goooboooobgon
15170 2006 O 56-59

ON THE CLASSIFYING SPACES OF A PARTIAL ABELIAN
MONOID ASSOCIATED TO SU(2)
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1. INTRODUCTION

Topological partial monoid is a generalization of the notion of topological monoid.
It occurs naturally in the construction of configuration spaces {2] and known to be a
suitable data to construct generalized homology theories [3]. However, the topology of
partial monoids is not well-studied. o

In this paper, we investigate an aspect of the topology of partial abelian monoids.
More precisely, our point of view can be explained as follows : For a topological group
G, we can associate to it a partial monoid M generated by commutative pairs in G. If
we think of Al as an abelian part of G, it is natural to ask if M can recover the data
of G. We compute the homology group of the classifying space BM in low degrees and
show that it is not homology equivalent to BG when G = SU(2).

2. CLASSIFYING SPACES OF PARTIAL ABELIAN MONOIDS

Definition 1. A partial abelian monoid is a based space M equipped with a subspace
M; C M x M and a map m : My — M such that

(1) MV M C My and m(a, *p) = m(xp,a) = a, ‘

(2) (a,b) € M, implies (b, a) € M2 and m(a,b) = m(b,a), and

(3) If (a,b) and (b, ¢) are both in Mj then (m(a,b),c) € Mz implies (a, m(b, c)) € Ms,

and m(m(a,b),c) = m(a,m(b,c)).

We write m(a,b) = a + b. Any element of M is called a summable pair. Let M}, denote
the subspace of M* which consists of those k-tuples (ay, ..., ax) such that aj +- - -+ax is
defined. A map between PAMs are called a PAM homomorphism if it sends summable
pairs to summable pairs and preserves the sum.

Example 2.

(1) Obviously, any abelian monoid G is a partial abelian monoid by setting G =
GxG.

(2) Any based space X can be considered as a partial abelian monoid by setting
Xa=XVXand m: XVX — X a folding map. We call this structure a trivial
partial abelian monoid.

(3) Let G be an abelian group. Then any subspace A c G which contains 0 is a -
partial abelian monoid by setting

Az ={(a,b) | a+be A).

(4) Let G be a (possibly non-commutative) topological group. We have a partial
abelian monoid M as follows. Topologically M = G. Let My = {(g,h) € M x
M | gh = hg} and m : My — M be the multiplication of G.

Definition 3. For any partial abelian monoid M, we have a simplicial space denoted
M, as follows. Let M, be the subspace of summable n-tuples of M™. Its structure maps
are given by 1 x --- xm x ---x1: M, — My,_; and i, : M,_; — M,, where ix



inserts 0 at the k-th entry. The geometric realization of this simplicial space is called
the classifying space of M and is denoted by BM.
Example 4.

(1) If M = G is an abelian monoid, then we have BG the usual classifying space of
G in a usual sense.

(2) If M = X is a trivial partial abelian monoid; X3 = X V X, then we have
BX ~ XX, the reduced suspension of X.

(3) In Example 2 (4) we associate to any topological G a partial abelian monoid M.
From a view point given in the first section, it is natural to ask how much BM
approximates BG.

3. HOMOLOGY OF THE SPACE OF COMMUTATIVE PAIRS IN SU(2)

Using an isomorphism SU(2) = Sp(1), we view SU(2) as the unit sphere in the
quarternions H. By a direct calculation we see that x = z; + iz2 + jz3 + kz4 and
Yy = Y1 + iy2 + jys + kys commute iff z = +1,y = 1, or z,y # £1 and [z2 : z3 :
z4] = [y2 : y3 : y4)- Thus the space of commutative pairs in SU(2) can be constructed
as follows : Let E = RP? U, (82 x I) U, RP? be a space constructed from S2 x I by
taking a quotient of each of S% x {0} and S2 x {1} to RP? by the standard projection
7. Then E can be considered as the total space of an S!'-bundle over RP?, with the
projection p : E — RP? which maps two copies of RP? identically and maps S% x I by
the composition of the sequence

§% x 179 8% T, RP2.
Let E * E denote the fiber product of E; E * E is a S! x Sl-bundle over RPP2. We heve
four cross-sections
500, 501, $10, 511 : RP? = Ex E,
where s¢,c,([z]) is the class represented by ((z,e1), (x,e2) € (S? x I)2. The space of
commutative pairs in M = S3, denoted M, is given by My = M x M/ ~, where ~ is
the equivalence relation
(x,y) ~ (z',y) <= (z,y) and (z',y’) both are in one of

so0(RP?), s01(RP?), s10(RP?), 511 (RP?).
The integral homology groups of M; can be computed as

Y/ (k = 0)
0 . (k=1)
H.(M2)=( Z (k=2)
2’02/2 (k=23)
0 (k>3)

which coincides with the calculation of the integral cohomology groups of Ms given in

1]
4. HOMOLOGY OF THE SPACE OF COMMUTATIVE n-TUPLES IN SU(2)

The construction of the previous section can be generalized to the space of

commutative n-tuples in SU(2) as follows : Let E be the fiberwise one point

compactification of the canonical line bundle over RP?. We form a fiberwise direct

product of n copies of E and get a (S!)"-bundle over RP?, denoted by E*™.

