Inner sequences and submodules in the Hardy space over the bidisk

神奈川大学・工学部・数学教室 濱戸 道生 (Michio Seto)
Department of Mathematics, Kanagawa University

Abstract

We deal with infinite sequences of inner functions \(\{q_j\}_{j \geq 0} \) with the property that \(q_j \) is divisible by \(q_{j+1} \). It is shown that these sequences have close relations to the module structure of the Hardy space over the bidisk. This article is a résumé of recent papers. Some results of this research were obtained in joint work with R. Yang (SUNY).

1 Preliminaries

Let \(\mathbb{D} \) be the open unit disk in the complex plane \(\mathbb{C} \), and let \(H^2(z) \) denote the classical Hardy space over \(\mathbb{D} \) with the variable \(z \). The Hardy space over the bidisk \(H^2 \) is the tensor product Hilbert space \(H^2(z) \otimes H^2(w) \) with variables \(z \) and \(w \). A closed subspace \(\mathcal{M} \) of \(H^2 \) is called a submodule if \(\mathcal{M} \) is invariant under the action of multiplication operators of coordinate functions \(z \) and \(w \). Let \(R_z \) (resp. \(R_w \)) denote the restriction of the Toeplitz operator \(T_z \) (resp. \(T_w \)) to a submodule \(\mathcal{M} \). The quotient module \(\mathcal{N} = H^2/\mathcal{M} \) is the orthogonal complement of a submodule \(\mathcal{M} \) in \(H^2 \), and let \(S_z \) (resp. \(S_w \)) denote the compression of \(T_z \) (resp. \(T_w \)) to \(\mathcal{N} \), that is, we set \(S_z = P_{\mathcal{N}}T_z|_{\mathcal{N}} \) (resp. \(S_w = P_{\mathcal{N}}T_w|_{\mathcal{N}} \)) where \(P_{\mathcal{N}} \) denotes the orthogonal projection from \(H^2 \) onto \(\mathcal{N} \).

2 Rudin's submodule

Let \(\mathcal{M} \) be the submodule consisting of all functions in \(H^2 \) which have a zero of order greater than or equal to \(n \) at \((\alpha_n, 0) = (1 - n^{-3}, 0) \) for any positive
integer n. This module was given by Rudin in [1], and he proved that this is not finitely generated. Rudin’s submodule can be decomposed as follows (cf. [3]):

$$\mathcal{M} = \sum_{j=0}^{\infty} \oplus q_j(z)H^2(z)w^j,$$

where we set $b_n(z) = (\alpha_n - z)/(1 - \alpha_n z)$, $q_0(z) = \prod_{n=1}^{\infty} b_n^n(z)$ and $q_j(z) = q_{j-1}(z)/\prod_{n=j}^{\infty} b_n(z)$ for any positive integer j.

Regarding this submodule, the following are known (cf. [4]):

$$\sigma_p(S_z) = \{\alpha_n : n \geq 1\}, \quad \sigma_c(S_z) = \{1\}, \quad \sigma_r(S_z) = \emptyset$$

and

$$\|[R_z^*, R_w]\|_2^2 = \sum_{j=1}^{\infty} \left(1 - \prod_{n=j}^{\infty} (1 - n^{-3})^2 \right).$$

Moreover, we have obtained the following in [2]:

$$\sigma_p(S_w) = \{0\}, \quad \sigma_c(S_w) = \overline{\mathbb{D}} \setminus \{0\}, \quad \sigma_r(S_w) = \emptyset$$

and

$$\|[S_z^*, S_w]\|_2^2 = \sum_{j=1}^{\infty} \left(1 - \prod_{n=j}^{\infty} (1 - n^{-3})^{2(n-j)} \right) \left(1 - \prod_{n=j}^{\infty} (1 - n^{-3})^2 \right)$$

$$= -1 + \sum_{j=1}^{\infty} \left(1 - \prod_{n=j}^{\infty} (1 - n^{-3})^2 \right).$$

3 Inner sequences

Definition 1 An infinite sequence of analytic functions $\{q_j(z)\}_{j \geq 0}$ is called an *inner sequence* if $\{q_j(z)\}_{j \geq 0}$ consists of inner functions and $(q_j/q_{j+1})(z)$ is inner for any j.

