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The present note is based on a talk given at Workshop “Analytic Number Theory and
Related Topics” on 22 October 2004. We will discuss some recent results obtained on
the analogues between Nevanlinna theory in higher dimensional algebraic varieties and
Diophantinc approximation theory.

1 A basic observation
The unit equation with variables $a,$ $b,$ $c$ is given by

(1.1) $a+b=c$.

Why is this equation intcresting? There might be several answers, but it is one of them
that (1.1) gives a hyperbolic space. In fact, equation (1.1) defines a subvariety $X$ in $\mathrm{P}^{2}$

with homogeneous coordinates $[a, b, \mathrm{c}]$ . Since thc variables arc assumed to be units, $X$ is
isomorphic to $\mathrm{P}^{1}$ minus three distinct points, to say, 0,1, and $\infty$ .

In complex function theory (1.1) was studied by E. Picard for units of entire functions
and we konw the famous Picard’s Theorem (1879) that a meromorphic function on $\mathrm{C}$

omitting three values of $\mathrm{P}^{1},0,1$ and $\infty$ is necessarily constant. A quantitative thcory
to measure the frequences to take those three values by a non-constant meromorphic
function was established by R. Nevanlinna (1925), in which the second main thcorem is
viewed in turn as an analogue of $abc$-Conjecture of Masser and Oesterl\’e.

It is also an interesting subject to study a unit equation in several variables,

(1.2) $x_{1}+x_{2}+\cdots+x_{n}=0$ $(n\geq 3)$ .

Equation (1.2) defines a variety isomorphic to $\mathrm{P}^{n-2}$ minus $n$ hyperplanes in general posi-
tion. In complex function theory (1.2) was studied by E. Borel for units of entire functions
and the Subsum Theorem for units of entire functions was proved (1897). The correspond-
ing quantitative theory was established by H. Cartan (1933) also by Weyls and Ahlfors
(1941), which generalized Nevanlinna’s theory. Cartan’s second main theorem is viewed
as an analogue of a sort of $abc\cdots$ -Conjecture.

2 Lang’s Conjecture for projective hypersurfaces

Let $k$ be an algebraic number field, that is, a finite extension of Q. Let $X$ be an algebraic
variety defiend over $k$ and let $X(k)$ denote the set of $k$-rational points of $X$ .
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Lang’s Conjecture. If there is an embedding $karrowarrow \mathrm{C}$ such that the obtained complex
space $X_{\mathrm{C}}$ is Kobayashi hypcrbolic, then the cardinality $|X(k)|<\infty$ .

An analogue over function fields was dealt with by [7] and [8], and the following
finiteness theorem was a result in a special case:

Theorem 2.1 ([8]) Let $X$ be a Kobayashi hyperbolic compact complex space. Let $\mathrm{Y}$ be
another compact complex space. Then there is only a finite number of $su\dot{\eta}ective$ mero-
morphic mappings from $\mathrm{Y}$ onto $X$ .

So far Nevanlinna theory offers a most effective tool to the Kobayashi hyperbolicity
problem for complex algebraic varieties. Analogously Diophantine approximation theroy
provides a powerful method to the finiteness problem or distributions of rational points.
These relations are described by the following diagram:

Rational Points $\Leftrightarrow$ Kobayashi Hyperbolicity
Lang’s Conjecture

$\Uparrow$ $\Uparrow$

Diophantine Approximation $\Leftrightarrow$ Nevanlinnna Theory
Vojta’s Dictionary

We recall
Kobayashi Conjecture. A “generic” hypersurface $X\subset \mathrm{P}^{n}(\mathrm{C})$ of high degree $(\geq 2n+1)$

is Kobayashi hyperbolic.
Therefore such $X$ defined over $k$ should satisfy $|X(k)|<\infty$ according to Lang’s

Conjecture. For the cxistence we have

Theorem 2.2 ([3]) For every $n\in \mathrm{N}$ there is a number $d(n)$ such that for an $arbitm\eta$

$d\geq d(n)$ there is a Kobayashi hyperbolic projective hypersurface $X\subset \mathrm{P}^{n}(\mathrm{C})$ of degree $d$ .

Thc following is an example: In $\mathrm{P}^{3}(\mathrm{C})$ we set

(2.3) $X_{d}=\{x_{0}^{4d}+\cdots+x_{3}^{4d}+t(x_{0}\cdots x_{3})^{d}=0\}$, $t\neq 0$ .
Then $X_{d}$ with $d\geq 7$ is Kobayashi hyperbolic. It is noted that $abc\cdots$ -Conjecture would
imply $|X_{d}(k)|<\infty$ if $t\in k^{*}$ . It is also noted that $X_{1}$ is a Kummer K3 surface and there
is a natural ramified covering $X_{d}arrow X_{1}$ .

