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1. INTRODUCTION

This report is essentially a transcription of the talk given at the RIMS in Ky\={o}to.
We thus refer the reader to [19] and subsequent papers ([9], [20] and [21]) for details
and the complete proofs of the theorems mentioned in the text.
We describe in this work a geometric interpretation of Eichler’s Basis Problem for
Hilbert modular forms (cf. [6]) in terms of abelian varieties with real multiplication
in characteristic $p>0$ . Recall that a $g$-dimensional abelian variety $A$ is said to
have real multiplication (or RM for short) if it is equipped with the action of the
ring of integers $O_{L}$ of a totally real field $L$ of dimension $[L : \mathbb{Q}]=g$ . We start
with some sketchy, partly historical remarks with the motivational goal of provid-
ing the geometric picture in dimension one before addressing our generalization in
dimension $g$ .

Let $H$ be the class number of $B_{p,\infty}$ i.e., the number of left ideal classes of a
maximal order in the rational quaternion algebra $B_{\mathrm{p},\infty}$ ramified at $\mathrm{p}$ and $\infty$ . Let
$I_{1},I_{j},$ $1\leq i,j\leq H$ be left ideal classes representatives. Using the norm of the
quaternion algebra, we can define:

$Q_{ij}(x):=\mathrm{N}\mathrm{o}\mathrm{r}\mathrm{m}(x)/\mathrm{N}\mathrm{o}\mathrm{r}\mathrm{m}(I_{j}^{-1}I_{j})$ , for $x\in I_{j}^{-1}I_{\mathrm{t}}$ ,

i.e., a quadratic form of $1\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}p\backslash$

’ discriminant $p^{2}$ , with values in N. Since the quater-
nion algebra $B_{\mathrm{p},\infty}$ is definite (i.e., ramified at the infinite place), the representation
numbers $a(n):=|\{x|Q_{ij}(x)=n\}|$ are finite. The theta series

$\theta_{ij}(z):=\sum_{n\in \mathrm{N}}a(n)q^{n}$
, for $q=e^{2\pi\dot{*}z}$ ,

is a modular form of weight 2 for $\Gamma_{0}(p):=$ { $(_{cd}^{ab})\in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})|(_{cd}^{ab})=(_{0}^{*}:)$ mod $p$}
by the Poisson summation formula. In 1954, Eichler ([5]) showed that the $H(H-1)$
cusp forms

$\theta_{ij}(z)-\theta_{1j}(z)$ , $2\leq i\leq H,$ $1\leq j\leq H$,
span the vector space $S_{2}(\Gamma_{0}(\mathrm{p}))$ of cusp forms of weight 2 for the group $\Gamma_{0}(p)$ . Hecke
had originally conjectured in 1940 ([11, p. 884-885]) that $H-1$ differences of theta
series (say, obtained from fixing the index $j$ in the above formulation) would form a
basis of $S_{2}(\Gamma_{0}(p))$ , maybe inspired by the similarity of the explicit formulae for the
class number (of a maximal order) of $B_{\mathrm{p},\infty}$ and for the dimension of $S_{2}(\Gamma_{0}(p))$ (see
below Remark 1.2). In spite of this striking coincidence, Hecke’s conjecture holds
only for $p\leq 31$ , and $\mathrm{p}=41,47,59,71$ (cf. [23, Rmk. 2.16]). For further historical
remarks on the Basis Problem, we refer to [23] and the references therein.
We now introduce some geometric notions.

Deflnition 1.1. An elliptic curve $E$ over $\overline{\mathrm{F}}_{p}$ is supersingular if $E[\rho]\langle\overline{\mathrm{F}}_{p})=0$ .
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In 1941, Deuring ([3]) determined, for $E$ a supersingular elliptic curve over $\overline{\mathrm{F}}_{p}$ , that
$\mathrm{E}\mathrm{n}\mathrm{d}_{\overline{\mathrm{F}}_{\mathrm{p}}}(E)$ is a maximal order in the quaternion algebra $B_{p,\infty}$ over $\mathbb{Q}$ . It has been
pointed out to me by Prof. Ernst Kani that in [4], Deuring indeed discussed the
connection with Hecke’s conjecture, albeit supposing wrongly that the latter held.
Using the idea of $\mathfrak{U}$-transform of Serre as described in [28], one can show that there
is a bijection between left ideal classes $[I_{1}],$

$\ldots,$
$[I_{H}]$ of $\mathrm{E}\mathrm{n}\mathrm{d}_{\overline{\mathrm{F}}_{p}}(E)$ and isomorphism

classes of supersingular elliptic curves $E_{1},$ $\ldots,E_{H}$ over $\overline{\mathrm{F}}_{p}$ , given functorially by the
tensor map

