots,n}$ in $\mathbb{Q}[z]$ , of degree at most $n$ such that

$S_{n}(z)=P_{0,n}(z)+ \sum_{j=1}^{A}P_{j,n}(z)\mathrm{L}\mathrm{i}_{j}(1/z)$ .

Here, we have encountered the polylogarithmic functions defined by $\mathrm{L}\mathrm{i}_{s}(z)=\sum_{k=1}^{\infty}z^{k}/k^{*}$

for $s\geq 1,$ $|z|\leq 1$ and $(s, z)\neq(1,1)$ . Note that for $s\geq 2$ , Li,(l) $=\zeta(s)$ and $\mathrm{L}\mathrm{i}_{l}(-1)=(1-$

$2^{1-\delta})\zeta(s)$ . Furthermore, under these conditions, it can be proved that $\mathrm{d}_{n}^{A-j}P_{j,n}(z)\in \mathbb{Z}[z]$ ,
where $\mathrm{d}_{n}=1.\mathrm{c}.\mathrm{m}.\{1,2, \ldots, n\}$ , and $P_{1,n}(1)=0$ . Consequently, we have that

$\mathrm{d}_{n}^{A}S_{n}(1)=p_{0,n}+\sum_{j=2}^{A}p_{j,n}\zeta(s)$

where $p_{j,n}=\mathrm{d}^{A}P_{j,n}(1)\in \mathbb{Z}$ (and a similar expression for $S_{n}(-1)$ ).
We also have at our disposal the “differential” trick, which generalises the previous

construction: let $C\geq 0$ be an integer and consider the series

$S_{n,C}(z)= \sum_{k=1}^{\infty}\frac{1}{C1}\frac{\partial^{C}R_{n}(k)}{\partial k^{C}}z^{-k}$.

Then there exist a polynomial $\tilde{P}_{0,n}(z)\in \mathbb{Q}[z]$ , of degree at most $n$ , depending on $C$ such
that

$S_{n,C}(z)= \tilde{P}_{0,n}(z)+(-1)^{C}\sum_{j=1}^{A}P_{j,n}(z)\mathrm{L}\mathrm{i}_{j+C}(1/z)$
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where the $P_{j,n}$ are as above and the polylogarithms are shifted by $C$ . It can be proved that
$d_{n}^{A+C}\tilde{P}_{0,n}(1)\in \mathbb{Z}$ , hence there exist integers $\tilde{p}_{j,n}$ such that

$d_{n}^{A+C}S_{n,C}(1)= \tilde{p}_{0,n}+\sum_{j=2}^{A}\tilde{p}_{j,n}\zeta(C+j)$ ,

and a similar expression holds for $S_{n,C}(-1)$ .
Given this very general construction, the problem is now to choose suitably $A$ and $Q_{n}(k)$

in order to apply the following criteria for linear independence, due to Nesterenko [10].

Theorem 1. Given $N$ real numbers $\theta_{1},$ $\theta_{2},$

$\ldots,$
$\theta_{N}$ , suppose there exist $N$ sequences $(p_{\ell,n})_{n\geq 0}$

of integers such that (i) $| \sum_{\ell=1}^{N}p_{\ell,n}\theta_{\ell}|=\alpha^{n+o(n)}$ and (ii) $\forall\ell=1,$
$\ldots,$

$N,$ $|p_{\ell,n}|\leq \mathcal{B}^{n+o(n)}$ ,
for some reals a, $\beta>0$ . Then,

$\mathrm{d}i\mathrm{m}_{\mathrm{Q}}(\mathbb{Q}\theta_{1}+\mathbb{Q}\theta_{2}+\cdots+\mathbb{Q}\theta_{N})\geq 1-\frac{\log(\alpha)}{\log(\beta)}$ .

If we are only interested in proving the irrationality of one of the numbers $\theta_{\ell}$ , then we
don’t have to check the condition (ii), but only to prove that $\alpha<1$ to get a dimension
$>1$ . Furthermore, in this case, the proo$f$ of Theorem 1 is straightforward.

Finally, to get asymptotic values which are $\mathrm{a}\epsilon$ small as possible for $|S_{n,C}(\pm 1)|^{1/n}$ , heuris-
tically, the first terms of the sum should be cancelled, $i.e$ . $Q_{n}(k)$ should have a factor
$((k-1)\ldots(k-m))^{B}=(k-m)_{m}^{B}$ , where $B>C$ (to cancel the effect of the $C^{\mathrm{t}\mathrm{h}}$-derivative
on $R_{n}(k))$ . The parameter $m$ will always be of the form $rn$ for a suitable integer $r\geq 1$ .
2.2. Irrationality of $\zeta(2)$ . It is well-known that $\zeta(2)=\pi^{2}/6$ , a result due to Euler, and
Legendre proved that $\pi^{2}$ is irrational. Hence, one concludes tfat $\zeta(2)$ is also irrational.
But this proo$f$ uses a shortcut and it is an interesting problem to prove the irrational-
ity of $\zeta(2)$ without using it. This problem was first solved by Ap\’ery [2], who showed
that there exist two sequences $(\alpha_{n})_{n\geq 0}$ and $(\beta_{n})_{n\geq 0}$ such that $\alpha_{n}\in \mathbb{Z},$ $\mathrm{d}_{n}^{2}\beta_{n}\in \mathbb{Z}$ , where
$d_{n}=1.\mathrm{c}.\mathrm{m}\{1,2, \ldots \dagger n\}=e^{n+o(n)}$ , and

$\lim_{narrow+\infty}|\mathrm{d}_{n}^{2}(\alpha_{n}\zeta(2)-\beta_{n})|^{1/n}=e^{2}(\frac{\sqrt{5}-1}{2})^{5}<1$ . (1)

These properties immediately imply that:

Theorem 2. $\zeta(2)$ is irrational.