Definition. Let $X$ be an algebraic variety defined over $k$ . We say that $X$ satisfies the
$a7’ ithmetic$ finiteness $prope\hslash y$ if $|X(k’)|<\infty$ for all finite extensions $k’$ of $k$ .

Let $S\subset M_{k}$ be an arbitrarily fixcd finite subset of places of $k$ containing all infinite
places. Let $X_{d}(U_{S})$ denote the subset of all points of $X_{d}(k)$ whose coordinates in (2.3) are
$S$-units. Then by making use of Schmidt’s Subspace Theorem we deduce the following.
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Proposition 2.4 ([10]) Let $X_{d}$ be as above. Then $|X_{d}(U_{S})|<\infty$ .

By Masuda-Noguchi [3] there exist such examples in $\mathrm{P}^{n}(\mathrm{C})$ of arbitrary dimension. It
is observed that $abc\cdots$ -Conjecture implies the arithmetic finiteness property of such pro-
jective hypersurfaces. Therefore it is natural and interesting to ask if there is a projective
hypersurfacc satisfying the arithmetic finiteness propcrty. In fact we have

Theorem 2.5 ([14]) There $e$ nists a hypersurface $X\subset \mathrm{P}_{\mathrm{Q}}^{n}$ satisfying the a$\tau\dot{\tau}thmetic$ finite-
ness property.

We follow Shirosaki’s construction of a Kobayashi hypcrbolic projective hypersurface
([16]). Let $d,$ $n\in \mathrm{N}$ be co–prime, and assume $d\geq 2e+8$ . Set

$P(w_{0},w_{1})=w_{0}^{d}+w_{1}^{d}+w_{0}^{\mathrm{e}}w_{1}^{d-\mathrm{e}}$ .

We define inductively

$P_{1}(w_{0}, w_{1})=P(w_{1}, w_{1})$ ,
$P_{n}(w_{0}, \ldots,w_{n})=P_{n-1}(P(w_{0}, w_{1}),$

$\ldots,$
$P(w_{n-1},w_{n}))$ , $n=2,3,$ $\ldots$

We set $X_{\mathrm{c},d}=$ $\{P_{n}=0\}\subset \mathrm{P}^{n}(\mathrm{C})$ .

Theorem 2.6 (Shirosaki [16]) If $e\geq 2$ , then $X_{\mathrm{e},d}$ is Kobayashi $h_{W}erbolic$ .

The proofs of Theorems 2.5 and 2.6 are quite similar by virtue of Nevanlinna’s Second
Main Theorem and Faltings’ Theorem for curves of higher genus (Mordell’s Conjecture).

Key Lemma (Yi [22], [16], [14]) (i) Let a, $\beta\in \mathrm{C}$ and $\alpha\neq 0$ . Then the curve

$C_{\alpha\beta}=\{[w_{0}, w_{1},w_{2}]\in \mathrm{P}^{2};P(w_{0}, w_{1})=\alpha P_{(}\beta w_{1}, w_{2})\}$

is hyperbolic for $e\geq 2$ , so that if $\alpha,$ $\beta\in \mathrm{Q}$ , then $C_{\alpha\beta}$ satisfies the arithmetic finiteness
property.

(\"u) Let $f_{j}=[f_{j0}, f_{j1}]$ : C– $\mathrm{P}^{1}$ be two meromorphic functions satisfying

$P(f_{10}, f_{11})=\exp(g)P(f_{20}, f_{21})$

with an entire function $g$ . Then $f_{0}\equiv f_{1}$ .
Then the proof of Theorem 2.5 is done by the induction on $n$ (cf. [14] for the details).
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3 $\mathrm{a}\mathrm{b}\mathrm{c}$-Conjecture for semi-abelian varieties
(a) Analogue over algebraic function fields. It is interesting to consider the problem over
algebraic function fields. The case of algberaic function fields is situated in the middle of
the Nevnalinna theory and the number theory.

Nevanlinna theory Number theory
$\backslash$ $\nearrow$

Theory over function field

There are a number of works on this subject for $\mathrm{P}^{n}(n\geq 1)$ over algebraic function
fields (Voloch, Mason, Brownawell-Masser, J. T.-Y. Wang, myself,...; cf. [9], [10] and their
rcfercnces). The problem for abelian varieties was first dealt with by A. Buium.

