Research problems in number theory III.

By I. Kátai

Abstract

Some open problems in the field of arithmetic functions are presented.

Research problems in number theory III.

By I. Kátai*

§1. Introduction

In this paper we shall formulate some open problems, conjectures in the field of number theory. Some of them were formulated earlier in one of my papers [1], [2], [3], [4].

Notations. As usual $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the set of natural numbers, integers, rational, real, or complex numbers, respectively. Let \mathbb{Q}_x , \mathbb{R}_x be the multiplicative group of positive elements of \mathbb{Q}, \mathbb{R} , resp. . Let \mathcal{P} be the set of prime numbers. Let P(n) be the largest prime factor of n.

§2. Continuous homomorphisms as arithmetical functions

2.1. For some additively written commutative group G let \mathcal{A}_G^* be the set of those functions $f: \mathbb{N} \to G$, for which f(mn) = f(m) + f(n) holds for every couple of $m, n \in \mathbb{N}$.

We say that \mathcal{A}_G^* is the class of completely additive functions.

Let G be multiplicatively written, commutative group, \mathcal{M}_G^* be the class of those $g: \mathbb{N} \to G$, for which $g(mn) = g(m) \cdot g(n)$ for every pair of $m, n \in \mathbb{N}$. We say that \mathcal{M}_G^* is the set of completely multiplicative functions.

If $f \in \mathcal{A}_{G}^{*}$, then its domain N can be extended to \mathbb{Q}_{x} by

$$f\left(\frac{m}{n}\right) := f(m) - f(n),$$

and the equation

$$f(r_1r_2) = f(r_1) + f(r_2)$$

remains valid for every $r_1, r_2 \in \mathbb{Q}_x$.

Let G be a topological group and $f: \mathbb{Q}_x \to G$, $f \in \mathcal{A}_G^*$ be continuous at 1. Then, for each $\alpha \in \mathbb{R}_x$ there exists the limit

$$\lim_{r\to\alpha}f(r)=:\Phi(\alpha),$$

 Φ is continuous everywhere in \mathbb{R}_x , furthermore $\Phi(\alpha\beta) = \Phi(\alpha) + \Phi(\beta)$ is valid for all $\alpha, \beta \in \mathbb{R}_x$, i.e. ϕ is a continuous homomorphism of \mathbb{R}_x into G.

The following conjectures 1,2 are proposed by M.V. Subbarao and myself.

Conjecture 1. Let G be a compact Abelian topological group, $f \in \mathcal{A}_G^*$, and let the closure of $f(\mathbb{N})$ be G (closure $f(\mathbb{N})$ is a closed subgroup in G). Let U be the set of those u for which there exists an infinite sequence of integers $n_{\nu} \nearrow$, such that $f(n_{\nu} + 1) - f(n_{\nu}) \to u$.

Then U is a subspace in G, furthermore $f(n) := \Phi(n) + V(n)$, where Φ is a continuous homomorphism, $\phi : \mathbb{R}_x \to G$, $V(\mathbb{N}) \subseteq U$, clos $V(\mathbb{N}) = U$.

The next conjecture is a special case of Conjecture 1.

Conjecture 2. Let $f: \mathbb{N} \to \mathbb{C}$ be a completely multiplicative function, |f(n)| = 1 $(n \in \mathbb{N})$, $\delta_f(n) = f(n+1)\overline{f}(n)$.

Let $A_k = \{\alpha_1, \ldots, \alpha_k\}$ be the set of limit points of $\{\delta_f(n) \mid n \in \mathbb{N}\}$. Then $A_k = S_k$, where S_k is the set of k'th complex units, i.e. $S_k = \{w \mid w^k = 1\}$, furthermore $f(n) = n^{i\tau}F(n)$ with a suitable $\tau \in \mathbb{R}$, and $F(\mathbb{N}) = S_k$, and for every $w \in S_k$ there exists a sequence $n_{\nu} \nearrow \infty$ such that $F(n_{\nu} + 1)\overline{F}(n_{\nu}) = w$ ($\nu = 1, 2, \ldots$).

The motivation of the problems, and partial results can be read in [7], [8].

^{*}Research supported by the Applied Number Theory Research Group of the Hungarian Academy of Science and by a grant from OTKA T46993.

