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ASYMPTOTIC SERIES ASSOCIATED WITH EPSTEIN
ZETA-FUNCTIONS AND THEIR INTEGRAL TRANSFORMS

EERBRARF - BHFFH EE B (MasaNorl KATSURADA)

Mathematics, Hiyoshi Campus, Keio University

1. INTRODUCTION

Throughout the following, s = o + it denotes the complex variable, and 2z = = + iy
the complex parameter in the upper-half plane. The main object of this article is the
Epstein zeta-function (attached to the positive-definite quadratic form |u+wvz|?) defined
by :

(1.1) (a2 (8;2) = ) Im+nz|72*  (Res>1),
(m,n)€Z2\{(0,0)}

and its meromorphic continuation over the whole s-plane (cf. [Si Chap. I}).

Let o, B be complex numbers which will be fixed later, and let I'(s) denote the
gamma function. We introduce the Laplace-Mellin and the Riemann-Liouville (or the
Erdélyi-Kober) transforms of (z2(s; z + 4y) (with the normalization multiples) as

1 [
o . . . R . a..l _y
(1.2) LMy Cza(siz +1iy) = T /o Cza(s; 2 +iyY )y e Vdy,

TT(OLm / (za(s; 2 +iyY )y (1 - y)P ldy

(1.3) ’R.E“ véz2(s;z +iy) =
for Y > 0. These can be regarded as weighted mean values of {z2(s; z + iy); the factor
y>~! is inserted to secure the convergence of the integrals as y — +0, while the functions
e™¥ and (1 — y)#~! have effects to extract the parts corresponding to y = O(Y) from
(z2(s; z) with their respective weights. Note that the confluence operation

(1.4) ’R,Cy ﬁY<z2 (8i% +1y) ————— LMy (22(8; 2 + iy)
(8 — +00)
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is valid by the definitions (1.2) and (1.3), since (z2(s;z + iy) = O(y™>*(0:1-29)) a5
y — +oo (see Theorem 1 below).

It is of importance from both theoretical and applicational point of view to study
asymptotic aspects of (z2(s;z) when y = Imz is large (cf. [CS1-CS2]). We have es-
tablished in [Kal0] a complete asymptotic expansion of (z2(s;2) when Imz — +oo,
and that of the Laplace-Mellin transform (1.2) when ¥ — +oo. The subsequent paper
[Kall] proceeds to this direction by showing that a similar asymptotic series still exists
for the Riemann-Liouville transform (1.3) when Y — +4o00. It is the aim of this article
to present these asymptotic expansions, together with their several consequences.

We first present a complete asymptotic expansion of (z2(s;z) when Imz — +oo
(Theorem 1 below) upon giving an explicit (vertical) t-estimate for the remainder
term. This theorem in particular clarifies the key ingredients by which the functional
equataion of {z2(s;z) is to be valid (Corollary 1.1). Moreover, several specific cases of
Theorem 1 naturally reduce to the Kronecker limit formula for (z2(s;z) when s — 1,
and to its variants for (zz(m;z) (m = 2,3,...) and (}:(—n;2) (n = 0,1,...), where
Cz2(8;2) = (8/08)(z2(s; z) (Corollaries 1.2 and 1.3). In connection with Theorem 1,
Matsumoto [Ma] obtained asymptotic expansions (with respect to z) of holomorphic
Eisenstein series, while Noda [No| derived an asymptotic formula (as ¢ — +o0) for
the non-holomorphic Eisenstein series on the line o = 1/2. We next present complete
asymptotoic expansions of the Laplace-Mellin transform (1.2) and of the Riemann-
Liouville transform (1.3) both when Y — +oco0 (Theorems 2 and 3 in Section 3). One
can observe that the asymptotic expansion of (1.3) precisely reduces to that of (1.2)
through the confluence operation (1.4). It should be noted that various hypergeometric
functions appear and work in the proofs of these expansions; especially their summation
and transformation properties play crucial roles in the analysis of the remainder terms.