There are many different ways of constructing these sequences and the following “hy-
pergeometric” one is particularly simple:

$a_{n}\zeta(2)-\beta_{n}=$ $(-1)^{n} \frac{n!^{4}}{(2n+1)!^{2}}sF_{2}[_{2n+2,2n+2}^{n+1,n+1,n+1};1]$

$=$ $(-1)^{n}n! \sum_{k=1}^{\infty}\frac{(k-n)_{n}}{(k)_{n+1}^{2}}=(-1)^{n}\int_{0}^{1}\int_{0}^{1}\frac{x^{n}(1-x)^{n}y^{n}(1-y)^{n}}{(1-(1-x)y)^{n+1}}dx\mathrm{d}y$ .
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This hypergeometric series is nearly poised of the first kind: the series on the second
line is suitable for proving, after just expanding in partial fractions the rational function
$n!(k-n)_{n}/(k)_{n+1}^{2}$ , the existence of $\alpha_{n}$ and $\beta_{n}$ , while the integral, due to Beukers [5],
immediately gives (1). The equality between the series and the integral is a straightforward
computation. Furthermore, we obtain

$\alpha_{n}=\sum_{j=0}^{n}=_{3}F_{2}[^{-n,-n,n+1}1,1;1]$ .

2.3. Irrationality of $\zeta(3)$ . Contrary to $\zeta(2)$ , there is no known shortcut for proving the
irrationality of $\zeta(3)$ (and conjecturally, this number has no algebraic relation with $\pi$) and
Ap\’ery’s great achievement was to give the first proof of this fact (see [2]). In fact, he
proved that there exist two sequences $(a_{n})_{n\succeq 0}$ and $(b_{n})_{n\geq 0}$ such that $a_{n}\in \mathbb{Z},$ $d_{n}^{3}b_{n}\in \mathbb{Z}$ and

$\lim_{narrow+\infty}|\mathrm{d}_{n}^{3}(2a_{n}\zeta(3)-b_{n})|^{1/n}=e^{3}(\sqrt{2}-1)^{4}<1$ .

These properties imply that:

Theorem 3. $\zeta(3)$ is imational.

Once again, there exist many ways of constructing these sequences. Gutnik [7] and
Beukers [6] independently essentially proposed the following:

2$a_{n}\zeta(3)-b_{n}=$ $- \sum_{k=1}^{\infty}\frac{\partial}{\partial k}(\frac{(k-n)_{n}^{2}}{(k)_{n+1}^{2}})$

$= \int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\frac{x^{n}(1-x)^{n}y^{n}(1-y)^{n}z^{n}(1-z)^{n}}{(1-(1-(1-x)y)z)^{n+1}}dx\mathrm{d}y\mathrm{d}z$ .

Strictly speaking, the series is not hypergeometric but is linked to solutions of a certain
hypergeometric differential equation. Here, the equality between the series and the triple
Beukers’ integral [5] is not completely straightforward. Finally, we have

$a_{n}= \sum_{j=0}^{n}=_{4}F_{3}[^{-n,-n,n+1,n+1}1,1,$$1;1]$ .

2.4. A $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}-\mathrm{w}\mathrm{e}\mathrm{l}\mathrm{l}$ -poised series related to $\zeta(2)$ . In this section, we try to give a new
and more complicated proof of the irrationality of $\zeta(2)$ : the reason for this will become
clear later.

Let’s consider the following very-well-poised hypergeometric series

$\mathrm{S}_{n}=n!\sum_{k=1}^{\infty}(k+\frac{n}{2})\frac{(k-n)_{n}(k+n.+1)_{n}}{(k)_{n+1}^{3}}(-1)^{k}$

$= \frac{n!^{5}(3n+2)!}{2(2n+1)!^{4}}6F5[_{\frac{3}{2}n+1,2n+2,..,2n+2}^{3n+2,\frac{3}{2}n+2,n+.1,\ldots,n+1};-1]$ ,
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which fits into our general scheme. A priori, $\mathrm{S}_{n}\in \mathbb{Q}+\mathbb{Q}\zeta(2)+\mathbb{Q}\zeta(3)$ but due to the very
special form of the numerator (we will explain this later), we have $\mathrm{S}_{n}=-\mathrm{p}_{n}\frac{1}{2}\zeta(2)-\mathrm{q}_{n}$ ,
where $\mathrm{d}_{n}\mathrm{p}_{n}$ an$d\mathrm{d}_{n}^{3}\mathrm{q}_{n}$ are integers. Unfortunately, such estimates are not enough to give a
new proof of the irrationality of $\zeta(2)$ , but this would be the case if we could “throw away”
one power of $\mathrm{d}_{n}$ for $\mathrm{p}_{n}$ and $\mathrm{q}_{n}$ .