For the purpose of the next section, we give a cell decomposition of E*™. Let

p: E*® — RP? be the projection and a2 + a + 1 denote the standard cell decomposition
of RP2. We also denote the cell decomposition of (S')* by (x1 +1)- -+ (zn + 1), where
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zx + 1 denotes the cell decomposition of the k-th component of (S)". Then the cell
decomposition of E*™ can be represented as

(@®+a+1)(z1+1) - (zn + 1).

Thus the k-cell of E*" is represented by the monomial of degree k in the above
polynomial and we have the chain complex with Cj, generated freely by the monomials

in a?0k_, a0k-1, and ok, where o = ok(z1,...,z,) denotes the k-th fundamental
symmetric polynomial in z1,...,z,. Boundary homomorphisms are given by
2 _ _ _ _Jo (k : odd)
a(a' Uk—Z) = 0:(0'];;-2( Tly--ey .’Bn) + Uk..z(.’l)l, ... 7xn)) = { 2a0,k_2 (k . even) s
_ _ oy v_Jo (k : odd)
3(0.0];_1) = ak_l( Ty, xn) Ok—1 (21, . ,.Iln) = { ""20'k-1 (k : even) ’
and 9(o%) = 0.
If n is odd, the integral homology of E*™ can be computed as
(Z (k= 0)
(Z/2)"+ (k=1)
Znx (2<k <n,k: even)
Hy(E™) = (Z/2)™t™-1@Z™—2 (3< k< n,k: odd)
0 (k=n+1)
Z (k=n+2)
L 0 (k2 n+3),

where ng = : ) are the binomial coefficients. If n is even, the integral homology of

E*" differs from the above formula when k =n + 1 and k = n + 2. They are given by

Ho (B =Z"0Z/2
and

Hn+2(E*n) =0.

As is the case of n = 2, we have 2" cross sections s, ..., (¢x € {0,1}) and M,, is given
by M, = E*"/ ~, where “/ ~” indicates that we squeeze each of 2" images of the
cross sections to one point. It follows that Hj(M,) = Hi(E*") when k = 0 and k > 3.
For the purpose of the next section, we give a cell decomposition of M,,. This time we
use the cell decomposition of S! into two 1-cells and two O-cells represented by

zt + 1~ + 2+ + z~, where z denote the 1-cells and 2¥ the O-cells. As above, the cell
decomposition of M,, can be represented as

(@®+a+1)(af +27 +27 +27)-- (&F + 2 + 27 +27),
but monomials in a?(z{ + 27) -+ (2} + 2;), and a(z] + 27 ) --- (2 + 2;7) should be
identified with corresponding monomials in (2] + 27) - - - (2 + z;;). Thus the k-cell is
represented by the monomials of degree k in the above polynomial, where we consider

z,f to have degree 0. We have the chain complex with Cy generated freely by such
monomials. Boundary homomorphisms are given inductively by

8(a’f) = a(f — F) + a®8(f),
daf) = —f - f-ad(f),
O(xf) = z;© — zxe, and the graded chain rule on f, where f denotes a monomial in
(¢f + 27 + 27 +27) - (zF + z;; + z§ + 27) and f denotes the monomial given by
replacing each zf, in f into z;°. From these formulae, we compute the homology to be
Hy(Mp) =0, Hy(M,) = Z™ & (Z/2)¥"~(m2+n+1) for n < 4.
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5. HOMOLGY OF BM IN LOW DEGREES

Since BM is a geometric realization of a simplicial space, we have the skeletal
filtration on BM, which leads to a spectral sequence with Ef,,q = Hp({Hq4(M,),0})
converging to H,(BM), where { Hy(M.),0} denotes the Moore complex of the
simplicial group Hy(M.). The computation and the genuine data of cells in the
previous section gives us the E2-term of the spectral sequence as E% =0 for

0 < p+q < 4 except for EZ, = Z/2. Thus we have

Theorem 5. Let M be a partial abelian monoid generated by the commutative pairs
in SU(2), then the integral homology of its classifying space in low degrees are given by

Z (k=0)
Hy(BM)={ 0 (1<k<3)
Z/2 (k=4)

Corolary 6. BM is not homology equivalent to BSU(2).
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