ON THE CLASSIFYING SPACES OF A PARTIAL ABELIAN MONOID ASSOCIATED TO SU(2)

詫間電波工業高等専門学校 奥山 真吾 (Shingo Okuyama) Takuma National College of Technology

1. INTRODUCTION

Topological partial monoid is a generalization of the notion of topological monoid. It occurs naturally in the construction of configuration spaces [2] and known to be a suitable data to construct generalized homology theories [3]. However, the topology of partial monoids is not well-studied.

In this paper, we investigate an aspect of the topology of partial abelian monoids. More precisely, our point of view can be explained as follows : For a topological group G, we can associate to it a partial monoid M generated by commutative pairs in G. If we think of M as an abelian part of G, it is natural to ask if M can recover the data of G. We compute the homology group of the classifying space BM in low degrees and show that it is not homology equivalent to BG when G = SU(2).

2. CLASSIFYING SPACES OF PARTIAL ABELIAN MONOIDS

Definition 1. A partial abelian monoid is a based space M equipped with a subspace $M_2 \subset M \times M$ and a map $m: M_2 \to M$ such that

- (1) $M \lor M \subset M_2$ and $m(a, *_M) = m(*_M, a) = a$,
- (2) $(a,b) \in M_2$ implies $(b,a) \in M_2$ and m(a,b) = m(b,a), and
- (3) If (a, b) and (b, c) are both in M_2 then $(m(a, b), c) \in M_2$ implies $(a, m(b, c)) \in M_2$, and m(m(a, b), c) = m(a, m(b, c)).

We write m(a, b) = a + b. Any element of M_2 is called a summable pair. Let M_k denote the subspace of M^k which consists of those k-tuples (a_1, \ldots, a_k) such that $a_1 + \cdots + a_k$ is defined. A map between PAMs are called a PAM homomorphism if it sends summable pairs to summable pairs and preserves the sum.

Example 2.

- (1) Obviously, any abelian monoid G is a partial abelian monoid by setting $G_2 = G \times G$.
- (2) Any based space X can be considered as a partial abelian monoid by setting $X_2 = X \lor X$ and $m: X \lor X \to X$ a folding map. We call this structure a trivial partial abelian monoid.
- (3) Let G be an abelian group. Then any subspace $A \subset G$ which contains 0 is a partial abelian monoid by setting

$$A_2 = \{(a, b) \mid a + b \in A\}.$$

(4) Let G be a (possibly non-commutative) topological group. We have a partial abelian monoid M as follows. Topologically M = G. Let $M_2 = \{(g, h) \in M \times M \mid gh = hg\}$ and $m: M_2 \to M$ be the multiplication of G.

Definition 3. For any partial abelian monoid M, we have a simplicial space denoted M_* as follows. Let M_n be the subspace of summable *n*-tuples of M^n . Its structure maps are given by $1 \times \cdots \times m \times \cdots \times 1$: $M_n \to M_{n-1}$ and $i_k : M_{n-1} \to M_n$, where i_k

inserts 0 at the k-th entry. The geometric realization of this simplicial space is called the classifying space of M and is denoted by BM. Example 4.

- (1) If M = G is an abelian monoid, then we have BG the usual classifying space of G in a usual sense.
- (2) If M = X is a trivial partial abelian monoid; $X_2 = X \vee X$, then we have $BX \simeq \Sigma X$, the reduced suspension of X.
- (3) In Example 2 (4) we associate to any topological G a partial abelian monoid M. From a view point given in the first section, it is natural to ask how much BM approximates BG.

3. Homology of the space of commutative pairs in SU(2)

Using an isomorphism $SU(2) \cong Sp(1)$, we view SU(2) as the unit sphere in the quarternions \mathbb{H} . By a direct calculation we see that $x = x_1 + ix_2 + jx_3 + kx_4$ and $y = y_1 + iy_2 + jy_3 + ky_4$ commute iff $x = \pm 1, y = \pm 1$, or $x, y \neq \pm 1$ and $[x_2 : x_3 : x_4] = [y_2 : y_3 : y_4]$. Thus the space of commutative pairs in SU(2) can be constructed as follows : Let $E = \mathbb{RP}^2 \cup_{\pi} (S^2 \times I) \cup_{\pi} \mathbb{RP}^2$ be a space constructed from $S^2 \times I$ by taking a quotient of each of $S^2 \times \{0\}$ and $S^2 \times \{1\}$ to \mathbb{RP}^2 by the standard projection π . Then E can be considered as the total space of an S^1 -bundle over \mathbb{RP}^2 , with the projection $p: E \to \mathbb{RP}^2$ which maps two copies of \mathbb{RP}^2 identically and maps $S^2 \times I$ by the composition of the sequence

$$S^2 \times I \xrightarrow{proj} S^2 \xrightarrow{\pi} \mathbb{RP}^2$$
.