It is possible to give the following expression for $\mathrm{p}_{n}$ :

$\mathrm{p}_{n}=(-1)^{n+1}\sum_{j=0}^{n}(\frac{n}{2}-j)(_{n}^{2n-j})$

. $(4H_{n-j}-4H_{j}+H_{n+j}-H_{2n-j}- \frac{1}{\frac{n}{2}-j})$ ,

where $H_{m}=1+1/2+\cdots+1/m$ by definition. Hence, there is no reason to expect anything
better than a denominator $d_{n}$ for $\mathrm{p}_{n}$ . But, surprisingly, numerical computations suggest
the following:

Claim 1. The number $\mathrm{p}_{n}$ and $d_{n}^{2}\mathrm{q}_{n}$ appear to be integers and furthermore, $\mathrm{p}_{n}$ and $\mathrm{q}_{n}$ are
the same as Ap\’ery $\prime s\alpha_{n}and-\beta_{n}/2$ for $\zeta(2)$ .

Thus, the proof of this claim would be exactly what we need to give a new proo$f$ of
$\zeta(2)\not\in \mathbb{Q}$.

2.5. A $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}-\mathrm{w}\mathrm{e}\mathrm{l}\mathrm{l}$-poised series related to $\zeta(3)$ . K. Ball introduced the following series
(see the introduction of [11])

$\mathrm{B}_{n}=n!^{2}\sum_{k=1}^{\infty}(k+\frac{n}{2})\frac{(k-n)_{n}(k+n+1)_{n}}{(k)_{n+1}^{4}}$

$= \frac{n!^{7}(3n+2)!}{2(2n+1)!^{5}}7F6[_{\frac{3}{2}n+1,2n+2,..,2n+2}^{3n+2,\frac{3}{2}n+2,n+.1,\ldots,n+1};1]$

in the hope that it would give a completely elementary proof of the irrationality of $\zeta(3)$ , in
the style of the usual irrationality proof of exp(l). The similarity of $\mathrm{S}_{n}$ and $\mathrm{B}_{n}$ is not an
accident, and one has $\mathrm{B}_{n}=\mathrm{a}_{n}\zeta(3)-\mathrm{b}_{n}$ with $\mathrm{d}_{n}\mathrm{a}_{n}$ and $\mathrm{d}_{n}^{4}\mathrm{b}_{n}$ integers, whereas one would
have expected a $pr\dot{\tau}\mathit{0}7\dot{\mathrm{v}}\mathrm{B}_{n}\in \mathbb{Q}+\mathbb{Q}\zeta(2)+\mathbb{Q}\zeta(3)+\mathbb{Q}\zeta(4)$. Note that, once again, the given
denominators are to large to get a new proof of $\zeta(3)\not\in$ Q.

The expression for $\mathrm{a}_{n}$ is

$\mathrm{a}_{n}=(-1)^{n+1}\sum_{j=0}^{n}(\frac{n}{2}-j)$

. $(5H_{n-j}-5H_{j}+H_{n+j}-H_{2n-j}- \frac{1}{\frac{n}{2}-j})$
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and numerical computations suggest the following improvements:

Claim 2. The numbers $\mathrm{a}_{n}$ and $\mathrm{d}_{n}^{3}\mathrm{b}_{n}$ appear to be integers and furthermore $\mathrm{a}_{n}$ and $\mathrm{b}_{n}$ are
the same as Ap\’ery’s $a_{n}$ and $b_{n}/2$ for $\zeta(3)$ .

This would be enough to give an elementary proof of the irrationality of $\zeta(3)$ , since a
simple application of Stirling’s formula proves that

$\lim_{narrow+\infty}|\mathrm{B}_{n}|^{1/n}=(\sqrt{2}-1)^{4}$.

2.6. Irrationality of infinitely many values of $\zeta$ at the odd integers. The following
very-weU-poised hypergeometric series

$\mathrm{S}_{n,A,r}=n!^{A-2r}\sum_{k=1}^{\infty}(k+\frac{n}{2})\frac{(k-rn)_{rn}(k+n+1)_{rn}}{(k)_{n+1}^{A}}(-1)^{kA}$

$=n!^{A-2r_{\frac{(rn)!^{A+1}((2r+1)n+2)!}{2((r+1)n+1)!^{A+1}}}}$

$\cross_{A+3}F_{A+2}[_{\frac{2r+1r+}{2}n+1,(r)n+2,..,(r+1)n+2}^{(21)n+2,\frac{2r+1}{+^{2}1}n+2,rn.+1,\ldots,rn+1};(-1)^{A}]$

was introduced in [11] and [4] to prove that

Theorem 4. For any even $A\geq 4_{f}$

$\mathrm{d}\mathrm{i}\mathrm{n}_{\Phi}(\mathbb{Q}+\mathbb{Q}\zeta(3)+\mathbb{Q}\zeta(5)+\cdots+\mathbb{Q}\zeta(A-1))\geq\frac{1+o(1)}{1+\log(2)}\log(A)$ . (2)

(In fact, it was a similar series without the factor $k+n/2$ , which is useless in this
particular case.) The new parameter $r$ is an integer such that $1\leq r\leq A/2$ . We now
briefly indicate the steps in the proof of (2).