A weakened form of Conjecture 2 has been proved by E. Wirsing recently [6]: Under the conditions of Conjecture 2, $A_k \subseteq S_l$ for a suitable l, and $f(n) = n^{i\tau} F(n)$, $\mathbb{F}(\mathbb{N}) \subseteq S_l$.

2.2. Let $T = \mathbb{R}/\mathbb{Z}$ be the one-dimensional torus. Let \mathcal{A}_T be the set of additive functions taking values from T, i.e. $F: \mathbb{N} \to T$ belongs to \mathcal{A}_T if F(mn) = F(m) + F(n) holds for all coprime pairs of m, n. We say that F is of finite support, if $F(p^{\alpha}) = 0$ holds for every large prime p, and every $\alpha \in \mathbb{N}$.

For $F_{\nu} \in \mathcal{A}_T(\nu = 0, \dots, k-1)$ let

$$L_n(F_0,\ldots,F_{k-1}):=F_0(n)+\ldots+F_{k-1}(n+k-1).$$

Let $\mathcal{L}_0^{(k)}$ be the space of those k-tuples (F_0,\ldots,F_{k-1}) of $F_{\nu}\in\mathcal{A}_T$ for which

$$L_n(F_0,\ldots,F_{k-1})=0 \quad (n\in\mathbb{N})$$

holds.

Conjecture 3. $\mathcal{L}_0^{(k)}$ is a finite dimensional \mathbb{Z} module, and each F_j is of finite support.

Conjecture 4. If $F_{\nu} \in A_T$ $(\nu = 0, 1, ..., k-1)$, and

$$L_n(F_0,\ldots,F_{k-1})\to 0 \quad (n\to\infty)$$

then there exist suitable real numbers $\tau_0, \ldots, \tau_{k-1}$ such that $\tau_0 + \ldots + \tau_{k-1} = 0$, and for $H_j(n) := F_j(n) - \tau_j \log n \ (j = 0, \ldots, k-1)$ we have

$$L_n(H_0,\ldots,H_{k-1})=0 \quad (n=1,2,\ldots).$$

Conjecture 5. For every integer $k(\geq 1)$ there exists a constant c_k such that for every prime p greater than c_k ,

$$\min_{j=1,...,p-1} \max_{\substack{l \in [-k,k] \\ l \neq 0}} P(jp+l) < p.$$

The conjecture is open even in the case k=2.

Let Q_x^l be the *l*-fold direct product of Q_x . Let furthermore O_l be its subgroup, generated by the elements $(n, n+1, \ldots, n+l-1)$ $(n \in \mathbb{N})$.

The following assertions are true:

- (1) Let $\mathcal{L}_0^{*(l)}$ be the space of those l-tuples (F_0, \ldots, F_{l-1}) of $F_{\nu} \in \mathcal{A}_T^*$ for which $L_n(F_0, \ldots, F_{l-1}) = 0$ $(n \in \mathbb{N})$. Assume that Conjecture 5 is true for k = l. Then $\mathcal{L}_0^{*(l)}$ is a finite dimensional space.
- (2) $\mathcal{L}_0^{*(l)}$ (defined in (1)) is of finite dimensional, if and only if the factor group \mathbb{Q}_x^l/O_l is finite. $\mathcal{L}_0^{*(l)}$ is trivial (it contains only $(0,\ldots,0)$) if and only if $O_l=Q_x^l$.

2.3. Let
$$A^* = A_p^*$$
.

Definition 1. (Set of uniqueness). We say that $E \subseteq \mathbb{N}$ is a set of uniqueness for the class of completely additive functions, if $f \in \mathcal{A}^*$, f(E) = 0 implies that $f(\mathbb{N}) = 0$.

Definition 2. (Set of uniqueness mod 1). We say that $E \subseteq \mathbb{N}$ is a set of uniqueness mod 1, if $f \in \mathcal{A}_T^*$, f(E) = 0 implies that $f(\mathbb{N}) = 0$.

I introduced the notion "set of uniqueness" in [10] and proved [11] that the set of "primes +1" can be extended by finitely many integers so that the resulting set is a set of uniqueness. My guess that the set of shifted primes itself is a set of uniqueness, was proved by Elliott [12]. It was proved by Wolke [13] that E is a set of uniqueness if and only if for every $n \in \mathbb{N}$ there exists a suitable $k \in \mathbb{N}$, such that

$$n^k = \prod_{i=1}^h a_i^{\varepsilon_i}$$
, where $a_i \in E$, $\varepsilon_i = \pm 1$.

