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In this note, we pose some problems which is related to the algebras of
bounded analytic functions on two-sheeted covering surfaces $(\tilde{R}, R, \pi)$ , where
the base domain $R$ is a Zalcman domain (or an $L$-domain in the terminology
of [5] $)$ . In [5], L. Zalcman showed some theorems related to the algebra
$H^{\infty}(R)$ of bounded analytic functions on a domain $R$ of infinite connectivity.
Especially, the distinguished homomorphism is of our interest. We summarize
Zalcman’s results in \S 1.

For the covering surface $(\tilde{R}, R, \pi)$ , the point separation problem was stud-
ied in [2] and [3]. We review this problem in \S 2.

1 Zalcman’s results

Let $\triangle$ be the open unit disc and $\Delta_{0}=\{0<|z|<1\}$ the punctured unit disc.
Let $\{c_{n}\}$ and $\{r_{n}\}$ be sequences satisfying:

$\{_{c_{n+1}+r_{n+1}<c_{n}-r_{n}}^{1>c_{1}>c_{2}>\cdot.>0}1>r_{1}>r_{2}>::>0’,$

’
$\lim_{narrow\infty}narrow\infty cn=0\lim r_{n}=0c_{1}+r_{1}<1.’$, (1)

These coditions simply say that closed discs $\{\overline{\Delta}_{n}\}$ are contained in $\triangle 0$ , are
mutually disjoint, and accumulate only at the origin. Consider the domain

$R= \Delta_{0}\backslash \bigcup_{n=1}^{\infty}\overline{\Delta}(c_{n}, r_{n})$ , (2)

which is a simplest example of bounded infinitely connected domains in the
complex plane C. We call a domain $R$ of the form (2) a Zalcman domain.

Each $f\in H^{\infty}(R)$ has nontangential boundary values at almost every point
of $\Gamma=\partial R$ . And the Cauchy integral formula holds;

$f(z)= \frac{1}{2\pi i}\int_{\Gamma}\frac{f(\zeta)}{\zeta-z}d\zeta$ , $z\in R$ .

Let $\mathcal{M}=\mathcal{M}(R)$ be the maximal ideal space of $H^{\infty}(R)$ , the set of all
non-zero multiplicative linear functionals on $H^{\infty}(R)$ . The topology of $\mathcal{M}$ is
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the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}_{-}^{*}$ topology which it inherits from $H^{\infty}(R)^{*}$ . With this topology, we
can regard the functions in $H^{\infty}(R)$ as continuous functions on $\mathcal{M}$ by setting
$f(\varphi)=\varphi(f)(\varphi\in \mathcal{M}, f\in H^{\infty}(R))$ . In particular, the coordinate function $z$

can be regarded as a continuous function on M. And we have $z(\mathcal{M})=\overline{R}$ .
The set $\mathcal{M}_{\zeta}=z^{-1}(\{\zeta\})$ is called the fiber over $\zeta(\zeta\in\overline{R})$ .

For $\zeta\in R,$ $\mathcal{M}_{\zeta}=\{\varphi_{\zeta}\}$ , where $\varphi_{\zeta}$ is the point evaluation homomorphism
$(\varphi_{\zeta}(f)=f(\zeta))$ . And, for $\zeta\in\Gamma\backslash \{0\},$ $\mathcal{M}_{\zeta}$ is homeomorphic to $\mathcal{M}_{1}(\triangle)$ . So,
we are interested in the fiber $\mathcal{M}_{0}$ .

Suppose that the sequeces $\{c_{n}\}$ and $\{r_{n}\}$ satisfy the condition

$\sum_{n=1}^{\infty}\frac{r_{n}}{c_{n}}<\infty$ (3)

in addition to (1). Then $d\zeta/\zeta$ is a finite measure on F. By Lebesgue’s
theorem, we have that $\lim_{x\nearrow 0}f(x)$ exists for all $f\in H^{\infty}(R)$ . Set $\varphi \mathrm{o}(f)=$

$\lim_{x\nearrow 0}f(x)$ . Then we have

(i) $\varphi 0\in \mathcal{M}_{0}$ ,

(ii) $\varphi_{0}$ does not lie in the Shilov boundary of $H^{\infty}(R)$ ,

(iii) $\varphi_{0}$ lies in the same Gleason part as $R$ .

The homomorphism $\varphi 0$ is called the distinguished homomorphism.

2 Covering surfaces

Let $(^{-}\triangle 0, \Delta 0, \pi)$ be the unlimited two-sheeted covering surface whose branch
points are those over $\{c_{n}\}$ (Fig. 1). In 1949, Myrberg pointed out that
$H^{\infty}(\overline{\Delta}_{0})=H^{\infty}(\Delta_{0})0\pi$ . This means that for any point $z\in\Delta_{0}\backslash \{c_{n}\}$ ,
the points of the fiber $\pi^{-1}(z)=\{z_{+}, z_{-}\}$ can not be separated by $H^{\infty}(\overline{\Delta}_{0})$ .