$[I]-*[E\otimes_{\mathrm{E}\mathrm{n}\mathrm{d}(E)}I]$ .
Remark 1.2. $fi\vdash om$ a modern point of view, the most natural geometrical context
where supersingular elliptic curves arise is in the special fiber at $p$ of the elliptic
curve $X_{0}(p)$ , consisting of two projective lines intersecting at supersingular points.
By flatness of the model of $X_{0}(p)$ over Spec(Z), the number $|S|$ of supersingular
points on $X_{0}(p)_{\overline{\mathrm{F}}_{p}}$ and the genus $g$ of the Riemann surface $X_{0}(p)_{\mathbb{C}}$ are related by the
formula $|S|=g+1$ and once we identify modular forms and differential forrns on
$X_{0}(p)_{\mathbb{C}}$ , this $e\varphi lains$ the similitary of the formulas for the dimension of $S_{2}(\Gamma_{0}(p))$ ,
the number of supersingular points and thus the class number.

It is not too hard to check that the norm form of $\phi\in \mathrm{E}\mathrm{n}\mathrm{d}(E)$ coming from the
quaternion algebra corresponds to the degree of $\phi$ as an endomorphism. This holds
more generally for ideals $\mathrm{H}\mathrm{o}\mathrm{m}(E_{i}, E_{j})$ (i.e., isogenies $\phi$ : $E_{i}arrow E_{j}$ ), and thus the
above bijection can be strenghtened to include the quadratic module structure.
We are now in position to give the geometric interpretation of Eichler’s original
Basis Problem.

Proposition 1.3. The theta series coming ffom the modules
$\mathrm{H}\mathrm{o}\mathrm{m}(E_{1},E_{j})\underline{\simeq}I_{j}^{-1}I_{1}$

equipped with the quadmtic degree map span the rational vector space $S_{2}(\Gamma_{0}(p))$ .
It is worth pointing out that in 1982, Ohta ([22]) gave an explicit connection between
the geometry of $X_{0}(p)$ in characteristic $p$ and the basis problem modulo $p$ . Further
development of the geometric perspective can be found in Gross ([10]). As for
recent work on the Eichler Basis Problem from this point of view, we cite [7] that
establishes the integral version of the basis problem using deep methods and ideas
of Mazur and Ribet on modular curves.

The remainder of the paper deals with the generalization of the above geometric
interpretation to Hilbert modular forms using superspecial points (to be defined
shortly) on a Hilbert moduli space. This Hilbert moduli space $\mathrm{i}’\mathrm{s}$ an algebraic
stack parametrizing principally polarized abelian varieties with $\mathrm{R}\mathrm{M}$ . Note that this
moduli space is the natural generalization of $X_{0}(1)$ , not $X_{0}(p)$ . In particular, we
use very little information about the global geometry of the space (except maybe
when $p$ is ramified).

Terminology
We explain the meaning of two concepts that are identical for elliptic curves,

but decisively different for higher dimensional abelian varieties. Let $k$ be an alge-
braically closed field of characteristic $p>0$ .
Definition 1.4. $A$ abelian variety $A$ over $k$ of dimension $g$ is superspecial if and
only if $A\cong E^{g}$ , for $E$ some supersingular elliptic curve.
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In dimension $g\geq 2$ , there is a unique superspecial abelian variety by the following
theorem.

Theorem 1.5. (Deligne [25]) Let $E_{1},$ $E_{2},$ $E_{3},$ $E_{4}$ be supersingular elliptic curves
over $k=\overline{k}$ . Then $E_{1}‘ \mathrm{x}E_{2}\cong E_{3}\cross E_{4}$ .

In dimension one, we obtain the same objects if we replace the condition $A\underline{\simeq}$

$E^{\mathit{9}}$ by the condition that $A\sim E^{g}$ i.e., that $A$ is merely isogenous to $E^{\mathit{9}}$ . In
higher dimensions, this is false e.g., the isogeny class of $E^{\mathit{9}}$ contains infinitely many
isomorphism classes.

Deflnition 1.6. $A$ abelian variety $A$ over $k$ of dimension $g$ is supersingular if and
only if $A\sim E^{\mathit{9}}$ , for $E$ some supersingular elliptic cufve. $Eq\mathrm{t}\iota ivalenu_{y}$, all the slopes

of its Newton polygon are $\frac{1}{2}$ .
The same definitions apply of course to abelian varieties with additional structures.
In the RM case, the superspecial condition yields finitely many isomorphism classes
(in contrast with the supersingular condition). Also, it is a fact that the number of
polarizations of fixed degree (e.g., principal polarizations) on an abelian variety is
finite. In particular, the superspecial locus on the Hilbert moduli space i.e., the set
of points whose underlying abelian variety is superspecial, is finite. On the other
hand, the supersingular locus is positive dimensional for $g>1$ .

