ON BOUNDED ANALYTIC FUNCTIONS ON TWO-SHEETED COVERING SURFACES

小林 保幸 (Yasuyuki Kobayashi) 北海道大学 (Hokkaido University)

In this note, we pose some problems which is related to the algebras of bounded analytic functions on two-sheeted covering surfaces (\tilde{R}, R, π) , where the base domain R is a Zalcman domain (or an L-domain in the terminology of [5]). In [5], L. Zalcman showed some theorems related to the algebra $H^{\infty}(R)$ of bounded analytic functions on a domain R of infinite connectivity. Especially, the distinguished homomorphism is of our interest. We summarize Zalcman's results in §1.

For the covering surface (\tilde{R}, R, π) , the *point separation problem* was studied in [2] and [3]. We review this problem in §2.

1 Zalcman's results

Let Δ be the open unit disc and $\Delta_0 = \{0 < |z| < 1\}$ the punctured unit disc. Let $\{c_n\}$ and $\{r_n\}$ be sequences satisfying:

$$\begin{cases} 1 > c_1 > c_2 > \dots > 0 , & \lim_{n \to \infty} c_n = 0 , \\ 1 > r_1 > r_2 > \dots > 0 , & \lim_{n \to \infty} r_n = 0 , \\ c_{n+1} + r_{n+1} < c_n - r_n , & c_1 + r_1 < 1 . \end{cases}$$
(1)

These coditions simply say that closed discs $\{\overline{\Delta}_n\}$ are contained in Δ_0 , are mutually disjoint, and accumulate only at the origin. Consider the domain

$$R = \Delta_0 \setminus \bigcup_{n=1}^{\infty} \bar{\Delta}(c_n, r_n) , \qquad (2)$$

which is a simplest example of bounded infinitely connected domains in the complex plane \mathbb{C} . We call a domain R of the form (2) a Zalcman domain.

Each $f \in H^{\infty}(R)$ has nontangential boundary values at almost every point of $\Gamma = \partial R$. And the Cauchy integral formula holds;

$$f(z) = rac{1}{2\pi i} \int_{\Gamma} rac{f(\zeta)}{\zeta - z} d\zeta \ , \quad z \in R \ .$$

Let $\mathcal{M} = \mathcal{M}(R)$ be the maximal ideal space of $H^{\infty}(R)$, the set of all non-zero multiplicative linear functionals on $H^{\infty}(R)$. The topology of \mathcal{M} is

the weak-* topology which it inherits from $H^{\infty}(R)^*$. With this topology, we can regard the functions in $H^{\infty}(R)$ as continuous functions on \mathcal{M} by setting $f(\varphi) = \varphi(f) \ (\varphi \in \mathcal{M}, f \in H^{\infty}(R))$. In particular, the coordinate function zcan be regarded as a continuous function on \mathcal{M} . And we have $z(\mathcal{M}) = \overline{R}$. The set $\mathcal{M}_{\zeta} = z^{-1}(\{\zeta\})$ is called the fiber over $\zeta \ (\zeta \in \overline{R})$.

For $\zeta \in R$, $\mathcal{M}_{\zeta} = \{\varphi_{\zeta}\}$, where φ_{ζ} is the point evaluation homomorphism $(\varphi_{\zeta}(f) = f(\zeta))$. And, for $\zeta \in \Gamma \setminus \{0\}$, \mathcal{M}_{ζ} is homeomorphic to $\mathcal{M}_1(\Delta)$. So, we are interested in the fiber \mathcal{M}_0 .

Suppose that the sequeces $\{c_n\}$ and $\{r_n\}$ satisfy the condition

$$\sum_{n=1}^{\infty} \frac{r_n}{c_n} < \infty \tag{3}$$

in addition to (1). Then $d\zeta/\zeta$ is a finite measure on Γ . By Lebesgue's theorem, we have that $\lim_{x \nearrow 0} f(x)$ exists for all $f \in H^{\infty}(R)$. Set $\varphi_0(f) = \lim_{x \nearrow 0} f(x)$. Then we have

(i) $\varphi_0 \in \mathcal{M}_0$,

(ii) φ_0 does not lie in the Shilov boundary of $H^{\infty}(R)$,

(iii) φ_0 lies in the same Gleason part as R.

The homomorphism φ_0 is called the *distinguished homomorphism*.

2 Covering surfaces

Let $(\Delta_0, \Delta_0, \pi)$ be the unlimited two-sheeted covering surface whose branch points are those over $\{c_n\}$ (Fig. 1). In 1949, Myrberg pointed out that $H^{\infty}(\widetilde{\Delta}_0) = H^{\infty}(\Delta_0) \circ \pi$. This means that for any point $z \in \Delta_0 \setminus \{c_n\}$, the points of the fiber $\pi^{-1}(z) = \{z_+, z_-\}$ can not be separated by $H^{\infty}(\widetilde{\Delta}_0)$.