The form of the numerator of the summand first implies that

$\mathrm{S}_{n,A,r}=p_{0,n}+$
$\sum_{\mathrm{j}arrow 2,d=A-1[2]}^{A}p_{j,n}\zeta(j)$ ,

which involves only odd zeta values if $A$ is even, and $\mathrm{d}_{n}^{A-j}$ is a denominator of $p_{j,n}$ . Using
$an$ explicit expression for the $p_{j,n}’ \mathrm{s}$ , we can prove that

$\lim_{narrow+}\sup_{\infty}|p_{j,n}|^{1/n}\leq 2^{A-2r}(2r+1)^{2r+1}$.

Furthermore, we have a Euler type integral representation

$\mathrm{S}_{n,A,r}=\frac{((2r+1)n+1)!}{n!^{2r+1}}\int_{[0,1]^{A+1}}\frac{\prod_{j=1}^{A+1}x_{j}^{rn}(1-x_{j})^{n}\mathrm{d}x_{j}}{(1-x_{1}\cdots x_{A+1})^{(2r+1)n}}\frac{1+x_{1}.\cdot.\cdot.\cdot x_{A+1}}{(1-x_{1}x_{A+1})^{3}}$
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from which we deduce that

$0< \lim_{narrow+\infty}|\mathrm{S}_{n,A,r}|^{1/n}\leq 2^{2r+1}r^{2r-A}$.

It remains to apply Nesterenko’s linear independence criteria, with the optimal choice
$r=[A/\log^{2}(A)]$ , to get (2).

Although this is not needed here, we note that, as the reader might have already sus-
pected, numerical computations suggest that:

Claim 3. $\mathrm{d}_{n}^{A-1}$ seems to be a denominator for the $p_{j,n}$ .

2.7. Irrationality of one of the nine numbers $\zeta(5),$ $\zeta(7),$
$\ldots,$

$\zeta(21)$ . Let $A\geq 6$ be an
even integer and consider the series

$\tilde{\mathrm{S}}_{A,n}=n!^{A-6}\sum_{k=1}^{\infty}\frac{1}{2}\frac{\partial^{2}}{\partial k^{2}}((k+\frac{n}{2})\frac{(k-n)_{n}^{3}(k+n+1)_{n}^{3}}{(k)_{n+1}^{A}})$ ,

which is not exactly hypergeometric, but has enough properties in common with very-well-
poised series to give that

$\tilde{\mathrm{S}}_{A,n}=\tilde{p}_{0,n}+\sum_{j=5,\mathrm{o}\mathrm{d}\mathrm{d}j}^{A+1}\tilde{p}_{j,n}\zeta(j)$.

Note that differentiating twice together with the numerator of the summand enable us to
have a linear form only in odd zeta values from $\zeta(5)$ , and not $\zeta(3)$ . Furthermore, $\mathrm{d}_{n}^{A+2}$ is
a denominator of $\tilde{p}_{j,n}$ and we now seek the smallest possible $A$ such that $d_{n}^{A+2}\tilde{\mathrm{S}}_{A,\mathrm{n}}$ tends
to $0$ as $n$ tends to infinity.

This can be done by first noting that $\tilde{\mathrm{S}}_{A,n}$ is the real part of the integral

$\frac{(-1)^{n}n!^{A-6}}{2i\pi}\int_{\mathrm{c}+:\infty}^{\mathrm{c}-1\infty}(z+\frac{n}{2})\frac{\Gamma(z)^{A+3}\Gamma(n-z+1)^{3}\Gamma(z+2n+1)^{3}}{\Gamma(z+n+1)^{A+3}}e^{i\pi z}\mathrm{d}z$,

(where $c$ is any real in $(0,1)$ ) and then by applying the saddle point method to estimate
the asymptotic behavior of this integral as $n$ tends to infinity. One finds that 20 is the
smallest such $A$ , yielding the following result proved by the author in [12].

Theorem 5. At least one of the nine numbers $\zeta(5),$ $\zeta(7),$
$\ldots,$

$\zeta(21)$ is irrational.

Numerical computations suggest that:

Claim 4. For any even $A\geq 6,$ $\mathrm{d}_{n}^{A+1}$ seems to be a denominator of the $\tilde{p}_{j,n}$ .

Here, the consequences would very important since the same argument shows that
$\mathrm{d}_{n}^{18+1}\tilde{\mathrm{S}}_{18,n}$ ten$d\mathrm{s}$ to $0$ (while $\mathrm{d}_{n}^{18+2}\tilde{\mathrm{S}}_{18,n}$ does not), thus proving, conjecturally, the irra-
tionality of one of the eight numbers $\zeta(5),$ $\zeta(7),$

$\ldots,$
$((19)$ .
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3. A VERY GENERAL PHENOMENON

In the light of the previous examples, it is time to adopt a general approach to very-
well-poised series of hypergeometric kind.