Prior to the proof of Theorem 1, we have prepared the analytic continuation of
¢z2(8; 2z) by means of Mellin-Barnes integral transformations (cf. [Kal0, Propositions
1 and 2]). This procedure was recently developed, independently of each other, by
Kanemitsu-Tanigawa-Yoshimoto [KTY] (in a more general setting), and by the author
[Kal0] for (z2(s; z); the procedure, differs slightly from other previously known method
of the analytic continuation, gives a new alternative proof of the Fourier expansion of
(z2(s; z), due to Chowla-Selberg [CS1-CS2]. We remark that Mellin-Barnes transfor-
mation technique was extensively utilized by Motohashi to investigate higher power
moments of zeta and allied functions (see for e.g., [Mo1-Mo3]). The technique was also
applied by the author [Kal-Ka9] to study certain asymptotic aspects and transforma-
tion properties of zeta and theta functions.

2. RESULTS ON (z3(s; 2)

We write 0,(I) = 32y h*, and use the notations e(z) = €™* and

e*(z) = e(2) + e(z) = e(2) + e(—2),
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where w denotes the complex conjugate of w. We further introduce the function

B ,(e(2)) = D hk%e*(hkz) = Y _o,_(D)I°e*(I2),
: =1

h,k=1

which converges absolutely for all complex r, 8 if Im2 > 0, and for Rer < —1, Res < —1
if Imz = 0; in each case it defines a holomorphic function of » and s in the region of
absolute convergence.

Let ¢(s) be the Riemann zeta-function, and (8), = I'(s + n)/I'(s) for any integer
n Pochhammer’s symbol. Further let U(A;v; Z) denote the confluent hypergeometric
function defined by

UNy;2) = 1"_(1/\-)-/(; e 2%y (1 + w)*~* " ldw

for ReA > 0 and |arg Z| < w/2 (cf. [S], p.5, 1.3]). Then our first main result asserts

Theorem 1. ([Kal0, Theorem 1]). Let (za(s;z) be defined by (1.1). Then for any
complex z = x + iy with y > 0 and any integer N > 0 the formula

(552 = 24(20) + DL 0 — 1)

2s
o+ 2(1?'?3)) {S~n(s,z;y) + Rn(s,z;¥)}

holds in the region —N < 0 <1+ N except at s =1. Here

= n(s - 8)n
Sulsi)= Yo L gy () amy) e

n=0

is the asymptotic series in the descending order of y, and Ry is the remainder term,
which is expressed as

o CDYENI =N .
Ry(s;z) = (Nl_v 1)! . h,k2=1e (hkz)h?*~*

x /01 e N1 - N U (s + N; 28 Adwhky/€)dE¢

for N > 0 (the case N = 0 should read without the factor (—1)! and the ¢-integration),
satisfying the estimate

Ry (s;z) = O{(lt| + 1)*Ne~2mvy—o—N}



for any y > yo > 0, in the region —N < 0 < 1+ N, where the O-constant depends on
N, o and yp.

Remark. We see that

oo

21,(e(2) = €' (2) + 0 S imexereanteer 1)} = e*(2) + Ofe4™)
1=2
as y — +o0, and hence
B;,(e(2)) «e™™  (y>yo>0).

Therefore the term with the index n in Sx (s; z) is estimated as < (|t|+1)2"e~2"vy—o—7;
this shows that the presence of the bound above for Ry (s; z) is reasonable.

Let (72(s; z) be defined by |
2y/rI'(s —1/2)

I'(s)

Then the proof of Theorem 1 show that the following functional equation of (7.(s; 2)
reduces eventually to the simple property

B;.5(e(2)) = &5 . (e(2))-

Corollary 1.1. ([Kal0, Corollary 1.1]). For any real z, y with y > 0 the functional
equation

Cz2(s;2) = 2¢(2s) + ¢(2s — 1)y* =28 + 2¢5a2(s; 2).

