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1. Introduction
Let $\mathrm{D}$ be the open unit disk of the complex plane C. We denote the

polynomial ring by $C$ , and the space of all entire functions by $Hol(\mathbb{C})$ .
Let $X$ be a complete semi-normed space of holomorphic functions on
a domain $\Omega$ in C. For a subset $E$ of $X,$ let $\overline{E}$ be the closure of $E$ in
X. A function $f$ is said to be cyclic in $X$ if $fC\subset X$ and $\overline{fC}=X$ .
In the Hardy spaces $H^{p}(\mathrm{D})(0<p<\infty)$ , it is well known that a
function is cyclic if and only if it is $H^{p}(\mathrm{D})$-outer (see [Gar]). Also in
the Bergman spaces $L_{a}^{p}(\mathrm{D})(0<p<\infty)$ , it is known that a function is
cyclic if and only if it is $IP_{a}(\mathrm{D})$-outer (see [HKZ]). Recently the author
has characterized the cyclic vectors in the classical Fock space. The
classical Fock space $L_{a}^{2}(\mathbb{C})$ is

$L_{a}^{2}(\mathbb{C})=\{f\in Hol(\mathbb{C})$ : llfll $L_{a}^{2}( \mathbb{C}\rangle=\{\int_{\mathbb{C}}|f(z)|^{2}d\mu(z)\}^{1/2}<\infty\}$

where
$d\mu(z)=e^{-\frac{|z|^{2}}{2}}dA(z)/2\pi$

is the Gaussian measure on $\mathbb{C}$ and $dA$ is the ordinary Lebesgue measure.
In [Izul], we have proved the following:

Theorem A. Let $h(z)\in Hol(\mathbb{C})$ . Then the following are equivalent:
(i) $f(z)$ is a nonvanishing function in $L_{a}^{2}(\mathbb{C})$ .
(ii) $f(z)=e^{h(z)},$ $h(z)=\alpha z^{2}+\beta z+\gamma$ for $\alpha,$

$\beta,$ $\gamma\in \mathbb{C},$ $| \alpha|<\frac{1}{4}$ .
(iii) $f(z)$ is cyclic in $L_{a}^{2}(\mathbb{C})$ .

It is known that there are non-vanishing functions in $H^{p}(\mathrm{D})$ and $L_{a}^{\mathrm{p}}(\mathrm{D})$

which are not cyclic in the respective spaces (see [Gar] and [HKZ]). In
fact, Brown and Shields posed the following question [BS]:

Question B. Let $\Omega$ be bounded region in C. Does there exist a poly-
nomially dense Banach space $X$ of analytic functions in $\Omega$ with the two
properties
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(i) $zX\subset X$

(ii) for any $\lambda\in\Omega$ , point evaluation functional for $\lambda$ is bounded,

in which a function $f(z)$ is cyclic if and only if $f(z)\neq 0$ for all $z\in\Omega$ ?

The above theorem is not the answer of this question. But it says
that there exists a polynomially dense Banach space in which every
non-vanishing function is cyclic.

In this paper, we consider the cyclic vectors in more generalized
spaces.

Let $0<p<\infty,$ $s>0$ and $\alpha>0$ . Let $\phi$ be a positive function
on $[0, \infty)$ . The space $If_{a}(\mathbb{C}, \phi)$ consists of those entire functions whose
semi-norm

$||f||_{L_{a}^{p}(\mathbb{C},\phi)}= \{\frac{1}{2\pi}\int_{\mathbb{C}}|f(z)|^{p}e^{-p\phi(|z|)}dA(z)\}^{1/p}$

is finite. This space is called Fock-type space. Throughout this paper,
we put $\phi(|z|)=\frac{\alpha}{p}|z|^{s}$ . We study the cyclic vectors in $IP_{a}(\mathbb{C}, \phi)$ .

This is a summary of the paper [Izu2].

2. Results
The following is our main result:

Theorem 1. Let $f$ be a function in $L_{a}^{P}(\mathbb{C}, \phi)$ satisfying $fC\subset L_{a}^{p}(\mathbb{C}, \phi)$ .
Then the following are equivalent:

(i) $f(z)$ is a non-vanishing function.
(ii) $f(z)=e^{h(z)}$ for $h(z)= \sum_{k=0}^{[s]}a_{k^{Z^{k}}f}a_{k}\in \mathbb{C}$ , where $[s]$ is the

largest integer with $[s]\leq s$ , and in addition $|a_{s}|< \frac{\alpha}{p}$ if $s$ is an
integer.

(iii) $f(z)$ is cyclic in $L_{a}^{p}(\mathbb{C}, \phi)$ .