Theorem 3.1 (Buium [2]) Let $A$ be an abelian variety. Let $D$ be a reduced divisor on
A which is Kobayashi hyperbolic. Let $C$ be a smooth compact curve. Then there $e$ vists a
number $N$ depending on $C,$ $A$ and $D$ such that for $eve\tau y$ morphism $f$ : $Carrow A$, either

$f(C)\subset D$ or $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}_{x}f^{*}D\leq N$ $(\forall x\in C)$ .

Corollary 3.2 Let the notation be as in Theorem S. 1. If $f(C)\not\subset D$ , then

” height $(f)”=\mathrm{d}\mathrm{c}\mathrm{g}(f)\leq N|f^{-1}(D)|$ .

This is an estimate of type of $abc$-Conjecture. His proof based on Kolchin’s theory of
differential algebra and he posed two problems:

$\bullet$ Find a proof by complex geometry.
$\bullet$ The Kobayashi hyperbolicity assumption for $D$ is too strong, and the ampleness

should suffice.

Theorem 3.3 (Noguchi-Winkelmann [12]) Let $A$ be a semi-abelian variety with a smooth
equivariant algebraic compactification $Aarrow\overline{A}$ . Let $\overline{D}$ be an effective reduced ample divisor
on $\overline{A}$ , and $D=\overline{D}\cap A$ . Let $C$ be a smooth algebraic curve with smooth compactification
$Carrow\overline{C}$ . Then there esists a number $N\in \mathrm{N}$ such that for every morphism $f$ : $Carrow A$

either
$f(C)\subset D$ or $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}_{x}f^{*}D\leq N$ $(\forall x\in C)$ .

$Fu\hslash hermore$, the number $N$ depends only on the numerical data involved as follows:
(i) The genus of $\overline{C}$ and the number $\#(\overline{C}\backslash C)$ of the boundary points of $C$,
(ii) the dimension of $A$,
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(iii) the toric $va\uparrow\dot{\eta}ety$ (or, equivalently, the associated “fan“) which occurs as closure of
the orbit in $\overline{A}$ of the maximal connected linear algebraic subgroup $T\cong(\mathrm{C}^{*})^{t}$ of $A$,

(iv) all intersection numbers of the form $D^{h}\cdot B_{1_{1}}\cdots B_{i_{k^{f}}}$ where the $B_{i_{\mathrm{j}}}$ are closures of
$A$-orbits in $\overline{A}$ of dimension $n_{j}$ and $h+ \sum_{j}n_{j}=\dim A$ .

In particular, if we let $A,\overline{A},$ $C$ and $D$ vary within a flat connected family, then we can
find a uniform bound for $N$ . For abelian varieties this specializes to the following result:

Theorem 3.4 (Noguchi-Winkelmann [12]). There is a function $N$ : $\mathrm{N}\cross \mathrm{N}\cross \mathrm{N}arrow \mathrm{N}$

such that the following statement holds.
Let $C$ be a smooth compact curve of genus $g$ , let $A$ be an abelian variety of dimension

$n$ , and let $D$ be an ample effective divisor on $A$ with intersection number $D^{n}=d$ .
Then for an aribitrary morphism $f$ : $Carrow A$ , either

$f(C)\subset D$ or $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}_{x}f^{*}D\leq N(g, n, d)$ $(\forall x\in C)$ .

As an application a finiteness theorem was proved for morphisms from a non-compact
eurvc into an abelian variety omitting an ample divisor.

(b) Nevnalinna theory. In Nevanlinna theory for a holomorphic curve $f$ : $\mathrm{C}arrow A$ into
a semi-abelian variety $A$ we lately proved the next result.

Theorem 3.5 (Noguchi-Winkelmrn-Yamanoi [15]) Let $D$ be a. reduced divisor on a
semi-abelian variety A. Then there is an equivariant compactification $\overline{A}\supset A$ of $A$ such
that for an arbitrary algebraically non-degenerate holomorphic curve $f$ : $\mathrm{C}arrow A$

(3.6) $(1-\epsilon)T_{f}(r;L(\overline{D}))\leq N_{1}(r;f^{*}D)||_{\epsilon}$, $\forall\epsilon>0$ ,

where $\overline{D}$ is the closure of $D$ in $\overline{A}$ .

Remark. In Noguchi-Winkelmann-Yamanoi [13] we proved (3.6) with a higher level
truncated counting function $N_{k}(r;f^{*}D)$ for some special compactification of A. (see [17]
and [4] for related results). In the case of abelian $A(3.6)$ with truncation level one was
obtained by Yamanoi [20] (see [21] for an important result in the transcendental case).