It was proved (by Meyer, Indlekofer, Dress and Volkman, Hoffman, Elliott, independently) that E is a set of uniqueness mod 1, if every $n \in \mathbb{N}$ can be written as

$$n=\prod_{j=1}^s a_j^{d_j},\quad a_j\in E,\ d_j\in \mathbb{Z},\quad (j=1,\ldots,s).$$

Conjecture 6. The set of "prime +1" s is a set of uniqueness mod 1.

Conjecture 6 is proposed by several mathematicians independently.

A quite detailed treatment of this topic is given by Elliott [14].

Indlekofer and Timofeev proved that $\{u^2 + v^2 + a \mid u, v \in \mathbb{Z}\}$ is a set of uniqueness mod 1, if $a \neq 0$.

The same result is proved by De Koninck and Kátai.

§3. On q-additive and q-multiplicative functions

Let $q \geq 2$ be an arbitrary integer, $\mathcal{E} = \{0, 1, \dots, q-1\}$ and let $\varepsilon_0(n)$, $\varepsilon_1(n)$, ... be the digits in the q-ary expansion of $n : n = \varepsilon_0(n) + \varepsilon_1(n)q + \dots$. This is a finite expansion, since $\varepsilon_j(n) = 0$ if $q^j > n$. Let $f : \mathbb{N}_0 \to \mathbb{R}$ be such a function for which f(0) = 0, and

$$f(n) = \sum_{j=0}^{\infty} f(\varepsilon_j(n)q^j)$$

holds for every n. We say that f is q-additive, and the set of q-additive functions is denoted by A_q .

We say that $g: \mathbb{N}_0 \to \mathbb{C}$ is q-multiplicative if g(0) = 1, and $g(n) = \prod_{j=0}^{\infty} g(\varepsilon_j(n)q^j)$ holds for every

n. Let \mathcal{M}_q be the set of q-multiplicative functions, and $\overline{\mathcal{M}}_q$ be those of \mathcal{M}_q for the elements $g \in \overline{\mathcal{M}}_q$ additionally |g(n)| = 1 $(n \in \mathbb{N}_0)$ holds as well.

Let $g \in \overline{\mathcal{M}}_q$,

$$P(x) = \sum_{p \le x} g(p), \quad S(x \mid \alpha) = \sum_{\substack{l < x \\ (l,\alpha) = 1}} g(l)e(\alpha l)$$

where $e(y) := e^{2\pi i y}$.

We are interested in to give necessary and sufficient conditions for g to satisfy

$$\lim_{x \to \infty} \frac{P(x)}{\pi(x)} = 0.$$

Conjecture 7. Let $g \in \overline{\mathcal{M}}_q$. Then (3.1) holds if and only if

$$(3.2) x^{-1}S(x,r) \to 0$$

for every $r \in \mathbb{Q}$.

The necessity of (7.2) is quite obvious, since if it does not hold, then

$$\sum_{i=0}^{\infty} \sum_{c \in E} \operatorname{Re} \left(1 - g(cq^{j})e(cq^{j}r)\right) < \infty,$$

whence one can prove easily that (3.2) cannot hold. The difficulty is in the sufficienty. Let $T_{l_1,l_2}^M = T_{l_1,l_2} =$

$$=\#\{p_1,p_2\in\mathcal{P},\ p_2-p_1=l_2-l_1,\ p_1\equiv l_1\ (\mathrm{mod}\ q^M),\ p_2\leq x\},$$

$$H(d) := \prod_{\substack{p \mid d \\ p \nmid 2q}} \left(1 + \frac{1}{p-2} \right).$$

Conjecture 8. There exists a constant $\delta \in (0, 1/2)$, such that for $M = [\delta N]$, $N = \left\lceil \frac{\log x}{\log q} \right\rceil$,

$$\sum_{\substack{l_1, l_2 < q^M \\ (l_1 l_2, q) = 1 \\ l_1 \neq l_2}} \left| T_{l_1, l_2}^{(M)} - \frac{x}{\varphi(q^M)(\log x)^2} H(l_2 - l_1) \right| < \frac{\varepsilon(x) x \cdot q^M}{(\log x)^2}$$

with a suitable function $\varepsilon(x) \to 0 \ (x \to \infty)$.

