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Abstract

Some open problems in the field of arithmetic functions are presented.
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§1. Introduction

In this paper we shall formulate some open problems, conjectures in the field of number theory. Some
of them were formulated earlier in one of my papers [1], [2], [3], [4].

Notations. As usual N,Z,Q,R,C denote the set of natural numbers, integers, rational, real, or
complex numbers, respectively. Let Q,, R, be the multiplicative group of positive elements of Q, R,
resp. . Let P be the set of prime numbers. Let P(n) be the largest prime factor of n.

§2. Continuous homomorphisms as arithmetical functions

2.1. For some additively written commutative group G let A¢; be the set of those functions f : N = G,
for which f(mn) = f(m) + f(n) holds for every couple of m,n € N.

We say that A is the class of completely additive functions.

Let G be multiplicatively written, commutative group, Mg be the class of those g : N — G, for which
g(mn) = g(m) - g(n) for every pair of m,n € N. We say that M, is the set of completely multiplicative
functions.

If f € AL, then its domain N can be extended to Q. by

£ () = f(m) - f(m),

n

and the equation
flrire) = f(r1) + f(r2)

remains valid for every r1,r; € Q..

Let G be a topological group and f : Q; = G, f € Ag be continuous at 1. Then, for each a € R,
there exists the limit
lim £(r) =: &(a),
® is continuous everywhere in R;, furthermore ®(aff) = ®(a) + ®(f) is valid for all o, 3 € R;, i.e. ¢ is
a continuous homomorphism of R, into- G.
The following conjectures 1,2 are proposed by M.V. Subbarao and myself.

Conjecture 1. Let G be a compact Abelian topological group, f € Ay, and let the closure of f(N) be
G (closure f(N) is a closed subgroup in G). Let U be the set of those u for which there ezists an infinite
sequence of integers n, /*, such that f(n, + 1) — f(n,) —= u.

Then U is a subspace in G, furthermore f(n) := ®(n)+V(n), where ® is a continuous homomorphism,
¢:R; 2 G, V(N)CU, closV(N)=U.

The next conjecture is a special case of Conjecture 1.

Conjecture 2. Let f : N = C be a completely multiplicative function, |f(n)] =1 (n € N), §¢(n) =
= f(n+DF(n).

Let Ay = {a1,...,01} be the set of limit points of {6;(n) | n € N}. Then Ay = Sk, where Sy is the
set of k’th complex units, i.e. Sk = {w | w* = 1}, furthermore f(n) = n'" F(n) with a suitable 7 € R, and
F(N) = Sk, and for every w € Sy there exists a sequence n, /* 0o such that F(n, + )F(n,) =w (v =
=1,2,...).

The motivation of the problems, and partial results can be read in [7], [8].
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A weakened form of Conjecture 2 has been proved by E. Wirsing recently [6]: Under the conditions of
Conjecture 2, Ay C 8 for a suitable |, and f(n) = n'"F(n), F(N) C S;.

2.2. Let T = R/Z be the one-dimensional torus. Let Ar be the set of additive functions taking values
from T, ie. F : N — T belongs to Ar if F(mn) = F(m) + F(n) holds for all coprime pairs of m,n. We
say that F' is of finite support, if F(p®) = 0 holds for every large prime p, and every a € N.

For F, € Ar(v=0,...,k—1) let

Ln(Fo, v ,Fk._]_) = Fo(n) +...+ Fk_l(n + k- 1)
Let E((,k) be the space of those k-tuples (Fy,...,Fx_1) of F, € Ar for which
Ln(Fo,...,Fr—1) =0 (n€N)

holds.

Conjecture 3. £(()k) is a finite dimensional Z module, and each F} is of finite support.

Conjecture 4. If F, € Ar (v=0,1,...,k~1), and
Ln(Fo,. e ,Fk—l) -0 (n — OO)

then there ezist suitable real numbers 7,...,7Tk—1 such that 7o + ... + 7,y = 0, and for Hj(n) =
= Fj(n) —jlogn (j =0,...,k — 1) we have

Ln(HO,---,Hk—l) =0 (n= 1,2,...).

Conjecture 5. For every integer k(> 1) there exists a constant ¢y such that for every prime p greater
than cg,
mi ax P(p+1) <p.
j=1,..1.27—1ter[x-l-k,k] Up+l)<p
140

The conjecture is open even in the case k = 2.

Let Q% be the I-fold direct product of Q.. Let furthermore O; be its subgroup, generated by the
elements (n,n+1,...,n+!—1) (n € N).