Let $z$ be a complex number such that $|z|\geq 1$ , and $A,$ $B,$ $C,$ $r$ be positive integers such
that $1\leq 2Br\leq A$ . Consider the series

$\mathrm{S}_{n,A,B,C,r}(z)=n!^{A-2Br}\sum_{k=1}^{\infty}\frac{1}{C!}\frac{\partial^{C}}{\partial k^{O}}((k+\frac{n}{2})\frac{(k-rn)_{rn}^{B}(k+n+1)_{rn}^{B}}{(k)_{n+1}^{A}})z^{-k}$,

which is really hypergeometric when $C=0$. According to the general scheme developed
in section 2.1, we have that

$\mathrm{S}_{n,A,B,C,r}(z)=\mathrm{p}_{0,C.n}(z)+(-1)^{C}\sum_{m=1}^{A}\mathrm{p}_{m,n}(z)\mathrm{L}\mathrm{i}_{C+m}(1/z)$ ,

where the polynomials $\mathrm{p}_{m,n}(X)$ also depend on $A,B$ and $r$ , but not $C$ , except $\mathrm{p}_{0,G,n}(X)$ .
Using the trivial but important relation $(\alpha)_{m}=(-1)^{m}(-\alpha-m+1)_{m}$ (for any $\alpha\in \mathbb{C}$),

one immediately proves that the rational summand of $\mathrm{S}_{n,A,B,C,r}(z)$

$R_{n}(k)=(k+ \frac{n}{2})\frac{(k-rn)_{m}^{B}(k+n+1)_{rn}^{B}}{(k)_{n+1}^{A}}$

satisfies the symmetry $R_{n}(-n-k)=(-1)^{A(n+1)+1}R_{n}(k)$ , from which one deduces that
$z^{n}\mathrm{p}_{j,n}(1/z)=(-1)^{A+j+1}\mathrm{p}_{j,n}(z)(j\geq 1)$ . Consequently, when $A$ is even, $\mathrm{S}_{n,A,B,C,r}((-1)^{A})$

is a rational linear combination of 1, $\zeta(C+3),$ $\zeta(C+5),$
$\ldots,$ $\zeta(C+A-1)$ , whereas when $A$

is odd, $\mathrm{S}_{n,A,B,C,r}((-1)^{A})$ is a rational linear combination of 1, $\zeta(C+2),$ $\zeta(C+4),$
$\ldots,$

$\zeta(C+$

$A-1)$ .
The coefficients of these linear forms satisfy $\mathrm{d}_{n}^{A+C}\mathrm{p}_{0,C,n}(X)\in \mathbb{Z}[X]$ and $d_{n}^{A-m}\mathrm{p}_{m,n}(X)\in$

$\mathbb{Z}[X]$ , but the evidence above, along with many other numerical computations, led the
author to formulate the following conjecture in [13], which contains the previous Claims
1-4.

Denominators Conjecture. Fix integers $A\geq 2,$ $B\geq 0,$ $r\geq 0$ and $n\geq 0$ (with
$0\leq 2Br\leq A)$ . Then the rational numbers $\mathrm{d}_{n}^{A+C-1}\mathrm{p}_{0,C,n}((-1)^{A})$ and $\mathrm{d}_{n}^{A-m-1}\mathrm{p}_{m,n}((-1)^{A})$

(for all $m\in\{1,$
$\ldots,$

$A\}$) are integers.

Nothing similar holds if the factor $k+n/2$ is omitted from the series: it corresponds to
the word very in very-well-poised and its presence is crucial.

4. IDEA OF THE PROOF OF THE DENOMINATORS CONJECTURE

After many partial steps towards the proofof the conjecture (as witnessed by the different
versions posted in the $\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}$), C. Krattenthaler and the author finally proved it completely
in [9].

Theorem 6. The Denominators Conjecture is true.
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It $fo$llows that Claims 1 to 4 are all true. We now explain the ideas behind this result.

4.1. A refined Denominators Conjecture. We will only consider the case of the “lead-
ing” coefficient, that is to say the coefficient $\mathrm{p}_{A-1,n}((-1)^{A})$ of $\zeta(C+A-1)$ , which de-
pends on $A,$ $B$ and $r$ but not on $C$ . From now on, we assume that $r=1$ and set
$P_{n}(A, B)=(-1)^{B(n+1)}\mathrm{p}_{A-1,n}((-1)^{A})$ . Then,

$P_{n}(A, B)= \sum_{j=0}^{n}(\frac{n}{2}-j)$

. $((A+B)H_{n-j}-(A+B)H_{j}+BH_{n+j}-BH_{2n-j}- \frac{1}{\frac{n}{2}-j})$ .

The general estimates prove that $\mathrm{d}_{n}P_{n}(A, B)\in$ Z.
The Denominators Conjecture claims that $P_{n}(A, B)$ is always an integer. In the case of

$\zeta(2)(A=3, B=1)$ and $\zeta(3)(A=4, B=1)$ , we could even identify these coefficients as
Ap\’ery’s numbers:

$P_{n}(3,1)=\alpha_{n}$ and $P_{n}(4,1)=a_{n}$ . (3)

The advantage of (3) is that it is much $\mathrm{e}\mathrm{a}s$ier to prove an identity and, in fact, (3) can
be proved with the help of Zeilberger’s program Ekhad: both sides are shown to satisfy
the same recurrences relations, with the same initial values (see the introduction of [9] for
references).