(y/m)° I (s)Cza(852) = (y/m)'~°I'(1 - 8)(za(1 — 85 2)
follows, and this with the functional equation of ((s) implies that
(y/m)°[(8)(z2(s; 2) = (y/7)' (1 — 8)(z2(1 — 8; 2).
We next state the Kronecker limit formula for {za(s; z) and its variants. Let n(2) =

e(z/24) 1.2, (1 — e(nz)) be the Dedekind eta function, 79 = —I"(1) Euler’s constant,
and B;, the n-th Bernoulli number (cf. [Er, p.35, 1.13(1)]). Then

Corollary 1.2. ([Kal0, Corollary 1.2]). For any complex z = = + iy with y > 0 the
following formulae hold:

2
lim {sz(s;Z) -~ ;7%%} = % + %zr_{% — log(2y) + 5,1 (e(2))}

= 2 {20 ~ log(auln(=))},
and for any integer m > 2, |
(-1)™*1(27)2™ By, 2m(2m — 1)!
(2m)! {2m-1(m - 1)!}?
2r)2m X fm-1

n=0

X @ n—1,-m—n(€(2))(4ry) """

Cza(m; 2) =

¢(2m — 1)yt~
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Corollary 1.3. ([Kal0, Corollary 1.3]). Let (}a(8;2) = (0/03)(z2(s; z). Then for any
complex z = x + iy with y > 0 the following formulae hold:

G (032) = —2log2m + T + 287, (e(2)) = —2log(2min(z) ),

and for any z'nteger m2>1,

m(9m)! my1)2

”é,r)‘z’;" > (7 )<m+n>@-m_n_1 el )

3. RESULTS ON LMG.yCz3(s;2) AND RLIE C7a(s; 2)

We write ™
F(al’“' ,am) _ [The, T(on)
ﬂlv-- aﬂn H:=1 F(ﬁk)
for complex numbers ap, Bk (1 < h < m; 1 < k < n), and denote the generalized
hypergeometric function by ,F, ("‘" "‘"‘ ";z) for m < n+ 1. Then our second main
result can be stated as :

Theorem 2. ([Kal0, Theorem 2]). Let @ be fized with Rea > 1. Then for any integer
N >0and any real x, Y withY > 0 the formula
EMGyGa(siz +i9) = 2(28) + 27T ( * 7 /2 @1

271'28
+ F(;S{SQ’N(S’ T Y) + Ra,N(sa T Y)}

)((2 —1)yt-2

holds in the region 0 < Rea/2. Here

N-1
oy N DM@ @+ n+1)/2—5
santeesn) = & E e (G000

X @y, l—a—n,—a—n (e(z))(2nY)— o™

n=0

is the asymptotic series in the descending order of Y, and R n is the remainder term,
which is expressed as

o (DN a+1-2s\ o= , 281
Ron(s,2;Y) = W‘-T)‘!F atls hkzle (hkz)h

1
x [ =N - 91+ amhky gy
0

a+ N, s 1-2nhkY/¢
F ’ j >
X2 1(a-!—N+1—s’ 1+27rth/£)d€
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for N > 0 (the case N = 0 should read without the factor (—1)! and the &-integration),
satisfying the estimate

Ron(s,z;Y)=O(Y~ R‘”"N)

foranyY > Yy > 0, in the region o < Rea/2, where the O-constant depends at most
ona, N, o,t and Yo. In particular when o € R, more explicitly

Ra,N(s, x; Y) = O{e—‘frlt|/2(|tt + 1)(C!+N)/2—0'Y_a._N}

for any Y > Yy > 0 in the region o < a/2, where the O-constant depends on a, N and
o.

Remark 2.1. The condition Rea > 1 is crucial for the convergence of LMy Cra(s;T+
iy), especially for that of LMy (74 (s; T + iy).