Let E * E denote the fiber product of E; E * E is a $S^1 \times S^1$ -bundle over \mathbb{RP}^2 . We have four cross-sections

$$s_{00}, s_{01}, s_{10}, s_{11} : \mathbb{RP}^2 \to E * E,$$

where $s_{\varepsilon_1\varepsilon_2}([x])$ is the class represented by $((x, \varepsilon_1), (x, \varepsilon_2) \in (S^2 \times I)^2$. The space of commutative pairs in $M = S^3$, denoted M_2 , is given by $M_2 = M * M / \sim$, where \sim is the equivalence relation

$$(x,y) \sim (x',y') \iff (x,y) \text{ and } (x',y') \text{ both are in one of}$$

 $s_{00}(\mathbb{RP}^2), s_{01}(\mathbb{RP}^2), s_{10}(\mathbb{RP}^2), s_{11}(\mathbb{RP}^2).$

The integral homology groups of
$$M_2$$
 can be computed as

$$H_*(M_2) = \begin{cases} \mathbb{Z} & (k=0) \\ 0 & (k=1) \\ \mathbb{Z} & (k=2) \\ \mathbb{Z}^2 \oplus \mathbb{Z}/2 & (k=3) \\ 0 & (k>3) \end{cases}$$

which coincides with the calculation of the integral cohomology groups of M_2 given in [1].

4. Homology of the space of commutative *n*-tuples in SU(2)

The construction of the previous section can be generalized to the space of commutative *n*-tuples in SU(2) as follows : Let E be the fiberwise one point compactification of the canonical line bundle over \mathbb{RP}^2 . We form a fiberwise direct product of n copies of E and get a $(S^1)^n$ -bundle over \mathbb{RP}^2 , denoted by E^{*n} . For the purpose of the next section, we give a cell decomposition of E^{*n} . Let $p: E^{*n} \to \mathbb{RP}^2$ be the projection and $a^2 + a + 1$ denote the standard cell decomposition of \mathbb{RP}^2 . We also denote the cell decomposition of $(S^1)^n$ by $(x_1 + 1) \cdots (x_n + 1)$, where

 $x_k + 1$ denotes the cell decomposition of the k-th component of $(S^1)^n$. Then the cell decomposition of E^{*n} can be represented as

$$(a^2 + a + 1)(x_1 + 1) \cdots (x_n + 1).$$

Thus the k-cell of E^{*n} is represented by the monomial of degree k in the above polynomial and we have the chain complex with C_k generated freely by the monomials in $a^2\sigma_{k-2}$, $a\sigma_{k-1}$, and σ_k , where $\sigma_k = \sigma_k(x_1, \ldots, x_n)$ denotes the k-th fundamental symmetric polynomial in x_1, \ldots, x_n . Boundary homomorphisms are given by

$$\partial(a^{2}\sigma_{k-2}) = a(\sigma_{k-2}(-x_{1}, \dots, -x_{n}) + \sigma_{k-2}(x_{1}, \dots, x_{n})) = \begin{cases} 0 & (k : \text{odd}) \\ 2a\sigma_{k-2} & (k : \text{even}) \end{cases}$$
$$\partial(a\sigma_{k-1}) = \sigma_{k-1}(-x_{1}, \dots, -x_{n}) - \sigma_{k-1}(x_{1}, \dots, x_{n}) = \begin{cases} 0 & (k : \text{odd}) \\ -2\sigma_{k-1} & (k : \text{even}) \end{cases},$$

and $\partial(\sigma_k) = 0$.

