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ABSTRACT. In this article we survey some recent progress on the
boundedness and the compactness of composition operators on
Bergman or Hardy spaces on the unit ball or the unit polydisc.
Also, we raise several relevant $\mathrm{q}i\iota \mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ .

1. INTRODUCTION

For a smooth domain St $\subset \mathrm{C}^{n}$ , we use $H(\Omega)$ to denote the space of
holomorphic functions in $\Omega$ . Most of this article is confined to three
domains: the open unit disc in $\mathrm{C}$ ,

$D=\{z\in \mathrm{C} : |z|<1\}$ ,

the open unit ball in $\mathrm{C}^{n}$

$B^{n}= \{z=(z_{1}, \ldots, z_{n})\in \mathrm{C}^{n} : \sum_{j=1}^{n}|z_{j}|^{2}<1\}$

and the open unit polydisc in $\mathrm{C}^{n}$

$D^{n}=\{z= (z_{1}, \ldots , z_{n})\in \mathrm{C}^{n} : |z_{1}|<1, \ldots, |z_{n}|<1\}$ .

If we do not specify $\Omega$ , then $\Omega$ is either disc, ball or polydisc.

Bergman and Hardy spaces on the unit ball
For $0<p<\infty$ and a $>-1$ , the weighted Bergman space $A_{\alpha}^{p}(B^{n})$ is
the space of all $f\in H(B^{n})$ for which

$||f||_{A_{\alpha}^{\mathrm{p}}}^{p}= \int_{B^{n}}|f(z)|^{p}(1-|z|^{2})^{\alpha}dV(z)<\infty$,
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where $dV$ is normalized volume measure on $B^{n}$ . Also, for $0<p<\infty$ ,
the Hardy space $H^{p}(B^{n})$ is the space of all $g\in H(B^{n})$ for which

$||g||_{H^{p}}^{p}= \sup_{0<r<1}\int_{\partial B^{n}}|g(r()|^{p}d\sigma(\zeta)<\infty$

where $d\sigma$ is normalized surface measure on $\partial B^{n}$ . If $g\in H^{p}(B^{n})$ , then
the radial limit $g( \zeta)=\lim_{rarrow 1}-g(r\zeta)$ exists for almost all $\zeta\in\partial B^{n}$ and

$||g||_{H^{p}}^{p}= \int_{\partial B^{n}}|g(\zeta)|^{p}d\sigma(\zeta)$ .

Bergman and Hardy spaces on the unit Polydisc
For $0<p<\infty$ and a $>-1$ , the weighted Bergman space $A_{\alpha}^{p}(D^{n})$ is
the space of all $f\in H(D^{n})$ for which

$||f||_{A_{\alpha}^{p}}^{p}= \int_{D^{n}}|f(z)|^{p}(\prod_{i=1}^{n}(1-|z_{i}|^{2})^{\alpha})dV(z)<\infty_{\rangle}$

where $dV$ is normalized volume measure on $D^{n}$ . Also, for $0<p<\infty$ ,
the Hardy space $H^{p}(B^{n})$ is the space of all $g\in H(D^{n})$ for which

$||g||_{H^{p}}^{p}= \sup_{0<r<1}l_{n}|g(r()|^{p}d\sigma(()<\infty$

where $T^{n}=\{z\in \mathrm{C}^{n} : |z_{1}|=\cdots=|z_{n}|=1\}$ and $d\sigma$ is normalized
surface measure on $T^{n}$ . If $g\in H^{p}(D^{n})$ , then the radial limit $g(\zeta)=$

$\lim_{rarrow 1}-g(r\zeta)$ exists for almost all $\zeta\in T^{n}$ and

$||g||_{H^{p}}^{p}= \int_{T^{n}}|g(\zeta)|^{p}d\sigma(\zeta)$ .

We will often use the following notation to allow unified statements:
$A_{-1}^{p}(\Omega)=H^{p}(\Omega)$ .

Let $\varphi$ be a vector-valued holomorphic function from $\Omega^{m}\subset \mathrm{C}^{m}$ to
$\Omega^{n}\subset \mathrm{C}^{n}$ for some positive integers $n$ and $m$ . That is,

$\varphi=(\varphi_{1}, \ldots, \varphi_{n})$ : $\Omega^{m}arrow\Omega^{n}$

where each $\varphi_{j}$ is holomorphic on $\Omega^{m}$ . Then $\varphi$ induces the composition
operator $C_{\varphi}$ , defined on $H(\Omega^{n})$ by

$C_{\varphi}f=f\mathrm{o}\varphi$ .
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Boundedness and compactness for the disc
Composition operators on the function spaces on the unit disc have long
been studied. Many beautiful theories have been developed on the unit
disc case, but for several variables not much is known for corresponding
results to the disc case. Here, we introduce the boimdedness and the
compactness criteria on the unit disc.