(c) Analogue in Diophantine approximation. Rccall
$\mathrm{a}\mathrm{b}\mathrm{c}$-Conjecture. Let $a,$ $b,$ $c\in \mathrm{Z}$ be co–prime numbers satisfying

(3.7) $a+b=c$.

Then for an arbitrary $\epsilon>0$ there is a number $C_{\epsilon}>0$ such that

$\max\{|a|,$ $|b|,$ $|C|\}\leq C_{\epsilon}$ $\prod$ $p^{1+\epsilon}$ .
prime $\mathrm{p}|(ab\mathrm{c})$
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Notice that the order of $abc$ at every prime $p$ is counted only by “
$1+\epsilon$

” when it is
positive.

As in \S 1 we put $x=[a, b]\in \mathrm{P}^{1}(\mathrm{Q})$ . After Vojta’s notational dictionary [18], this is
equivalent to

(3.8) $(1-\epsilon)h(x)\leq N_{1}(x;0)+N_{1}(x;\infty)+N_{1}(x;1)+C_{\epsilon}$

for $x\in \mathrm{P}^{1}(\mathrm{Q})$ (cf. [5], [19]). This is quite analogous to (3.6). Here we follow the notation
in [18] for number theory and [6] for the Nevanlinna theory (cf. [5], [19]); in particular,

$h(x)=$ the height of $x$ .
$N_{1}(x;*)=$ the counting function at $*\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ to level 1 (see below).

Motivated by the results in (a) and (b), we formulate an analogue of abc-Conjecture
for semi-abelian varieties. Let $k$ be an algerbaic number field and let $S\subset M_{k}$ be an
arbitrarily fixed finite $8\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{t}$ of places of $k$ containing all infinite places.

Let $A$ be a semi-abelian variety over $k$ and let $D$ be a reduced divisor on $A$ . Let $\overline{A}$

be an equivariant compactification of $A$ such that the closrure $\overline{D}$ of $D$ in $\overline{A}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}\mathrm{S}$ no
$A$-orbit. Let $\sigma_{\overline{D}}$ denotc a regular section of the line bundle $L(\overline{D})$ defining the divisor $\overline{D}$ .

$abc$-Conjecture for semi-abelian $var\cdot iety$ . For an arbitrary $\epsilon>0$ there exits a constant
$C_{\epsilon}>\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that for all $x\in A(k)\backslash D$

(3.9) $(1-\epsilon)h_{L(D)}(x)\leq N_{1}(x;S,\overline{D})+C_{\epsilon}$.

Here $h_{L(D)}(x)$ dentocs thc height function with respect to $L(\overline{D})$ and $N_{1}(x,\overline{D};S)$ denotes
the $S$-counting function truncated to level one:

$N_{1}(x;S, \overline{D})=\frac{1}{[k:\mathrm{Q}]}\sum_{v\in M_{k}\backslash S,\mathrm{o}\mathrm{r}\mathrm{d}_{lv}\sigma_{D}(x)\geq 1}\log N_{k/\mathrm{Q}}(\mathfrak{p}_{v})$.

It may be interesting to specialize the above conjecture in two forms.
$abc$-Conjecture for $S$-units. We assume that $a$ and $b$ are $S$-units in (3.7); that is, $x$ in

(3.8) is an $S$-unit. Then for every $\epsilon>0$ there is a constant $C_{\epsilon}>0$ such that

(3.10) $(1-\epsilon)h(x)\leq N_{1}(x;S, 1)+C_{\epsilon}$ .

$abc$-Conjecture for elliptic curve. Let $C$ be an elliptic curve defined as a closure of an
affine curve,

$y^{2}=x^{3}+c_{1}x+\mathrm{q})$ , $c_{i}\in k^{*}$ .
In a neighborhood of $\infty\in C\sigma_{\infty}=\frac{x}{y}$ gives an affine parameter with $\sigma_{\infty}(\infty)=0$ . For
every $\epsilon>0$ there is a constant $C_{\epsilon}>0$ such that for $w\in C(k)$

$(1- \epsilon)h(w)\leq N_{1}(w;S, \infty)=\frac{1}{[k:\mathrm{Q}]}\sum_{v\in M_{k}\backslash s,\circ \mathrm{r}\mathrm{d}_{v}\sigma_{\infty}(w)\geq 1},\log N_{k/\mathrm{Q}}(\mathfrak{p}_{v})+C_{\epsilon}$.
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