If n is odd, the integral homology of E^{*n} can be computed as

$$H_{k}(E^{*n}) = \begin{cases} \mathbb{Z} & (k=0) \\ (\mathbb{Z}/2)^{n+1} & (k=1) \\ \mathbb{Z}^{n_{k}} & (2 \le k \le n, k : \text{ even}) \\ (\mathbb{Z}/2)^{n_{k}+n_{k-1}} \oplus \mathbb{Z}^{n_{k-2}} & (3 \le k \le n, k : \text{ odd}) \\ 0 & (k=n+1) \\ \mathbb{Z} & (k=n+2) \\ 0 & (k \ge n+3), \end{cases}$$

where $n_k = \binom{n}{k}$ are the binomial coefficients. If n is even, the integral homology of E^{*n} differs from the above formula when k = n + 1 and k = n + 2. They are given by $H_{n+1}(E^{*n}) = \mathbb{Z}^n \oplus \mathbb{Z}/2$

and

$$H_{n+2}(E^{*n})=0.$$

As is the case of n = 2, we have 2^n cross sections $s_{\varepsilon_1...\varepsilon_n}$ ($\varepsilon_k \in \{0,1\}$) and M_n is given by $M_n = E^{*n} / \sim$, where " $/ \sim$ " indicates that we squeeze each of 2^n images of the cross sections to one point. It follows that $H_k(M_n) = H_k(E^{*n})$ when k = 0 and $k \ge 3$. For the purpose of the next section, we give a cell decomposition of M_n . This time we use the cell decomposition of S^1 into two 1-cells and two 0-cells represented by $x^+ + x^- + z^+ + z^-$, where x^{\pm} denote the 1-cells and z^{\pm} the 0-cells. As above, the cell decomposition of M_n can be represented as

$$(a^{2}+a+1)(x_{1}^{+}+x_{1}^{-}+z_{1}^{+}+z_{1}^{-})\cdots(x_{n}^{+}+x_{n}^{-}+z_{n}^{+}+z_{n}^{-}),$$

but monomials in $a^2(z_1^+ + z_1^-) \cdots (z_n^+ + z_n^-)$, and $a(z_1^+ + z_1^-) \cdots (z_n^+ + z_n^-)$ should be identified with corresponding monomials in $(z_1^+ + z_1^-) \cdots (z_n^+ + z_n^-)$. Thus the k-cell is represented by the monomials of degree k in the above polynomial, where we consider z_k^{\pm} to have degree 0. We have the chain complex with C_k generated freely by such monomials. Boundary homomorphisms are given inductively by

$$\partial(a^2 f) = a(f - \bar{f}) + a^2 \partial(f),$$

 $\partial(af) = -f - \bar{f} - a \partial(f),$

 $\partial(x_k^{\epsilon}) = z_k^{-\epsilon} - z_k \epsilon$, and the graded chain rule on f, where f denotes a monomial in $(x_1^+ + x_1^- + z_1^+ + z_1^-) \cdots (x_n^+ + x_n^- + z_n^+ + z_n^-)$ and \bar{f} denotes the monomial given by replacing each x_k^{ϵ} in f into $x_k^{-\epsilon}$. From these formulae, we compute the homology to be $H_1(M_n) = 0, H_2(M_n) = \mathbb{Z}^{n_2} \oplus (\mathbb{Z}/2)^{2^n - (n_2 + n + 1)}$ for $n \leq 4$.

5. Homolgy of BM in low degrees

Since BM is a geometric realization of a simplicial space, we have the skeletal filtration on BM, which leads to a spectral sequence with $E_{p,q}^2 = H_p(\{H_q(M_*), \partial\})$ converging to $H_*(BM)$, where $\{H_q(M_*), \partial\}$ denotes the Moore complex of the simplicial group $H_q(M_*)$. The computation and the genuine data of cells in the previous section gives us the E^2 -term of the spectral sequence as $E_{p,q}^2 = 0$ for $0 \leq p + q \leq 4$ except for $E_{2,2}^2 = \mathbb{Z}/2$. Thus we have

Theorem 5. Let M be a partial abelian monoid generated by the commutative pairs in SU(2), then the integral homology of its classifying space in low degrees are given by

$$H_k(BM) = \begin{cases} \mathbb{Z} & (k=0) \\ 0 & (1 \le k \le 3) \\ \mathbb{Z}/2 & (k=4) \end{cases}$$

Corolary 6. BM is not homology equivalent to BSU(2).

References

- [1] A. Adem and F. Cohen, Commuting elements and spaces of homomorphisms, math.AT/0603197.
- [2] G. Segal, Configuration spaces and iterated loop-spaces, Inventiones math. 21 (1973), 213-221.

[3] K.Shimakawa, Configuration spaces with partially summable labels and homology theories, Math.J.Okayama Univ. 43 (2001), 43-72.