It is a well known consequence of Littlewood’s Subordination Prin-
ciple that every composition operator $C_{\varphi}$ is bounded on each of the
spaces $A_{\alpha}^{p}(B^{1}),$ $p>0,$ $\alpha\geq-1$ ; see for example [CM].

Theorem 1.1. If $\varphi$ : D– $D$ is holomorphic, then

$C_{\varphi}$ : $A_{\alpha}^{p}(D)arrow A_{\alpha}^{p}(D)$

for all $p>0$ and $\alpha\geq-1$ .

This result does not extend to the case that $m=n>1$ , where even
such a simple function as $\varphi(z_{1}, z_{2})=(2z_{1}z_{2},0)$ is known to induce an
unbounded composition operator on $H^{p}(B^{2})$ ; see section 3.5 in [CM].
Also, for the polydisc case, $\varphi(z_{1}, z_{2})=(z_{1}, z_{1})$ is known to induce an
unbounded composition operator on $H^{\mathrm{p}}(D^{2})$ ; see [SZ2].

Also, the compactness criteria on Bergman or Hardy spaces is well-
known for the disc case. $\mathrm{B}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\iota 1$ space case is easier and the criteria
is the non-existence of the finite angular derivative. See [MS] or [CM]
for a proof.

Theorem 1.2. Let $\alpha>-1$ . $C_{\varphi}$ is compact on $A_{\alpha}^{p}(D)$ if and only if $\varphi$

has no finite angular derivative.

The Hardy space case is much more complicated and the criteria is
given in terms of the Nevanlinna counting function. The Nevanlinna
counting function is defined as

$N_{\varphi}(w)= \sum_{z_{j}\in\varphi^{-1}(w)}\log(1/|z_{j}|)$
.

For the following compactness criteria, see [Sh] or [CM].

Theorem 1.3. $C_{\varphi}$ is compact on $H^{p}(D)$ if and only if

$\lim_{|w|arrow 1}\frac{N_{\varphi}(w)}{\log(1/|w|)}=0$ .
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2. BOUNDEDNESS

In this section, we discuss the boundedness of a composition opera-
tor. More precisely, given $A_{\alpha}^{p}(\Omega)$ we are looking for a weighted space
$A_{\beta}^{\mathrm{p}}(\Omega)$ such that $C_{\varphi}$ : $\mathrm{A}_{\alpha}^{p}(\Omega)arrow A_{\beta}^{p}(\Omega)$ is bounded for any holomorphic
map $\varphi$ : $\Omegaarrow\Omega$ . The polydisc case is complete solved by Stessin and
$\mathrm{Z}\mathrm{h}\mathrm{u}([\mathrm{S}\mathrm{Z}2])$ , but the unit ball case is still open.

Ball
For the ball case, $\varphi(z_{1}, z_{2})=(2z_{1}z_{2},0)$ is known to induce an un-
bounded composition operator on $H^{p}(B^{2})$ ; see section 3.5 in [CM].
So, we need to find a natural target space. The following result says
$A_{n+\alpha-1}^{p}(B^{n})$ is a natural target space for $C_{\varphi}(A_{\alpha}^{p}(B^{n}))$ .

Theorem 2.1. Let $n$ and $m$ be positive integers, and let $\alpha\geq-1$ . Let
$\varphi$ be a vector-valued holomorphic function from $B^{m}$ to $B^{n}$ . Then $C_{\varphi}$

maps $A_{\alpha}^{p}(B^{n})$ boundedly into $A_{n+\alpha-1}^{p}(B^{n}’)$ :
$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha+n-1}^{p}(B^{m}’)$ .

Moreover, there is a constant $C$ independent of $\varphi$ such that

$||C_{\varphi}|| \leq C(\frac{1+|\varphi(0)|}{1-|\varphi(0)|})^{\frac{n,+\alpha+1}{p}}\ldots$

This result was proved for $\alpha=-1$ and $m=n$ by B. $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{C}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{r}$ and
P. Mercer in [MM], and subsequently extended to $\alpha>-1$ and $m=n$
by J. Cima and P. Mercer in [Cibfe]. For $m\neq n$ , this is proved in [KS1]
and [SZ1].

When $m=n=1$ the choice $\varphi(z)=z$ (which makes $C_{\varphi}$ the identity
operator) shows it is sharp in the sense that the target space can not
be replaced by a smaller Bergman or Hardy space. Moreover result is
sharp when either $(n, \alpha)=(1, -1)$ or $m=1$ . See, [KS1] for details.
For any other cases, we do not know whether the target space is sharp.
Here, we state the important simple $\mathrm{C}\epsilon\eta s\mathrm{e}$ of the optimal target space
problem.