Myrberg's proof goes as follows. Let $F \in H^{\infty}(\widetilde{\Delta}_0)$, and consider the function f on Δ_0 defined by $f(z) = (F(z_+) - F(z_-))^2$. Then $f \in H^{\infty}(\Delta_0)$ and, by Riemann's theorem, $f \in H^{\infty}(\Delta)$. Since $f(c_n) = 0$ and $c_n \to 0$, we have $f \equiv 0$.

Restricting the base domain Δ_0 of the covering surface to R, and setting $\widetilde{R} = \pi^{-1}(R)$, we obtain the two-sheeted smooth covering surface (\widetilde{R}, R, π) (Fig. 2). In spite of complete lack of branch points, it is shown in [2] and [3] that non-separating phenomenon may occur for (\widetilde{R}, R, π) depending on $\{c_n\}$ and $\{r_n\}$. Roughly speaking,

(i) if $r_n \to 0$ "rapidly", then $H^{\infty}(\widetilde{R}) = H^{\infty}(R) \circ \pi$,

(ii) if $r_n \to 0$ "slowly", then $H^{\infty}(\widetilde{R}) \supseteq H^{\infty}(R) \circ \pi$.

(Unfortunately, the necessary and sufficient condition for $H^{\infty}(\widetilde{R}) = H^{\infty}(R) \circ \pi$ is not known.)

Figure 2: (\tilde{R}, R, π)

3 Problems

The covering surface (\widetilde{R}, R, π) induces the covering space $(\widetilde{\mathcal{M}}, \mathcal{M}, \tau)$, where $\widetilde{\mathcal{M}}$ is the maximal ideal space of $H^{\infty}(\widetilde{R})$ and the map τ is defined by

 $\tau(\widetilde{\varphi})(f) = \widetilde{\varphi}(f \circ \pi) , \quad \widetilde{\varphi} \in \widetilde{\mathcal{M}}, \ f \in H^{\infty} .$

Let $\iota: R \to \mathcal{M}$ and $\tilde{\iota}: \widetilde{R} \to \widetilde{\mathcal{M}}$ be natural maps. Then we have the following

commutative diagram:

By Nakai's theorem ([4]), we see that the map τ is surjective and the fiber $\tau^{-1}(\varphi)$ over any point $\varphi \in \mathcal{M}$ consists of at most two points, i.e., the number $\#(\tau^{-1}(\varphi))$ of points of the fiber $\tau^{-1}(\varphi)$ is 1 or 2 for all $\varphi \in \mathcal{M}$.

Consider the problem to determine $\#(\tau^{-1}(\varphi))$. The following partial answer is trivial.

Proposition. (i) If $H^{\infty}(\widetilde{R}) = H^{\infty}(R) \circ \pi$, then $\#(\tau^{-1}(\varphi)) = 1$ for all $\varphi \in \mathcal{M}$. (ii) If $H^{\infty}(\widetilde{R}) \supseteq H^{\infty}(R) \circ \pi$, then $\#(\tau^{-1}(\varphi_z)) = 2$ for all $z \in R$

Now we pose some problems related to the fiber over the distinguished homomorphism.

3.1. Suppose that $H^{\infty}(\widetilde{R}) \supseteq H^{\infty}(R) \circ \pi$. Determine $\#(\tau^{-1}(\varphi_0))$

The distinguished homomorphism was defined by $\varphi_0(f) = \lim_{x \nearrow} f(x)$ for $f \in H^{\infty}(R)$. In view of this, the following problem is posed.

3.2. Does $\lim_{x \nearrow 0} F(x_+)$ (or $\lim_{x \nearrow 0} F(x_-)$) exist for all $F \in H^{\infty}(\widetilde{R})$?

Note that $\lim_{x \nearrow 0} (F(x_+) + F(x_-))$ exists for all $F \in H^{\infty}(\widetilde{R})$ because $F(z_+) + F(z_-) \in H^{\infty}(R)$. Therefore, the existence of one of the limits in the above problem implies the existence of the other.

Set J = [-1/2, 0). Then Zalcman's result can be restated as $\overline{J} = J \cup \{\varphi_0\}$ in \mathcal{M} . Related to this statement, the following problem is posed.

3.3 Let $\pi^{-1}(J) = J^+ \cup J^-$. $(J^+ = \pi^{-1}(J) \cap \Delta_+, J^- = \pi^{-1}(J) \cap \Delta_-$.) Determine the closures $\overline{J}^+, \overline{J}^-$ and $\overline{J^+ \cup J^-}$ in $\widetilde{\mathcal{M}}$.

References

- [1] T.W. Gamelin and J. Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. (1970), 455–474.
- [2] M. Hayashi, Y. Kobayashi and M. Nakai, A uniqueness theorem and the Myrberg phenomenon for a Zalcman domain, J. Analyse. Math. 82 (2000), 267-283.

- [3] M. Hayashi and M. Nakai, Point separation by bounded analytic functions of a covering Riemann surface, Pacific J. Math. **134** (1988), 261–273.
- [4] M. Nakai, The corona problem on finitely sheeted covering surfaces, Nagoya Math. J. 92 (1983), 163-173.
- [5] L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241-270.