In [15] we proved that Conjecture 8 implies the fulfilment of Conjecture 1.

Furthermore in [15] we proved the following assertion: Let $Y(x) \nearrow \infty$, so that $\frac{\log Y(x)}{\log x} \to 0$. Let $\mathcal{N}_x := \{n \leq x, \ p(n) > Y(x)\}$, where p(n) is the smallest prime factor of n.

Let $N(x) = \operatorname{card}(\mathcal{N}_x)$. Let L(x) be strongly multiplicative, $(L(p^h) =) L(p) = \frac{1}{p-2}$ if $p \nmid 2q$, and L(p) = 0 otherwise. Let

$$U(x):=\sum_{n\in\mathcal{N}_x}g(n).$$

Then

$$\left|\frac{U(x)}{N(x)}\right|^2 \leq \sum_{d \leq D} \frac{L(d)}{d} \sum_{a=0}^{d-1} \left|q^{-M}S\left(q^M \mid \frac{a}{d}\right)\right|^2 + \frac{c_1}{D} + o_x(1),$$

where $M = \left[\frac{1}{4} \frac{\log x}{\log q}\right]$, c_1 is a positive constant which depends only on q, $o_x(1)$ does depend on Y(x), and D is an arbitrary real numbers.

$\S 4$. The distribution of q-ary digits on some subsets of integers

4.1. Let $\mathcal{B}(\subseteq \mathbb{N}_0)$ be infinite, $B(x) = \#\{b \le x, b \in \mathcal{B}\}$. For $0 \le l_1 < l_2 < \ldots < l_h, b_1, \ldots, b_h \in E$, let $A_{\mathcal{B}}\left(x \mid \begin{matrix} l \\ b \end{matrix}\right)$ be the size of those integers $n \in \mathcal{B}$, $n \le x$, for which $\varepsilon_{l_j}(n) = b_j$ $(j = 1, \ldots, h)$ simultaneously hold.

Conjecture 9. For every $h\left(\leq \frac{N}{3}\right)$, $1\leq l_1<\ldots< l_h(\leq N)$, and $b_1,\ldots,b_h\in\mathcal{E}$ denote

$$\left(\Delta_h \begin{pmatrix} l \\ b \end{pmatrix} = \right) \Delta_h \begin{pmatrix} l_1, \dots, l_h \\ b_1, \dots, b_h \end{pmatrix} := \frac{q^h A_{\mathcal{P}} \begin{pmatrix} q^n & l \\ b \end{pmatrix}}{\pi(q^N)} - 1.$$

Then

(4.1)
$$\sup_{1 \leq h \leq \frac{N}{3}} \sup_{\substack{l_1, \dots, l_h \\ b_1, \dots, b_h}} \left| \Delta_h \begin{pmatrix} l \\ b \end{pmatrix} \right| \to 0 \quad as \quad N \to \infty.$$

Here P is the set of primes.

Remarks. 1. Inequality, similar but much weaker than (4.1) was proved in [16].

2. These type of inequalities would be interesting for other sets \mathcal{B} instead of \mathcal{P} , like $\mathcal{B} = \{\text{fixed polynomial } (n) \mid n \in \mathbb{N} \}$, or $= \{\text{fixed polynomial } (p) \mid p \in \mathcal{P} \}$. We would be able to use them in proving

central limit theorems with remainder terms for f(P(n)), or f(P(p)), where $f \in \mathcal{A}_q$, P = polynomial. (See [17], [18], [19], [20], [21]).

4.2.

Conjecture 10. If $g \in \overline{\mathcal{M}}_q$, g(p) = 1 for every $p \in \mathcal{P}$, then g(nq) = 1 $(n \in \mathbb{N})$.

See [22], where it is proved that there exists an absolute constant c > 0 such that $g \in \overline{\mathcal{M}}_q$, g(p) = 1 implies that there exists an integer k, $1 \le k \le c$ for which $g^k(nq) = 1$ $(n \in \mathbb{N})$.

§5. On a theorem of H. Daboussi

H. Daboussi proved several years ago that for $f \in \mathcal{A}$, $|f(n)| \leq 1$, and for every irrational α , in the notation

$$m(f, \alpha, x) := \frac{1}{x} \left| \sum_{n \leq x} f(n) e(n\alpha) \right|,$$

we have

$$\sup_{f\in\mathcal{A},\ |f|\leq 1} m(f,\alpha,x)\to 0\quad (x\to\infty).$$

This theorem has been generalized in different directions.