But in the general situation, we $do$ not have an identity to prove and the first thing to
do is to find one. This can be done as follows. In [15], Vasilyev introduced the following
generalisation of Beukers’ integrals for ((2) and $\zeta(3)$ : let $E\geq 2$ and

$J_{n,E}= \int_{[0,1]^{B}}\frac{\prod_{j=1}^{E}x_{j}^{n}(1-.x_{j})^{n}\mathrm{d}x_{j}}{Q_{E}(x_{1},x_{2},..,x_{E})^{n+1}}$

where $Q_{E}(x_{1}, x_{2}, \ldots, x_{E})=1-(\cdots(1-(1-x_{1})x_{2})\cdots)x_{E}$. He proved that $J_{n,4}\in \mathbb{Q}+$

$\mathbb{Q}\zeta(2)+\mathbb{Q}\zeta(4)$ and $\sqrt n,5\in \mathbb{Q}+\mathbb{Q}\zeta(3)+\mathbb{Q}\zeta(5)$ , while Beukers showed that $J_{n,2}\in \mathbb{Q}+\mathbb{Q}\zeta(2)$

and $J_{n,3}\in \mathbb{Q}+\mathbb{Q}\zeta(3)$ . Vasilyev conjectured that this dichotomy is valid for all $E$ , depending
on the parity of $E$ and this was proved by $\mathrm{Z}\mathrm{u}d$ilin in [16].

Theorem 7. For all $E\geq 2$ , we have that

$J_{n,E}= \frac{n!^{2E+1}(3n+2)!}{2(2n+1)!^{E+2}}E+4F_{E+3}[_{\frac{3}{2}n+1,2n+2,..,2n+2}^{3n+2,\frac{3}{2}n+2,n+.1,\ldots,n+1}$; $(-1)^{E+1}]$ . (4)

Indeed, the hypergeometric series (4) is a special case of the very-well-poised series from
section 2.6 and consequently it can be represented as a linear form in $\mathrm{o}\mathrm{d}\mathrm{d}/\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}$ zeta values,
where the coefficient of ( $(E)$ is exactly $(-1)^{n+1}P_{n}(E+1,1)$ . But it is also possible, though
quite difficult, to expand the integral on the le$f\mathrm{t}$ hand side of (4) as a linear combinations
of zeta values (and also some multiple zeta values), and then to isolate the coefficient of
$\zeta(E)$ . Assuming the reasonable, but still conjectural, fact that the values $\zeta(n),$ $n\geq 2$ , are
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$\mathbb{Q}$-linearly independent, the comparison of both sides of (4) led to the following

Refined Denominators Conjecture in the case $B=1$ . For $A=2m+1\geq 3$ odd, set

$p_{n}(A, 1)= \sum_{0\leq i_{1}\leq i_{2}\leq\cdots\leq i_{m}\leq n}\prod_{k=1}^{m-1}$ ,

and for $A=2m\geq 2$ even, set

$p_{n}(A, 1)= \sum_{0\leq i_{1}\leq i_{2}\leq\cdots\leq:_{m\leq n}}(-1)^{m}’\prod_{k=1}^{m-1}$ ,

Then, for all integers $A\geq 2,$ $n\geq 0$ , we have that $P_{n}(A, 1)=(-1)^{An+1}p_{n}(A, 1)$ .

A similar integral identity can be used to obtain the:

Reflned Denominators Conjecture in the case $B=0$. For $A=2m+3\geq 5$ odd, set

$p_{n}(A, 0)= \sum_{0\leq:_{1}\leq i_{2}\leq\cdots\leq i_{m}\leq n}\prod_{k=1}^{m}$ ,

where, by definition, $i_{m+1}=n$ and for $A=2m+2\geq 4$ even, set

$p_{n}(A, 0)=,, \sum_{0\leq_{1}\leq_{2}\leq\cdots\leq:_{m}\leq n}\prod_{k=1}^{m-1}$ .

Then, for all integers $A\geq 4,$ $n\geq 0$ , we have that $P_{n}(A,0)=(-1)^{n+1}p_{n}(A, 0)$ .

It is now quite clear why $P_{n}(A, 0)$ and $P_{n}(A, 1)$ should be integers, since these refined
conjectures express them as multiple sums of products of binomial coefficients. It is also
possible to give similar refinements for the values of $A$ not covered by these conjectural
identities (and to prove them “by hand”).

4.2. The key identity. C. Krattenthaler has produced an extremely useful electronic
version, which he called HYP, of Gasper&Rahman’s book [8] that lists the almost infinitely
many identities between $(q-)\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ series: HYP is not only an electronic library
but, more importantly, a $‘(\mathrm{t}\mathrm{o}\mathrm{o}1$ box”, that is to say one can feed it a hypergeometric series,
ask it to perform a certain transform and output the result.