We know that every non-vanishing function in the classical Fock
space $L_{a}^{2}(\mathbb{C})$ is cyclic. In our case, we notice that it is not valid for
some positive numbers; that is, if $s$ is not an integer or $s=1,2,3,4$ ,
then $L_{a}^{p}(\mathbb{C}, \phi)$ has the same property as the one in $L_{a}^{2}(\mathbb{C})$ , but if

$s=\underline{\mathrm{Q}}z^{s}$

$5,6,7,$ $\cdots$ , the situation is different. For example, although $f(z)=ep$
is a non-vanishing function in $L_{a}^{P}(\mathbb{C}, \phi)$ , the function $f(z)$ does not
satisfy $fC\subset L_{a}^{p}(\mathbb{C}, \phi)$ . Obviously this function $f(z)$ is not cyclic. But if
we consider the non-vanishing functions just satisfying $fC\subset L_{a}^{p}(\mathbb{C}, \phi)$ ,
then the situation is similar.
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To prove Theorem 1, we introduce the space .Fg which is studied in
[MMO]. The space is

$\mathcal{F}_{\phi}^{p}=\{f\in Hol(\mathbb{C}):||f||_{F_{\phi}^{\mathrm{p}}}^{p}=\int_{\mathbb{C}}|f(z)|^{p}e^{-p\phi(|z|)}\rho^{-1}\triangle\phi dA(z)<\infty\}$

where $\Delta\phi$ is the Laplacian of $\phi$ and $\rho^{-1}\triangle\phi$ is a regular version of $\triangle\phi$ .
If $p=2$ , then .T2 is a Hilbert space with inner product

$\langle f, g\rangle_{F_{\phi}^{2}}=\int_{\mathbb{C}}f(z)\overline{g(z)}e^{-2\phi(z)}\rho^{-1}\Delta\phi dA(z)$ .

We denote the reproducing kernel of $F_{\phi}^{2}$ by $IC_{\lambda}$ , A $\in$ C. The following
lemma is proved by Marco, Massaneda and Ortega-Cerd\‘a in [MMO,
Lemma 21].

Lemma 2. There exists a positive number $C$ such that for any $\lambda\in \mathbb{C}$

$C^{-1}e^{2\phi(\lambda)}\leq||K_{\lambda}||_{\mathcal{F}_{\phi}^{2}}^{2}\leq Ce^{2\phi(\lambda)}$ .

In [CGH], Chen, Guo and Hou proved the following:

Lemma 3.

$\lim_{|\lambda|arrow\infty}\frac{\langle f,IC_{\lambda}\rangle_{F_{\phi}^{2}}}{||K_{\lambda}||_{F_{\phi}^{2}}}=0$

for any $f\in \mathcal{F}_{\phi}^{2}$ .

By Lemma 2 and 3, we get the following:

Lemma 4. The following are equivalent:
(i) $f(z)\in L_{a}^{p}(\mathbb{C}, \phi)$ is a non-vanishing function satisfying $fC\subset$

$L_{a}^{\mathrm{p}}(\mathbb{C}, \phi)$ .
(ii) $f(z)=e^{h(z)}$ where $h(z)= \sum_{k=0}^{[s]}a_{k}z^{k}$ and in addition $|a_{s}|< \frac{\alpha}{p}$

if $s$ is an integer.

By Lemma 4, $(\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i})$ in Theorem 1 has been proved.
The following two lemmas are the generalizations of the results in

[GW].

Lemma 5. Let $f\in L_{a}^{p}(\mathbb{C}, \phi)$ with $f(z)= \sum_{n=0}^{\infty}c_{n}z^{n}$ . Then we have
the following:

(i) There exists a constant $C_{1}>0$ , which depends on $f$ , satisfying

$|c_{n}| \leq C_{1}e^{\frac{2-\epsilon}{\mathrm{p}s}}(\frac{s\alpha e}{pn+2-s})^{\frac{n}{s}}||f||_{L_{\sigma}^{\rho}(\mathbb{C},\phi)}$ .
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(ii) For large $n$ ,

$||z^{n}||_{L_{\alpha}^{\mathrm{p}}(\mathbb{C},\phi)}^{p}$ $=$ $\frac{\alpha^{-\epsilon_{\frac{\tau\iota+2}{s}}}}{s}\Gamma(\frac{pn+2}{s})$

$\sim$
$\frac{1}{s\alpha}(2\pi\frac{pn+2-s}{s})^{\frac{1}{2}}(\frac{pn+2-s}{s\alpha e})^{\epsilon_{\frac{7\iota+2-s}{s}}}$ ,

where $\Gamma$ denotes the gamma function.
(iii) There is a constant $C_{2}>0,$ $whi\mathrm{c}h$ depends on $f$ , satisfying

$||c_{n}z^{n}||_{L_{a}^{\mathrm{p}}(\mathbb{C},\phi)} \leq C_{2}(\frac{pn+2-s}{s})^{\frac{1}{2p}}(\frac{pn+2-s}{s\alpha})^{\frac{2-s}{\mathrm{p}s}}||f||_{L_{a}^{p}(\mathbb{C},\phi)}$ .

Using Lemma 5, we get the following lemma:

Lemma 6. The polynomial ring $C$ is dense in $L_{(\iota}^{p}(\mathbb{C}, \phi)$ .

Finally we show $(\mathrm{i}\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i}\mathrm{i})$ in Theorem 1. Since every cyclic vector is
non-vanishing, $(\mathrm{i}\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i})$ is trivial. The idea for proving the opposite
direction is from [Izul].
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