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1. INTRODUCTION

Topological partial monoid is a generalization of the notion of topological monoid.
It occurs naturally in the construction of configuration spaces [2] and known to be a
suitable data to construct generalized homology theories [3]. However, the topology of
partial monoids is not well-studied.

In this paper, we investigate an aspect of the topology of partial abelian monoids.
More precisely, our point of view can be explained as follows : For a topological group
$G$ , we can associate to it a partial monoid $M$ generated by commutative pairs in $G$ . If
we think of $\Lambda f$ as an abelian part of $G$ , it is natural to ask if $M$ can recover the data
of $G$ . We compute the homology group of the classifying space $BM$ in low degrees and
show that it is not homology equivalent to $BG$ when $G=SU(2)$ .

2. CLASSIFYING SPACES OF PARTIAL ABELIAN MONOIDS

Deflnition 1. A partial abelian monoid is a based space $M$ equipped with a subspace
$M_{2}\subset M\mathrm{x}M$ $\mathrm{a}\mathrm{n}\overline{\mathrm{d}\mathrm{a}}$map $m:NI_{2}arrow\Lambda/I$ such that

(1) $M\vee M\subset \mathrm{A}^{J}I_{2}$ and $m(a,$ $*_{M}\rangle=m(*_{NI},$ $a\rangle=a$ ,
(2) $(a, b)\in M_{2}$ implies $(b, a)\in M_{2}$ and $m(a, b)=m(b, a)$ , and
(3) If $(a, b)$ and $(b, c)$ are both in $NI_{2}$ then $(m(a, b),$ $c)\in M_{2}$ implies $(a, m(b, c))\in M_{2}$ ,

and $m(m(a, b),$ $c)=m(a, m(b, \mathrm{c}))$ .
We write $m(a,b)=a+b$. Any element of $M_{2}$ is called a summable pair. Let $M_{k}$ denote
the subspace of $M^{k}$ which consists of those $k$-tuples $(a_{1}, \ldots, a_{k})$ such that $a_{1}+\cdots+a_{k}$ is
defined. A map between PAMs are called a PAM homomorphism if it sends summable
pairs to summable pairs and preserves the sum.
Example 2.

(1) Obviously, any abelian monoid $G$ is a partial abelian monoid by setting $G_{2}=$

$G\mathrm{x}G$ .
(2) Any based space $X$ can be considered as a partial abelian monoid by setting

$X_{2}=X\vee X$ and $m:X\vee Xarrow X$ a folding map. We call this structure a trivial
partial abelian monoid.

(3) Let $G$ be an abelian group. Then any subspace $A\subset^{}G$ which contains $0$ is a
partial abelian monoid by setting

$A_{2}=\{(a, b)|a+b\in A\}$ .
(4) Let $G$ be a (possibly non-commutative) topological group. We have a partial

abelian monoid $\mathrm{A}f$ as follows. Topologically $M=G$. Let $M_{2}=\{(g, h)\in M\cross$

$M|gh=hg\}$ and $m:M_{2}arrow M$ be the multiplication of $G$ .
Definition 3. For any partial abelian monoid $M$, we have a simplicial space denoted
$NI_{*}$ as follows. Let $M_{n}$ be the subspace of summable $n$-tuples of $M$“. Its structure maps
are given by 1 $\mathrm{x}\cdots \mathrm{x}m\mathrm{x}\cdots \mathrm{x}1$ : $\mathrm{A}\prime f_{n}arrow M_{\mathrm{n}-1}$ and $i_{k}’$. $M_{n-1}arrow\Lambda/I_{n}$ , where $i_{k}$
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inserts $0$ at the k-th entry. The geometric realization of this simplicial space is called
the classifying space of $M$ and is denoted by $BM$.
Example 4.

(1) If $M=G$ is an abelian monoid, then we have $BG$ the usual classifying space of
$G$ in a usual sense.

(2) If $M=X$ is a trivial partial abelian monoid; $X_{2}=X\vee X$ , then we have
$BX\simeq\Sigma X$ , the reduced suspension of $X$ .