Question 2.2. Is there holomorphic $\varphi$ : $B^{n}arrow B^{n}$ with the following
property ? :

$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})\neq’ A_{\alpha+n-1-\epsilon}^{p}(B^{n})$

for any $\epsilon>0$ .

In other words, is the target space in Theorem 2.1 sharp ? One might
expect that an inner function would be an example, but due to the
bad behavior of inner functions near the boundary it looks technically
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impossible to calculate Carleson measure. Carleson lneasure is hard to
calculate but for general symbol map we do not have any other tools
at hands to use. See [CM] for the Carleson measure characterization of
the boundedness of a composition operator from a Bergman(or Hardy)
space to another.

Polydisc
For the polydisc case, $\varphi(z_{1)}z_{2})=(z_{1}, z_{1})$ is known to induce an un-
bounded composition operator on $A_{\alpha}^{p}(D^{2})$ ; see [SZ2]. So, we need to
find a natural target space again like the ball case. The following re-
sult says $A_{n(\alpha+2)-2}^{p}(D^{n})$ is the natural target space for $C_{\varphi}(A_{\alpha}^{p}(D^{n}))$ .
See [SZ2] for a proof.

Theorem 2.3. Let $0<p$ and-l $\leq\alpha$ , then
$C_{\varphi}$ : $A_{\alpha}^{p}(D^{n})arrow A_{n(\alpha+2)-2}^{p}(D^{m})$ .

Moreover, the weight $n(\alpha+2)-2$ is the best possible.

Unlike the ball case, this theorem completely solves the optimal tar-
get space problem for the polydisc compositions.

3. COMPACTNESS

In this section, we discuss the compactness of a composition oper-
ator. In Section 2, given $A_{\alpha}^{\mathrm{p}}(\Omega)$ we found(or found a candidate for)
a weighted space $A_{\beta}^{p}(\Omega)$ such that $C_{\varphi}$ : $A_{\alpha}^{p}(\Omega)arrow A_{\beta}^{p}(\Omega)$ is bounded
for any holomorphic map $\varphi$ : $\Omegaarrow\Omega$ . In this section, we discuss the
compactness criteria for the operator $C_{\varphi}$ : $A_{\alpha}^{p}(\Omega)arrow A_{\beta}^{p}(\Omega)$ . As in
the boundedness case, the problem is complete solved by Stessin and
$\mathrm{Z}\mathrm{h}\mathrm{u}([\mathrm{S}\mathrm{Z}2])$ for the polydisc case, but the unit ball case is still open.

Ball
For the Bergman space on the unit ball, we have the following result
by Zhu. See [Z].

Theorem 3.1. Let $p>0$ and $\alpha>0$ . If $C_{\varphi}$ is bounded on $A_{\beta}^{q}(B^{n})$ for
some-l $<\beta<\alpha$ , then $C_{\varphi}$ is compact on $A_{\alpha}^{p}(B^{n})$ if and only if

$\lim_{|z|arrow 1^{-}}\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}=0$ .
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As is stated in [Z], the boundedness condition on $A_{\beta}^{q}(B^{n})$ is only
needed in the necessity part. I.e., if the operator is compact then the
above limit is zero(the non-existence of finite angular derivatives, by
Julia-Caratheodory theorem in $B^{n}$ ([CM]) $)$ for any holomorphic map $\varphi$ .
Note that the compactness criteria on the unit ball is very similar to the
disc case. On the other hand, the natural target space for $C_{\varphi}(A_{\alpha}^{p}(B^{n}))$

is $A_{\alpha+n-1}^{p}(B^{n})$ . So, it would be very interesting to know the compact-
ness criteria for this natural target space for the boundedness.

Question 3.2. Characterize the compactness of the operator
$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha+n-1}^{p}(B^{n})$ .

For Bergman spaces on the unit disc$(n=1)$ , the compactness criteria
of the $C_{\varphi}$ above is the non-existence of finite angular derivatives, The-
orem 1.2. For the unit ball case, Theorem 3.1 says if $C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow$

$A_{\alpha}^{p}(B^{n})$ is compact, then $\varphi$ has no finite angular derivative at any point
of $\partial B^{n}$ (also see, Propositon 1 of [Me]). It is proved in Proposition 2
of [Me] that $C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha+n-1}^{p}(B^{n})$ is always compact, but some
part of the proof seems to be unclear.

Polydisc
For the polydisc case, the compactness criteria for the natural target
space is completely solved by Stessin and $\mathrm{Z}\mathrm{h}\mathrm{u}([\mathrm{S}\mathrm{Z}2])$ .

Theorem 3.3. Let $0<p$ and-l $\leq\alpha$ , then
$C_{\varphi}$ : $A_{\alpha}^{\mathrm{p}}(D^{n})arrow A_{n(\alpha+2)-2}^{p}(D^{m})$

is compact if and only if
$\lim_{zarrow\partial D^{n}}\prod_{j=1}^{n}(\frac{1-|z_{j}|^{2}}{1-|\varphi_{j}(z)|^{2}})=0$ .