Thanks to this software, it becomes easier (but still very difficult in our situation) to
handle hypergeometric sums and prove the “refined conjectural identities” above, which
are in fact special cases of the following key identity, where one can recognize the very-
well-poised factor $\frac{n}{2}+\frac{a_{1}}{2}-j$ in the second simple sum:
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$(-1)^{n}. \sum_{0\leq_{1}\leq i_{2}\leq\cdots\leq i_{m}\leq n}$

. $\frac{\Gamma(n+b_{1}+b_{2}-a_{1}+1)}{\Gamma(a_{2}-a_{3}+i_{m}+1)\Gamma(n+a_{3}-a_{1}-a_{2}+b_{1}+b_{2}-i_{m}+1)}$

. $\frac{\Gamma(a_{2}+i_{m}+1)}{\Gamma(a_{2}-b_{2}-n+i_{m}+1)\Gamma(n+b_{2}+1)}$

. $\frac{\Gamma(n+a_{3}-a_{1}-a_{2}+b_{1}+b_{2}-i_{m-1}+1)}{\Gamma(-a_{1}+a_{3}-i_{m-1}+1)\Gamma(n-a_{2}+b_{1}+b_{2}+1)}$

. $( \prod_{k=1}^{m-1}$
. $\frac{\Gamma(n-a_{1}+b_{2m-2k-1}+b_{2m-2k+1}+1)}{\Gamma(b_{2m-2k+1}+i_{k}+1)\Gamma(n-a_{1}+b_{2m-2k-1}-i_{k}+1)}$

. $\frac{\Gamma(n-a_{1}+b_{2m-2k}+b_{2m-2k+2}+1)}{\Gamma(b_{2m-2k+2}+i_{k}+1)\Gamma(n-a_{1}+b_{2m-2k}-i_{k}+1)})$

$\frac{2\pi}{\sin(\pi a_{1})}\cdot\frac{\Gamma(n+b_{1}+b_{2}-a_{1}+1)\Gamma(n+b_{1}+1)}{n!\Gamma(n-a_{2}+b_{1}+b_{2}+1)\Gamma(a_{2}-b_{2}+1)}$

$\cross\sum_{j=0}^{n}((\frac{n}{2}+\frac{a_{1}}{2}-j)\cdot\frac{\Gamma(a_{3}+1)}{\Gamma(-a_{1}+j+1)\Gamma(n+a_{1}-j+1)}$

. $\frac{\Gamma(-a_{1}+a_{2}+j+1)}{\Gamma(-n-a_{1}+a_{3}+j+1)\Gamma(n+a_{2}-a_{3}+1)}$

. $\frac{\Gamma(n+a_{2}-j+1)}{\Gamma(a_{3}-j+1)\Gamma(a_{2}-a_{1}+1)}$

. $( \prod_{k=1}^{2m}\frac{\Gamma(n-a_{1}+b_{k}+b_{k+2}+1)}{\Gamma(n+b_{k}-j+1)\Gamma(-a_{1}+b_{k}+j+1)}))$ ,

where, by definition, $b_{2m+1}=b_{2m+2}=0,$ $i_{0}=0$ and where for $m=1$ , an empty product
is given the value 1. In fact, this identity is more or less the same as a formula proved by
Andrews [1] in the seventies, but without HYP...

4.3. The case $B\geq 2$ . IFirom the key identity, it is not only possible to prove the refined
Denominators Conjecture for $P_{n}(A, 0)$ and $P_{n}(A, 1)$ , but also to handle the case of $B\geq 2$ :
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Refined Denominators Conjecture in the case $B\geq 2$ . For $B\geq 2$ and $A=2m+1\geq 3$

odd, set

$p_{n}(A, B)=$

$0 \leq:_{1}\leq i_{2}\leq\cdots\leq i_{m+B-1}\leq n\sum(-1)^{i_{m+B-1}}$

. $( \prod_{k=B}^{m+B-2})$
. $( \prod_{k=1}^{B-2})$ ,

where, by definition, $i_{0}=0$ .

For $B\geq 2$ and $A=2m+2\geq 2$ even, set

$p_{n}(A, B)= \sum_{0\leq:_{\iota\leq:_{2}\leq\cdots\leq:_{m+B-1}\leq n}}(\prod_{k=B}^{m+B-1})$

. $( \prod_{k=1}^{B-2})$ .

Then, for all integers $A\geq 2$ and $B\geq 2$ , we have that $P_{n}(A, B)=(-1)^{(A+1)n+1}p_{n}(A, B)$ .
Thus the Denominators Conjecture is true for the “leading” coefficients. More “human”

work is required to extract from the key identity the conjectured denominators of the other
coefficients: the interested reader is refered to [9] for the details, which are far from trivial.
For completeness, the conjecture is proved for $2\mathrm{p}_{0,C,n}(\pm 1)$ rather than for $\mathrm{p}_{0,C,n}(\pm 1)$ : this is
the most difficult case of the conjecture, and also the most important since its denominator
is always the one of the linear forms in zeta values.