The following assertions are true:

(1) Let L;(” be the space of those I-tuples (Fy, ..., Fi—;) of F, € A% for which Ln(Fo,...,Fi-1) =
=0 (n € N). Assume that Conjecture 5 is true for k = I. Then ES(') is a finite dimensional space.

@) £3® (defined in (1)) is of finite dimensional, if and only if the factor group Q% /Oy is finite. [,3(')
is trivial (it contains only (0,...,0)) if and only if O; = Q%.

2.3. Let A* = A;.

Definition 1. (Set of uniqueness). We say that E C N is a set of uniqueness for the class of completely
additive functions, if f € A*, f(E) = 0 implies that f(N) =0.

Definition 2. (Set of uniqueness mod 1). We say that E C N is a set of uniqueness mod 1, if
f € Ay, f(E) =0 implies that f(N) = 0.

I introduced the notion ”set of uniqueness” in [10] and proved {11] that the set of ”primes +1” can
be extended by finitely many integers so that the resulting set is a set of uniqueness. My guess that the
set of shifted primes itself is a set of uniqueness, was proved by Elliott [12]. It was proved by Wolke [13]
that E is a set of uniqueness if and only if for every n € N there exists a suitable k£ € N, such that

h
n* = Haf-", where a; € E, €; = 1.

=1
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It was proved (by Meyer, Indlekofer, Dress and Volkman, Hoffman, Elliott, independently) that E is
a set of uniqueness mod 1, if every n € N can be written as

8
n=[]af, a;€E djez, (=1,..,9).
i=1

Conjecture 6. The set of "prime +1” s is a set of uniqueness mod 1.

Conjecture 6 is proposed by several mathematicians independently.

A quite detailed treatment of this topic is given by Elliott [14].

Indlekofer and Timofeev proved that {u? +v? +a | u,v € Z} is a set of uniqueness mod 1, if a # 0.
The same result is proved by De Koninck and Kétai.

§3. On ¢-additive and ¢-multiplicative functions

Let ¢ > 2 be an arbitrary integer, £ = {0,1,...,q — 1} and let go(n), €1(n),... be the digits in the
g-ary expansion of n: n = go(n) + €1(n)g + ... . This is a finite expansion, since €;(n) = 0 if ¢/ > n.
Let f: Ng = R be such a function for which f(0) = 0, and

fn) =3 flei(n)d’)

§=0

holds for every n. We say that f is g-additive, and the set of ¢g-additive functions is denoted by A,.
[~}
We say that g : No — C is g-multiplicative if g(0) = 1, and g(n) = [] g(¢;(n)g?) holds for every
=0

n. Let M, be the set of g-multiplicative functions, and M, be those of M, for the elements g € M,
additionally |g(n)| = 1 (n € No) holds as well.

Let ge Mq,

P(@)=) g(p), S@|a)= 3 gll)e(al)
p<z i<z

(l,9)=1
where e(y) := e?"%.

We are interested in to give necessary and sufficient conditions for g to satisfy

P(x)

2500 T(T)

(3.1) 0.

Conjecture 7. Let g € M. Then (3.1) holds if and only if
(3.2) z718(z,r) - 0
for everyr € Q.

The necessity of (7.2) is quite obvious, since if it does not hold, then

3" Re (1 - gleg)e(eq’)) < oo,

j=0c€eE

whence one can prove easily that (3.2) cannot hold. The difficulty is in the sufficienty.
Let Tlll‘{lg =Ty, =

=#{p1, 2 €P, ;2 —p1 =la =1, ;1 =l (mod ¢™), p; < z},
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Conjecture 8. There erists a constant § € (0,1/2), such that for M = [§N], N = ogg)’
M
T - T g, 1| < S84
2 (Tks = G iogar 1 | < T(ogaye
1,l2<¢
{(ll2,g)=1
ly#l2

with a suitable function e(z) - 0 (z = o0).

In [15] we proved that Conjecture 8 implies the fulfilment of Conjecture 1.
logY
Furthermore in {15] we proved the following assertion: Let Y (z) / oo, so that OIETSE) — 0. Let

Nz == {n < z, p(n) > Y(z)}, where p(n) is the smallest prime factor of n. .
Let N(2) = card (N;). Let L(z) be strongly multiplicative, (L(p*) =)L(p) = 32 if p t 2¢, and
L(p) = 0 otherwise. Let

Ulz):= ) g(n)
neN:
Then i
U(z) |2 LA el | O\E @
< <3 == e M (gM | S|+ 5 +ea(D),
Vel < 5 KOS s (o | )1 4
where M = [iiz—ig] , €1 is a positive constant which depends only on ¢, 0,(1) does depend on Y(z),

and D is an arbitrary real numbers.