We note that the above condition is equivalent to that $q_j(z)H^2(z)$ is contained in $q_{j+1}(z)H^2(z)$. Therefore every inner sequence $\{q_j(z)\}_{j \geq 0}$ corre-
sponds to a submodule \mathcal{M} in H^2 as follows:

$$\mathcal{M} = \sum_{j=0}^{\infty} \oplus q_j(z)H^2(z)w^j.$$

In this submodule, we can calculate many subjects of operator theory, exactly.

Theorem 1 ([2, 3]) Let \mathcal{M} be the submodule arising from an inner sequence $\{q_j(z)\}_{j\geq 0}$. Then the following hold:

(i) $\|[R_z^*, R_w]\|_2^2 = \sum_{j=0}^{\infty} (1 - |(q_j/q_{j+1})(0)|^2)$,

(ii) $\|[S_z^*, S_w]\|_2^2 = \sum_{j=0}^{\infty} (1 - |q_{j+1}(0)|^2)(1 - |(q_j/q_{j+1})(0)|^2)$.

Let $q_{\infty}(z)$ be the inner function defined as follows:

$$q_{\infty}(z)H^2(z) = \bigcup_{j=0}^{\infty} q_j(z)H^2(z).$$

Without loss of generality, we may assume that the first non-zero Taylor coefficient of $q_{\infty}(z)$ is positive.

Theorem 2 ([2]) Let \mathcal{N} be the quotient module arising from an inner sequence $\{q_j(z)\}_{j\geq 0}$. Then $\sigma(S_z) = \sigma(q_0(z))$, where $\sigma(q_0(z))$ is the spectrum of $q_0(z)$, that is, $\sigma(q_0(z))$ consists of all zero points of $q_0(z)$ in \mathbb{D} and all points ζ on the unit circle $\partial\mathbb{D}$ such that $q_0(z)$ cannot be continued analytically from \mathbb{D} to ζ.

Theorem 3 ([2]) Let \mathcal{N} be the quotient module arising from an inner sequence $\{q_j(z)\}_{j\geq 0}$.

(i) if $q_m(z) = 1$ for some finite m, then

$$\sigma_p(S_w) = \{0\}, \ \sigma_c(S_w) = \emptyset \text{ and } \sigma_r(S_w) = \emptyset,$$
(ii) if $q_{\infty}(z) = 1$ and $q_{j}(z) \neq 1$ for any j, then
\[\sigma_{p}(S_{w}) = \{0\}, \quad \sigma_{c}(S_{w}) = \overline{D} \setminus \{0\} \quad \text{and} \quad \sigma_{r}(S_{w}) = \emptyset, \]

(iii) if $q_{\infty}(z) \neq 1$ and $q_{j}(z) \neq q_{0}(z)$ for some j, then
\[\sigma_{p}(S_{w}) = \{0\}, \quad \sigma_{c}(S_{w}) = \partial D \quad \text{and} \quad \sigma_{r}(S_{w}) = D \setminus \{0\}, \]

(iv) if $q_{j}(z) = q_{0}(z)$ for any j, then
\[\sigma_{p}(S_{w}) = \emptyset, \quad \sigma_{c}(S_{w}) = \partial D \quad \text{and} \quad \sigma_{r}(S_{w}) = D. \]

Let \mathfrak{A} denote the weak closed subalgebra generated by S_{z}, S_{w} and the identity operator on \mathcal{N}, and let \mathfrak{A}' denote the commutant of \mathfrak{A}.

Theorem 4 ([2]) Let \mathcal{N} be the quotient module arising from an inner sequence $\{q_{j}(z)\}_{j \geq 0}$. Then $\mathfrak{A} = \mathfrak{A}'$. Moreover, for any element A in \mathfrak{A}', there exists a sequence of bounded analytic functions $\{\varphi_{j}(z)\}_{j \geq 0}$ in $H^{\infty}(z)$ such that $A = \sum_{j \geq 0} S_{\varphi_{j}(z)} S_{w}^{j}$ in the weak operator topology.

References