Myrberg’s proof goes as follows. Let $F\in H^{\infty}(\tilde{\Delta}_{0})$ , and consider the
function $f$ on $\Delta_{0}$ defined by $f(z)=(F(z_{+})-F(z_{-}))^{2}$ . Then $f\in H^{\infty}(\Delta_{0})$

and, by Riemann’s theorem, $f\in H^{\infty}(\triangle)$ . Since $f(c_{n})=0$ and $c_{n}$
— $0$ , we

have $f\equiv 0$ .
Restricting the base domain $\triangle 0$ of the covering surface to $R$ , and setting

$\tilde{R}=\pi^{-1}(R)$ , we obtain the two-sheeted smooth covering surface $(\overline{R}, R, \pi)$

(Fig. 2). In spite of complete lack of branch points, it is shown in [2] and [3]
that non-separating phenomenon may occur for $(\tilde{R}, R, \pi)$ depending on $\{c_{n}\}$

and $\{r_{n}\}$ . Roughly speaking,

(i) if $r_{n}arrow 0$ “rapidly”, then $H^{\infty}(\overline{R})=H^{\infty}(R)\circ\pi$ ,
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(ii) if $r_{n}arrow 0(‘ \mathrm{s}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{l}\mathrm{y}$”, then $H^{\infty}(\overline{R})_{\neq}^{\supset}H^{\infty}(R)0\pi$ .
(Unfortunately, the necessary and sufficient condition for $H^{\infty}(\tilde{R})=H^{\infty}(R)\circ$

$\pi$ is not known.)

$\}\overline{\Delta}_{0}$

1 $\pi$

$\Delta_{0}$

Figure 1: $(\triangle_{0}, \Delta_{0}, \pi)\sim$

$\}\overline{R}$

$\downarrow\pi$

$R$

Figure 2: $(\tilde{R}, R, \pi)$

3 Problems

The covering surface $(\tilde{R}, R, \pi)$ induces the covering space $(\overline{\mathcal{M}}, \mathcal{M}, \tau)$ , where
$\overline{\mathcal{M}}$ is the maximal ideal space of $H^{\infty}(\tilde{R})$ and the map $\tau$ is defined by

$\tau(\tilde{\varphi})(f)=\tilde{\varphi}(f\mathrm{o}\pi)$ , $\tilde{\varphi}\in\overline{\mathcal{M}},$ $f\in H^{\infty}$
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Let $\iota$ : $Rarrow \mathcal{M}$ and $\iota:\overline{R}\simarrow\overline{\mathcal{M}}$ be natural maps. Then we have the following
commutative diagram:

$\overline{R}arrow\overline{\iota}\overline{\mathcal{M}}$

$\pi\downarrow Rarrow\iota \mathcal{M}\downarrow\tau$

By Nakai’s theorem ([4]), we see that the map $\tau$ is surjective and the fiber
$\tau^{-1}(\varphi)$ over any point $\varphi\in \mathcal{M}$ consists of at most two points, i.e., the number
$\#(\tau^{-1}(\varphi))$ of points of the fiber $\tau^{-1}(\varphi)$ is 1 or 2 for all $\varphi\in \mathcal{M}$ .

Consider the problem to determine $\#(\tau^{-1}(\varphi))$ . The following partial an-
swer is trivial.

Proposition. (i) If $H^{\infty}(\overline{R})=H^{\infty}(R)0\pi$ , then $\#(\tau^{-1}(\varphi))=1$ for all $\varphi\in \mathcal{M}$ .
(ii) If $H^{\infty}(\overline{R})_{\neq}^{\supset}H^{\infty}(R)\mathit{0}\pi$ , then $\#(\tau^{-1}(\varphi_{z}))=2$ for all $z\in R$

Now we pose some problems related to the fiber over the distinguished
homomorphism.

3.1. Suppose that $H^{\infty}(\tilde{R})\supset_{H^{\infty}(R)\circ\pi}\neq$ . Determine $\#(\tau^{-1}(\varphi_{0}))$

The distinguished homomorphism was defined by $\varphi_{0}(f)=\lim_{x\nearrow}f(x)$ for
$f\in H^{\infty}(R)$ . In view of this, the following problem is posed.

3.2. Does $\lim_{x\nearrow 0}F(x_{+})$ (or $\lim_{x\nearrow 0}F$ ( $x$ -)) exist for all $F\in H^{\infty}(\overline{R})$ ?

Note that $\lim_{x,\nearrow 0}(F(x_{+})+F(x_{-}))$ exists for all $F\in H^{\infty}(\overline{R})$ because
$F(z_{+})+F(z_{-})\in H^{\infty}(R)$ . Therefore, the existence of one of the limits in
the above problem implies the existence of the other.

Set $J=[-1/2,0)$ . Then Zalcman’s result can be restated as $\overline{J}=J\cup\{\varphi_{0}\}$

in $\mathcal{M}$ . Related to this statement, the following problem is posed.

3.3 Let $\pi^{-1}(J)=J^{+}\cup J^{-}(J^{+}=\pi^{-1}\underline{(J})\cap\Delta_{+)}J^{-}=\pi^{-1}(J)\cap\Delta$ -.) Determine
the closures $\overline{J}^{+},\overline{J}^{-}$ and $J^{+}\cup J^{-}$ in M.
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