§4. The distribution of ¢-ary digits on some subsets of integers

4.1. Let B(C Np) be infinite, B(z) = #{b <z, b€ B}. For0<lj <ly <...<lp, b1,...,by € E, let
Ap (:c l Il)) be the size of those integers n € B, n < z, for which &, (n) = b; (j = 1,..., h) simultaneously
hold.

Conjecture 9. For every h (S ]—Z—) y 1<l <...<lp(<N), and by,...,by € E denote

Y
(8n (8) =) an (o) = q———LhAP,,&IN) ),
Then

(4.1) sup  sup
1<h<& hyeendn
1y-+0h

Ah(é)‘—m as N — oo.

Here P is the set of primes.

Remarks. 1. Inequality, similar but much weaker than (4.1) was proved in [16].

2. These type of inequalities would be interesting for other sets B instead of P, like B = {fixed
polynomial (n) | n € N}, or ={fixed polynomial (p) | p € P}. We would be able to use them in proving
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central limit theorems with remainder terms for f(P(n)), or f(P(p)), where f € 4y, P = polynomial.
(See [17], [18], [19], [20], {21]).

4.2.
Conjecture 10. If g € M,, g(p) =1 for every p € P, then g(ng) =1 (n € N).

See [22], where it is proved that there exists an absolute constant ¢ (> 0) such that g € Mg, g(p) =1
implies that there exists an integer k, 1 < k < ¢ for which g*(ng) = 1 (n € N).

§5. On a theorem of H. Daboussi

H. Daboussi proved several years ago that for f € A, |f(n)| < 1, and for every irrational e, in the
notation

m(f,a,z) = %

Y f(n)e(na)

n<e

H

we have
sup m(f,a,z) >0 (z— ).
TEA, |fI<1
This theorem has been generalized in different directions.

Let Py be the set of square-free numbers n with exactly n prime-factors: n = p;p;...pi. Let a be an
irrational number. Let g1 < g2 < ... < g, be the whole set of primes less than z. Let X, (j =1,...,r)
be complex numbers, :

Qk (Xgr--n X)) = D> Xp ... Xpe(na)|.
n=p1..Pu<T
neEPy
fet Qu(Xg .., Xy)
. k\<\Agyye-ey g,
Ok(=) = X |<T X |<1 i (z) ’

0y = lim sup 6 (z),
00

where #x(z) is the number of n < z, n € P.
Conjecture 11. We have d; < 1, if k > 2. Furthermore 6; = 0 (if k = o).
Remark. Recently I could prove that d; = 0 for almost all c.

§6. Some problems originated from Rényi-Parry expansions

See our papers written jointly with Daréczy [23 - 26)].

Let C* denote the space of sequences ¢ = (cp,¢1,-..) the coordinates ¢, of which € C. This shift
operator o : C® — C™ is defined by o({co,¢1,...)) = (c1,¢2,...). Let to = 1, ¢, € C, ¢, be bounded,
t = (to,t1,...). Let

(6.1) R(z)=to+tiz+....

Let {; be the linear space of those b € C*®, for which }_ |b,] < .
The scalar product of an element b € [; and a bounded sequence ¢ let:

M

ch=be= bycy.

v=0



Let
(6.2) He:=4{bel | od(B)t=0,1=0,1,2,...}.

It is clear that H; is a closed linear subspace of I;, furthermore o(H;) C H:.
Let Hé‘” C H; be the set of those b € H; for which

(6.3) |by| < C(e,b)e™™ (v >0)

holds with some € > 0 and finite C(g, b).

If p is a root of R(z), |p| < 1, then b, := p” satisfies o'(b)t = 0 (! = 0,1,...), and |by| < C-e~*
with C = 1, and with & counted from e~¢ = |p|. If the order of the multiplicity of the root p is m, then
b€ H, ifb, =19p” (v=0,1,...), for every j =0,1,...,m — 1. The sequences b, = vip* (v=0,1,...)
are called elementary solutions. Let ‘H§°) be the space of finite linear combinations of the elementary
solutions, and let ") be the closure of #®.

Conjecture 12. We have: ﬁie) = Hs.
Conjecture 13. Assume that R(z) # 0 in |2] < 1. Then H; = {0}.
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