Let \mathcal{P}_k be the set of square-free numbers n with exactly n prime-factors: $n = p_1 p_2 \dots p_k$. Let α be an irrational number. Let $q_1 < q_2 < \dots < q_r$ be the whole set of primes less than x. Let X_{q_j} $(j = 1, \dots, r)$ be complex numbers,

$$Q_k(X_{q_1},\ldots,X_{q_r}) := \left| \sum_{\substack{n=p_1\ldots p_k < x \\ n \in \mathcal{P}_k}} X_{p_1}\ldots X_{p_k} e(n\alpha) \right|.$$

Let

$$\delta_k(x) := \max_{\substack{|X_{q_1}| \leq 1, \ldots, |X_{q_r}| \leq 1 \\ x \to \infty}} \frac{Q_k(X_{q_1}, \ldots, X_{q_r})}{\tilde{\pi}_k(x)},$$

where $\tilde{\pi}_k(x)$ is the number of $n \leq x$, $n \in \mathcal{P}_k$.

Conjecture 11. We have $\delta_k < 1$, if $k \ge 2$. Furthermore $\delta_k \to 0$ (if $k \to \infty$).

Remark. Recently I could prove that $\delta_2 = 0$ for almost all α .

§6. Some problems originated from Rényi-Parry expansions

See our papers written jointly with Daróczy [23 - 26].

Let \mathbb{C}^{∞} denote the space of sequences $\underline{c}=(c_0,c_1,\ldots)$ the coordinates c_{ν} of which $\in \mathbb{C}$. This shift operator $\sigma:\mathbb{C}^{\infty}\to\mathbb{C}^{\infty}$ is defined by $\sigma((c_0,c_1,\ldots))=(c_1,c_2,\ldots)$. Let $t_0=1,\ t_{\nu}\in\mathbb{C},\ t_{\nu}$ be bounded, $\underline{t}=(t_0,t_1,\ldots)$. Let

(6.1)
$$R(z) = t_0 + t_1 z + \dots$$

Let l_1 be the linear space of those $\underline{b} \in \mathbb{C}^{\infty}$, for which $\sum |b_{\nu}| < \infty$. The scalar product of an element $\underline{b} \in l_1$ and a bounded sequence \underline{c} let:

$$\underline{c}\,\underline{b}=\underline{b}\,\underline{c}=\sum_{\nu=0}^{\infty}b_{\nu}c_{\nu}.$$

Let

(6.2)
$$\mathcal{H}_t := \{ \underline{b} \in l_1 \mid \sigma^l(\underline{b})\underline{t} = 0, \ l = 0, 1, 2, \dots \}.$$

It is clear that \mathcal{H}_t is a closed linear subspace of l_1 , furthermore $\sigma(\mathcal{H}_t) \subseteq \mathcal{H}_t$. Let $\mathcal{H}_t^{(0)} \subseteq \mathcal{H}_t$ be the set of those $\underline{b} \in \mathcal{H}_{\underline{t}}$ for which

$$(6.3) |b_{\nu}| \le C(\varepsilon, \underline{b})e^{-\varepsilon\nu} (\nu \ge 0)$$

holds with some $\varepsilon > 0$ and finite $C(\varepsilon, \underline{b})$.

If ρ is a root of R(z), $|\rho| < 1$, then $b_{\nu} := \rho^{\nu}$ satisfies $\sigma^{l}(\underline{b})\underline{t} = 0$ (l = 0, 1, ...), and $|b_{\nu}| \leq C \cdot e^{-\varepsilon \nu}$ with C = 1, and with ε counted from $e^{-\varepsilon} = |\rho|$. If the order of the multiplicity of the root ρ is m, then $\underline{b} \in \mathcal{H}_{t}$, if $b_{\nu} = \nu^{j} \rho^{\nu}$ $(\nu = 0, 1, ...)$, for every j = 0, 1, ..., m - 1. The sequences $b_{\nu} = \nu^{j} \rho^{\nu}$ $(\nu = 0, 1, ...)$ are called elementary solutions. Let $\mathcal{H}_{t}^{(e)}$ be the space of finite linear combinations of the elementary solutions, and let $\overline{\mathcal{H}}_{t}^{(e)}$ be the closure of $\mathcal{H}_{t}^{(e)}$.