4. BOUNDEDNESS INTO THE SAME SPACE ON THE UNIT BALL

In the previous two chapters, we discussed the boundedness or the
compactness of the composition operators from one space to another.
In this section, we discuss the composition operator from one space on
the unit ball into itself.

There is a characterization using the Carleson measure for this case(see
[CM] $)$ , but the Carleson measure criteria is very hard to verify. For ex-
ample $C_{\varphi}$ : $A_{\alpha}^{p}(B^{2})arrow A_{\alpha+1/4}^{p}(B^{2})$ when $\varphi(z)=(z_{1}-z_{2}^{2}/2,0)$ , and the
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weight $(\alpha+1/4)$ is the best possible(see [KS2]). But this fact is very
hard to verify using the Carleson measure criteria. Actually, I do not
know a proof of this which uses the Carleson measure criteria.

Other than the Carleson measure characterization, there is a very
nice criteria by Wogen when the symbol map $\varphi$ is sufficiently smooth.
Let $\varphi$ : $B^{n}arrow B^{n}$ and we say that Condition $\mathrm{W}$ is satisfied if

$\partial_{\zeta\varphi_{\zeta}}(\eta)\neq|\partial_{\zeta}\perp\partial_{\zeta}\perp\varphi_{\zeta}(\eta)|$

for all $\zeta,$
$\eta$ with

$\varphi(\zeta)=\eta\in\partial B^{n}$ .

Here, $\varphi_{\zeta}(z)=<\varphi(z),$ $\zeta>$ . For a proof of the following theorem, due
to Wogen, see [CM] or [W1].

Theorem 4.1. Suppose $\varphi\in C^{3}(\overline{B^{n}})$ and let $0<p$ and-l $\leq\alpha$ , then
$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha}^{p}(B^{n})$

if and only if Condition $W$ is satisfied.
Wogen proved this when $\alpha=-1$ , i.e., for the Hardy space. This

is generalized to the strictly pseudo-convex domains by [MM] and for
the weighted Bergman spaces $(\alpha>-1)$ on the unit ball by [KS2]. It
is very interesting that there is a polynomial map $\varphi$ : $B^{2}arrow B^{2}$ which
is of degree 3 and one to one on $\overline{B^{2}}$ such that $C_{\varphi}$ is not bounded on
$H^{2}(B^{n})$ . See [W1] or [CM]. Meanwhile, we have the following result
by Wogen$([\mathrm{W}2])$ .

Theorem 4.2. If $\varphi$ : $B^{n}arrow B^{n}$ is biholomorphic; $\varphi\in C^{3}(\overline{B^{n}})$ and
$\varphi(B^{n})$ is convex, then $C_{\varphi}$ is bounded on $H^{2}(B^{n})$ .

Next, we discuss what happens when $C_{\varphi}$ is not bounded on Bergman
spaces, assuming the symbol is very smooth. In this case, there is a
jump phenomena as the following result shows. See [KS2] for a proof.

Theorem 4.3. Let $\alpha\geq-1_{f}p>0$ and $\varphi$ : $B^{n}arrow B^{n}$ be a holomorphic

function on $B^{n}$ of class $C^{4}$ on $\overline{B^{n}}$ . If $0<\epsilon<1/4$ and $C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow$

$A_{\alpha+\epsilon}^{p}(B^{n})$ , then $C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha}^{p}(B^{n})$ . Moreover, this fails for $\epsilon=$

$1/4$ .

One natural question rises from this result.

Question 4.4. Let $\varphi$ : $B^{n}arrow B^{n}$ be a holomorphic function on $B^{n}$

which is suff ciently smooth on $\overline{B^{\mathrm{n}}}$ . When $C_{\varphi}$ is not bounded on $H^{2}(B^{n})$ ,
what is the criteria for

$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha+1/4}^{p}(B^{n})$ ?
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For the compactness we do not have any result other than Theorem
3.1. For the Hardy space, even we do not have a result similar to
Theorem 3.1.

Question 4.5. Characterize the compactness of the operator
$C_{\varphi}$ : $A_{\alpha}^{p}(B^{n})arrow A_{\alpha}^{p}(B^{n})$ .

Note that when $\varphi\in C^{3}(\overline{B^{n}})$ , by Theorem 4.1 and Theorem 3.1 it
is easy to see that $C_{\varphi}$ : $A_{\alpha}^{\mathrm{p}}(B^{n})arrow A_{\alpha}^{p}(B^{n})$ is compact if and only if
$\overline{\varphi(B^{n})}\subset B^{n}$ .
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