(3) In Example 2 (4) we associate to any topological $G$ a partial abelian monoid $M$.
From a view point given in the first section, it is natural to ask how much $BM$

approximates $BG$ .

3. HOMOLOGY OF THE SPACE OF COMMUTATIVE PAIRS IN $SU(2)$

Using an isomorphism $SU(2)\cong Sp(1)$ , we view $SU(2)$ as the unit sphere in the
quarternions H. By a direct calculation we see that $x=x_{1}+ix_{2}+jx_{3}+kx_{4}$ and
$y=y_{1}+iy_{2}+jy_{3}+ky_{4}$ commute iff $x=\pm 1,$ $y=\pm 1$ , or $x,$ $y\neq\pm 1$ and [$x_{2}$ : $x_{3}$ :
$x_{4}]=[y_{2} : y_{3} : y_{4}]$ . Thus the space of commutative pairs in $SU(2)$ can be constructed
as follows : Let $E= \mathbb{R}\mathrm{P}^{2}\mathrm{U}_{\pi}(S^{2}\mathrm{x}I)\bigcup_{\pi}\mathbb{R}\mathrm{P}^{2}$ be a space constructed from $S^{2}\mathrm{x}$ $I$ by
taking a quotient of each of $S^{2}\mathrm{x}\{0\}$ and $S^{2}\cross\{1\}$ to $\mathbb{R}\mathrm{P}^{2}$ by the standard projection
$\pi$ . Then $E$ can be considered as the total space of an $S^{1}$-bundle over $\mathbb{R}\mathrm{P}^{2}$ , with the
projection $p;Earrow \mathbb{R}\mathrm{P}^{2}$ which maps two copies of IRIP2 identically and maps $S^{2}\mathrm{x}$ $I$ by
the composition of the sequence

$S^{2}\cross I^{proj\pi}arrow S^{2}arrow \mathbb{R}\mathrm{P}^{2}$ .
Let $E*E$ denote the fiber product of $E;E*E$ is a $S^{1}\cross S^{1}$ -bundle over $\mathbb{R}1\mathrm{P}^{2}$ . We heve
four cross-sections

$s00,$ $s_{01},$ $s_{1}0,$ $s_{11}$ : $\mathbb{R}\mathrm{P}^{2}arrow E*E$ ,
where $s_{\epsilon\iota\epsilon_{2}}([x])$ is the class represented by $((x, \epsilon_{1}),$ $(x, \epsilon_{2})\in(S^{2}\cross I)^{2}$ . The space of
commutative pairs in $M=S^{3}$ , denoted $NI_{2}$ , is given by $M_{2}=M*M/\sim,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\sim \mathrm{i}\mathrm{s}$

the equivalence relation
$(x, y)\sim(x’, y’)\Leftrightarrow(x, y)$ and $(x’, y’)$ both are in one of

$s0\mathrm{o}(\mathbb{R}\mathrm{P}^{2}),$ $s_{01}(\mathbb{R}\mathrm{P}^{2}),$ $s_{10}(\mathbb{R}\mathrm{P}^{2}),$ $s_{11}(\mathrm{R}\mathrm{P}^{2})$ .
The integral homology groups of $M_{2}$ can be computed as

$H_{*}(\mathrm{A}’I_{2})=\{$

$\mathbb{Z}$ $(k=0)$
$0$ $(k=1)$
$\mathbb{Z}$ $(k=2)$
$\mathbb{Z}^{2}\oplus \mathbb{Z}/2$ $(k=3)$
$0$ $(k>3)$

which coincides with the calculation of the integral cohomology groups of $\mathrm{A}’I_{2}$ given in
[1].