Conjecture 12. We have: $\overline{\mathcal{H}}_t^{(e)} = \mathcal{H}_t$.

Conjecture 13. Assume that $R(z) \neq 0$ in |z| < 1. Then $\mathcal{H}_t = \{0\}$.

References

- [1] I. Kátai, Research problems in number theory I., Matematikai Lapok 19 (1968), 317-325. (Hungarian)
- [2] I. Kátai, Research problems in number theory, Publicationes Math. Debrecen 24 (1977), 263-276.
- [3] I. Kátai, Research problems in number theory II., Annales Univ. Eötvös Loránd (Budapest), Sectio Computatorica 16 (1996), 223-251.
- [4] I. Kátai, Characterization of arithmetical functions, problems and results, Number Theory, Proc. of the International Number Theory Conference held at Université Laval, 1987, W. de Gruyter, New York 1989, pp. 544-555.
- [5] I. Kátai, Generalized number systems in Euclidean spaces, Mathematical and Computer Modelling 38 (2003), 883-892.
- [6] E. Wirsing, On a problem of Kátai and Subbarao, Annales Univ. Eötvös Loránd (Budapest), Sectio Computatorica. (accepted)
- [7] I. Kátai and M.V. Subbarao, The characterization of $n^{i\tau}$ as a multiplicative function, Acta Math. Hung.
- [8] I. Kátai and M.V. Subbarao, On the multiplicative function $n^{i\tau}$, Studia Sci. Math. 34 (1998), 211-218.
- [9] I. Kátai, Continuous homomorphisms as arithmetical functions, and sets of uniqueness, Number Theory, edited: R.P. Bambah, V.C. Dumir, R.J. Hans-Gill, Hindustan Book Agency and Indian National Science Academy, 2000, pp. 183-200.
- [10] I. Kátai, On sets characterizing number theoretical functions, Acta Arithm. 13 (1968), 315-320.
- [11] I. Kátai, On sets characterizing number theoretical functions II. (The set of "prime plus one"s is a set of quasi uniqueness), Acta Arithm. 26 (1974), 11-20.
- [12] P.D.T.A. Elliott, On two conjectures of Kátai, Acta Arithm. 26 (1974), 11-20.
- [13] D. Wolke, Bemcrkungen über Eindeitigkeits mengen additiver Funktionen, Elem. der Math. 33 (1978), 14-16.
- [14] P.D.T.A. Elliott, Arithmetic functions and integer products, Springer V., New York 1985.
- [15] I. Kátai, Distribution of q-additive functions, Probability theory and applications, eds. J. Galambos and I. Kátai, Kluwer, 1992, 309-318.
- [16] I. Kátai, Distribution of digits of primes in q-ary canonical form, Acta Math. Hung. 47 (1986), 341-359.
- [17] N.L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hung. 68(4), (1995), 353-361.
- [18] N.L. Bassily and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some subsequences of integers, Journal of Mathematical Sciences 78(1), (1996), 11-17.

- [19] M. Drmota, The joint distribution of q-additive functions, Acta Arithm. 100(1), (2001), 17-39.
- [20] B. Gittenberger and J.M. Thuswaldner, Asymptotic normality of b-additive functions on polynomial sequences in the Gaussian number field, J. Number Theory 84 (2000), 317-341.
- [21] W. Steiner, The distribution of digital expansions on polynomial sequences (Dissertation), Technische Universität Wien, Institut für Geometrie, 2002.
- [22] K.-H. Indlekofer and I. Kátai, On q-multiplicative functions taking a fixed value on the set of primes, Studia
- [23] Z. Daróczy, A. Járai, I. Kátai, Intervalfüllende Folgen und volladditive Funktionen, Acta Sci. Math. (Szeged), 50 (1986), 337-350.
- [24] Z. Daróczy and I. Kátai, Additive functions, Analysis Math. 12 (1986), 85-96.
- [25] Z. Daróczy and I. Kátai, Interval filling sequences and additive functions, Acta Sci. Math. (Szeged), 52 (1988), 337-347.
- [26] Z. Daróczy and I. Kátai, Continuous additive functions and difference equations of infinite order, Analysis Math. 12 (1986), 237-249.