5. ARITHMETICAL CONSEQUENCES

As we have already mentioned in subsections 2.4, 2.5 and 2.7, the Denominators Con-
jecture enables us to give new proo$f\mathrm{s}$ that $\zeta(2),$ $\zeta(3)$ are irrational and, more importantly,
that at least one of the eight numbers $\zeta(5),$ $\zeta(7),$

$\ldots,$
$\zeta(19)$ is irrational. This is proved via

the series (corresponding to $A=18,$ $B=3,$ $C=2$ and $r=1$)

$n!^{12} \sum_{k=1}^{\infty}\frac{1}{2}\frac{\partial^{2}}{\partial k^{2}}((k+\frac{n}{2})\frac{(k-n)_{n}^{3}(k+n+1)_{n}^{3}}{(k)_{n+1}^{18}})=\tilde{p}_{0,n}+\sum_{j=5,j\mathrm{o}\mathrm{d}\mathrm{d}}^{19}\tilde{p}_{j,n}\zeta(j)$ ,

where the a priori denominator $\mathrm{d}_{n}^{20}$ of $\tilde{p}_{j,n}$ can now be replaced by $\mathrm{d}_{n}^{19}$ . But this refinement
is useless since W. Zudilin proved the following much better result in [17].
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Theorem 8. At least one of the four numbers $\zeta(5),$ $\zeta(7),$ $\zeta(9),$ $\zeta(11)$ is irrational.

To prove this, he uses more complicated very-well-poised series (in a sense, those con-
sidered in this text are the simplest of this kind) and he also formulates a “super” Denom-
inators Conjecture for his linear forms, which is still open. Hence there might be room to
prove that at least one of three numbers $\zeta(5),$ $\zeta(7),$ $\zeta(9)$ is irrational.

BIBLIOGRAPHY
[1] G. E. Andrews, Problems and prospects for basic hypergeometric flnctions, Theory and application of

special functions, R. A. Askey, ed., Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press,
New York, pp. 191-224, 1975.

[2] R. Ap\’ery, Irrationalit\’e de $\zeta(2)$ et $\zeta(3)$ , Ast\’erisque 61 (1979), 11-13.
[3] W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935.
[4] K. Ball et T. Rivoal, Irrationalit\’e d’une infinit\’e de valeurs de la fonction z\^eta aux entiers impaifs,

Invent. Math. 146.1 (2001), 193-207.
[5] F. Beukers, A note on the irrationality of $\zeta(2)$ and $\zeta(3)$ , Bull. London Math. Soc. 11 (1979), 268-272.
[6] F. Beukers, Pad\’e approximations in Number Theory in “Pad\’e approximation and its applications”,

Amsterdam 1980, LNM 888, 90-99, Springer (1981).
[7] L.A. Gutnik, The irrationality of certain quantities involving $\zeta(3)$ , Russ. Math. Surv. 34.3 (1979), 200.

In russian in Acta Arith. 42.3 (1983), 255-264.
[8] G. Gasper et M. Rahman, Basic hyperpeometric series, Encyclopedia of Mathematics And Its Appli-

cation835, Cambridge University Press, Cambridge, 1990.
[9] C. Krattenthaler and T. Rivoal, Hypery\’eom\’etrie et fonction z\^eta de Riemann, preprint (2004).

http: $//\mathrm{a}\mathrm{r}\mathrm{X}i\mathrm{v}.$ org/ab\S /math. $\mathrm{N}\mathrm{T}/0311114$ .
[10] Yu.V. Nesterenko, On the linear independence of numbers, Mosc. Univ. Math. Bull.40.1 (1985), 69-74,

translation of Vest. Mosk. Univ., Ser. I (1985), no. 1, 46-54.
[11] T. Rivoal, La fonction z\^eta de Riemann prend une infinit\’e de valeurs irrationnelles aux entiers impairs,

C. R. Acad. Sci. Paris, S\’erie I Math. 331.4 (2000), 267-270.
http: $//\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}.$ org/ab\S /math. $\mathrm{N}\Gamma/0008051$ .

[12] T. Rivoal, Irrationalit\’e d’au moins un des neuf nombres $\zeta(5),$ $\zeta(7),$
\ldots ,

$\zeta(21)$ , Acta Arith. 103.2
(2002), 157-167.

[13] T. Rivoal, S\’eries $hype\eta dom\acute{e}t\dot{n}ques$ et irrationalit\’e des valeurs de la fonction z\^eta de Riemann, J.
Th\’eor. Nombres Bordeaux 15.1 (2003), 351-365.

[14] L. J. Slater, Generalized hypergeometric fimctions, Cambridge University Press, Cambridge, 1966.
[15] D. V. Vasilyev, On small linear forms for the values of the Riemann zeta-function at odd points,

prepublication no.1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk (2001).
[16] W. Zudilin, Well-poised hypefgeometric service for diophantine problems of zeta values, J. Th\’eor.

Nombres Bordeaux 15.2 (2003), 593-626; see also: Multiple integral-representations of $ve\eta$-well-poised
hypergeometric series, -print available at http: $//\mathrm{a}\mathrm{r}\mathrm{X}i\mathrm{v}.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{a}\mathrm{b}\mathrm{s}/\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{N}\mathrm{T}/0206177$ .

[17] W. Zudilin, Arithmetic of linear foms involmng odd zeta values, \‘a paraitre au J. Th\’eor. Nombres
Bordeaux. http: $//\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{a}\mathrm{b}\mathrm{s}/\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{N}\mathrm{T}/0206176$.

120