4. HOMOLOGY OF THE SPACE OF COMMUTATIVE $n$-TUPLES IN $\mathrm{S}\mathrm{U}(2)$

The construction of the previous section can be generalized to the space of
commutative $\mathrm{n}$-tuples in $SU(2)$ as follows: Let $E$ be the fiberwise one point
compactification of the canonical line bundle over $\mathbb{R}\mathrm{P}^{2}$ . We form a fiberwise direct
product of $n$ copies of $E$ and get a $(S^{1})^{n}$-bundle over $\mathbb{R}\mathrm{P}^{2}$ , denoted by $E^{*}".$

For the purpose of the next section, we give a cell decomposition of $E$““. Let
$p:E^{*n}arrow \mathbb{R}\mathrm{P}^{2}$ be the projection and $a^{2}+a+1$ denote the standard cell decomposition
of $\mathbb{R}\mathrm{P}^{2}$ . We also denote the cell decomposition of $(S^{1})^{n}$ by $(x_{1}+1)\cdots(x_{n}+1)$ , where
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$x_{k}+1$ denotes the cell decomposition of the k-th component of $(S^{1})^{n}$ . Then the cell
decomposition of $E^{*n}$ can be represented as

$(a^{2}+a+1)(x_{1}+1)\cdots(x_{n}+1)$ .
Thus the $k$-cell of $E$““ is represented by the monomial of degree $k$ in the above
polynomial and we have the chain complex with $C_{k}$ generated freely by the monomials
in $a^{2}\sigma_{k-2},$

$a\sigma_{k-1}$ , and $\sigma_{k}$ , where $\sigma_{k}=\sigma_{k}(x_{1}, \ldots, x_{n})$ denotes the k-th fundamental
symmetric polynomial in $x_{1},$ $\ldots$ , $x_{n}$ . Boundary homomorphisms are given by

$\partial(a^{2}\sigma_{k-2})=a(\sigma_{k-2}(-x_{1}, \ldots, -x_{n})+\sigma_{k-2}(x_{1}, \ldots, x"\rangle)=\{$

$0$ ( $k$ : odd)
$2a\sigma_{k-2}$ ( $k$ : even)

$\partial(a\sigma_{k-1})=\sigma_{k-1}(-x_{1}, \ldots, -x_{n})-\sigma_{k-1}(x_{1}, \ldots,x_{n})=\{$

$0$ ( $k$ : odd)
$-2\sigma_{k-1}$ ( $k$ : even)

and $\partial(\sigma_{k})=0$ .
If $n$ is odd, the integral homology of $E^{*n}$ can be computed as

$H_{k}(E^{*n})=\{$

$\mathbb{Z}$ $(k=0)$

$\mathbb{Z}^{n_{k}}(\mathbb{Z}/2)^{n+1}$
$(k=1)$
( $2\leq k\leq n,$ $k$ : even)

$(\mathbb{Z}/2)^{n_{k}+}" k-1\oplus \mathbb{Z}^{n_{k-2}}$ ( $3\leq k\leq n,$ $k$ : odd)
$0$ $(k=n+1)$
$\mathbb{Z}$ $(k=n+2)$
$0$ $(k\geq n+3)$ ,

where $n_{k}=$ are the binomial coefficients. If $n$ is even, the integral homology of
$E^{*n}$ differs from the above formula when $k=n+1$ and $k=n+2$. They are given by

$H_{+1}"(E^{*n})=\mathbb{Z}^{n}\oplus \mathbb{Z}/2$

and
$H_{n+2}(E^{*n})=0$ .

As is the case of $n=2$ , we have $2^{n}$ cross sections $s_{\epsilon_{1}\ldots\epsilon_{n}}(\epsilon_{k}\in\{0,1\})$ and $M$
“ is $0\sigma \mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$

by $M_{n}=E^{*n}/\sim$ , where $”/\sim$ “ indicates that we squeeze each of 2“ images of the
cross sections to one point. It follows that $H_{k}(M_{n})=H_{k}(E$““

$)$ when $k=0$ and $k\geq 3$ .
For the purpose of the next section, we give a cell decomposition of $M_{n}$ . This time we
use the cell decomposition of $S^{1}$ into two 1-cells and two -cells represented by
$x^{+}+x^{-}+z^{+}+z^{-}$ , where $x^{\pm}$ denote the 1-cells and $z^{\pm}$ the -cells. As above, the cell
decomposition of $M_{n}$ can be represented as