Remark 2.2. Tt is seen that
|27 s(e(x))| < 2¢(—Rer){(—Res) < +o0

for Rer < —1, Res < —1, and hence when a € R the term with the index n in
Sa,N(s,z;Y) is estimated as < e~"IH/2(j¢| + 1)(e+n)/2-0y~a—n. this shows that the
presence of the bound for R, n(8,z;Y) above is reasonable.

It is in fact shown that imy_,o Ra n(8,2;Y) = 0 for 0 < Rea/2 and Y > 1/27.
The limiting case N — oo of Theorem 2 therefore gives

Corollary 2.1. ([Kal0, Corollary 2.1]). For any real z, Y withY > 1/2n the formula

LMy (a(siz+iy) = 2¢(2s) + 2\/1?1*(3 ~1 2’8 “: 1- 25) ¢(2s — )Y
27'.23 .
+ msa(s, T, Y)

holds in the region 0 < Rea/2, where

e = DM (@n e+ n+1)/2—8
Sa(s’w’y)_sz( (a+n+1)/2) )

X P3s—1-a—n,—a—n(€(€))(27Y) 747"

n=0

We next proceed to state our third main result.

Theorem 3. ([Kall, Theorem 2]). Let a, 3 be fized with Rea > 1, Re > 1. Then
for any integer N > 0 and any real x, Y withY > 0 the formula

@B (o e §—1/2, a+ 6, a+1-2s  \yl-2s
R Galess+in) = 220) + 2var(* 7 o @B @t 120 0 gy

a+f
S

+ 21r’I"( ) {Sa,s,n(8,2;Y) + Ra g n(s,2;Y)}



holds in the region o < Rea/2. Here

N-1
VY = (=1)"(a)n (a+n+1)/2-s
Sapn(s,2;Y) =) n! —‘F((a mt1)2, B n)

x ¢;s—1—a—n,-—a—n(e(x))(27rY) e

n=0

i8 the asymptotic series in the descending order of Y, and R, g N is the remainder term,

which is expressed as

223( 1 N (a) N
(N -1)!

Rogn(s,zY) = Z e* (hkz)h?*~1

h k=1
X /0 £ N1 = OV Foyn,p—n(s; 2mhEY/€)dE

for any N > 0 (the case N = 0 should read without the factor (—1)! and the &-
integration), where

o 1-2s /2, (a+1)/2
Fa,ﬁ(s,Z)—F(1_s, +B)2F3((a+ﬂ)/2 (@+B+1)/2, s+1/2° 22/4)

2s—1, a+1—2s
r 2Z)~2
+ (s, a, a+8+1-2 )( )

(a+1)/2—s, a/2+1—35s .
x:Fs((a+ﬁ+1)/2—s, (@+0)/2+1—s, 3/2—8° z2/4>

with o, B replaced by o+ n, B — N, and it satisfies
Rap,n(s,2;Y) = O(Y~Rea—N)

for any Y > Yy > 0 in the region o < Rea/2, where the O-constant depends on a, 8,
N, o, t and Yy. In particular when a, 8 € R, more explicitly

Ro g n(s,2;Y) = Of{e ™H/2(jt| 4 1)@t N)/2-oy—a=N}

for any Y > Yy > 0 in the region o < a/2, where the O-constant depends on a, 3, N
o and Y.

’

Corollary 3.1. ([Kall, Corollary 2.1]). The asymptotic expansion in Theorem 8 for
RLZ;’,ﬁ,sz (s;z + iy) precisely reduces to that in Theorem 2 for LMS.y(za(s;x + iy)
through the confluence operation (1.4).

Remark 3.1. The conditions Rea > 1 and Re3 > 1 are crucial for the convergence of
Cza (8;z + iy), especially for that of ’R,[,“’ﬁ vza(s;x + 1y).

Remark 3.2. Similarly to Remark 2.2, when a,3 € R the term with the index n in
Sa,p,n is estimated as < e~™t/2(j¢| 4 1)(@+n)/2-oy —a—n, thig shows that the presece
of the bound for R, g ,n(s,z;Y) above is reasonable.
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