$(a^{2}+a+1)(x_{1}^{+}+x_{1}^{-}+z_{1}^{+}+z_{1}^{-})\cdots(x_{n}^{+}+x^{-}"+z^{+}"+z^{-}")$ ,
but monomials in $a^{2}(z_{1}^{+}+z_{1}^{-})\cdots(z^{+}"+z^{-}")$ , and $a(z_{1}^{+}+z_{1}^{-})\cdots(z^{+}"+z_{\overline{n}})$ should be
identified with corresponding monomials in $(z_{1}^{+}+z_{1}^{-})\cdots(z_{n}^{+}+z^{-}")$ . Thus the $k$-cell is
represented by the monomials of degree $k$ in the above polynomi$\mathrm{a}1$ , where we consider
$z_{k}^{\pm}$ to have degree $0$ . We have the chain complex with $C_{k}$ generated freely by such
monomials. Boundary homomorphisms are given inductively by

$\partial(a^{2}f)=a(f-\overline{f})+a^{2}\partial(f)$ ,
$\partial(af)=-f-\overline{f}-a\partial(f)\backslash$ ,

$\partial(x_{k}^{\xi})=z_{k}^{-\epsilon}-z_{k}\epsilon$ , and the graded chain rule on $f$, where $f$ denotes a monomial in
$(x_{1}^{+}+x_{1}^{-}+z_{1}^{+}+z_{1}^{-})\cdots(x_{n}^{\perp}+x_{n}^{-}+z^{+}"+z_{n}^{-})$ and $\overline{f}$ denotes the monomial given by
replacing each $x_{k}^{\epsilon}$ in $f$ into $x_{k}^{-\Xi}$ . From these formulae, we compute the homology to be
$H_{1}(\mathrm{A}f_{n})=0,$ $H_{2}(hf_{n})=\mathbb{Z}^{n_{2}}\oplus(\mathbb{Z}/2)^{2}"-(n_{2}+"+1)$ for $n\leq 4$ .
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5. HOMOLGY OF $BM$ IN LOW DEGREES

Since $B\mathrm{A}\prime f$ is a geometric realization of a simplicial space, we have the skeletal
filtration on $BM$, which leads to a spectral sequence with $E_{p,q}^{2}=H_{p}(\{H_{q}(\Lambda^{\text{ノ}}\mathit{1}_{*}), \partial\})$

converging to $H_{*}(BM)$ , where $\{H_{q}(M_{*}), \partial\}$ denotes the Moore complex of the
simplicial group $H_{q}(M_{*})$ . The computation and the genuine data of cells in the
previous section gives us the $E^{2}$-term of the spectral sequence as $E_{p,q}^{2}=0$ for
$0\leq p+q\leq 4$ except for $E_{2,2}^{2}=\mathbb{Z}/2$ . Thus we have

Theorem 5. Let $hI$ be a partial abelian monoid generated by the commutative pairs
in $SU(2)$ , then the integral homology of its classifying space in low degrees are given by

$H_{k}(BM)=\{$

$\mathbb{Z}$ $(k=0)$
$0$ $(1\leq k\leq 3)$

$\mathbb{Z}/2$ $(k=4)$

Corolary 6. $BM$ is not homology equivalent to $BSU(2)$ .
$\mathrm{R}+\mathrm{F}+\mathrm{R}\mathrm{E}\mathrm{N}\mathrm{C}\mathrm{E}\mathrm{S}$

[1] A. Adem and F. Cohen, Commuting elements and spaces of homomorphisms, math. $\mathrm{A}\mathrm{T}/0603197$ .
[2] G. Segal, Configuration spaces and iterated $\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}arrow \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}$ , Inventiones math. 21 (1973), 213-221.
[3] K.Shimakawa, Configuration spaces with partially summable labels and homology theories,

Math.J.Okayama Univ. 43 (2001), 43-72.

59