2. SUPERSPECIAL ORDERS IN $B_{\mathrm{p},\infty}\otimes L$

To fix notation, we recall some basic material about quaternion algebras.

2.1. Quaternion algebras. Let $L$ be any field.

Deflnition 2.1. A $q\mathrm{u}$atemion algebra $B$ over $L$ is a central, simple algebra of
rank 4 over $L$ .
If the char $L\neq 2$ , the quaternion algebra $B$ is given by a couple $(c, d)$ , where
$c,d\in L\backslash \{0\}$ , as the L–algebra of basis 1, $i,j,$ $k$ , where $i,j\in B,$ $k=ij$ , and

$i^{2}=c$, $j^{2}=d$ , $ij=-ji$ .
A quaternion algebra is equipped with a canonical involutive $L$-endomorphism $b\vdasharrow$

$\overline{b}$ cffied conjugation. The (reduced) norm of $B$ is defined as $n(b):=b\overline{b},$ $b\in B$ .
Any field $L$ admits over itself the quaternion algebra $M_{2}(L)$ . For local fields (dif-
ferent than C), there is only one more:

Theorem 2.2. Let $L\neq \mathbb{C}$ be a local field. Then there exists a unique quaternion
dinision algebra over $L$ , up to isomorphism.

Theorem 2.3. Let $B$ be a quaternion algebra over a number field L. Let $v$ be a
place $ofL$ . We denote $B_{v}:=B\otimes_{L}L_{v}.$ A place $v$ is ramified if $B_{v}$ is a division
algebra. If $B_{v}\underline{\simeq}M_{2}(L_{v})$ , we say the place $v$ is split.

Theorem 2.4. Let $L$ be a number field. The $number|\mathrm{R}\mathrm{a}\mathrm{m}(B)|$ of ramified places
is even. For any even set $S$ of places, there exists a unique quaternion algebra $B/L$

up to isomorphism such that Ram$(B)=S$ .
Example 2.5. The quaternion algebra $B_{p,\infty}$ over $\mathbb{Q}\dot{u}$ ramified only at $p$ and oo
$i.e.,$ $B_{p,\infty}\otimes \mathbb{Q}_{\ell}$ cr $M_{2}(\mathbb{Q}_{\ell})$ for $\ell\neq p,$ $\infty$ .
In general, we denote by $B_{\nu_{1},\cdots,\nu_{2m}}$ the quaternion algebra ramified at the places
$\nu_{1},$ $\cdots,$ $\nu_{2m}$ .
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2.2. Orders. Having recalled the rational theory of quaternion algebras, we now
describe a certain class of orders of $B_{p,\infty}\otimes L$ arising from superspecial abelian
varieties with real multiplication by $O_{L}$ , where $L$ is a totally real field.

Deflnition 2.6. Let $B$ be the quatemion algebra over $L_{\mathfrak{p}}$ . Let $K=K_{\mathfrak{p}}$ be a
quadratic extension of $L_{\mathfrak{p}}$ contained in B. Set

$R_{v}(K)=O_{K}+P_{B}^{v-1}$ ,

for $P_{B}$ the unique maximal ideal in $O_{B}$ and $v=1,2,$ $\ldots$

Deflnition 2.7. An order $O$ is superspecial of level $\mathcal{P}$ dividing $p,$ $P= \prod_{i}\mathfrak{p}_{i}^{a_{i}}$ .
$\prod_{j}\mathrm{q}_{j}^{\beta_{j}}$ , for $\mathfrak{p}\in Ram(B_{p,\infty}\otimes L),$ $\mathrm{q}_{j}\not\in Ram(B_{p,\infty}\otimes L)$, if:

$\bullet$ for $\alpha_{i}\geq 1$ , there is an unramified quadratic extension $O_{K}$ of $O_{L}$ , such that
$o_{\mathfrak{p}:}=R_{\alpha_{i}}(K)$ ;

$\bullet$ for $\beta_{j}>1$ , if $f(\mathrm{q}_{\mathrm{j}}/p)$ is even, $O_{q;}$ contains a split quadratic extension; if
$f(\mathfrak{g}_{j}/p)$ is odd, there is an unramaified quadratic extension $O_{K}$ such that

$O_{\mathrm{q}_{\dot{f}}}\cong\{,$ $\alpha,\beta\in O_{K}\}$ , for $\sigma$ the involution on $K,$
$\pi_{\mathrm{B}j}$ a

uniformizer in $O\iota_{\mathrm{r}_{j}}$ ;
$\bullet$ for any other finite prime $l,$ $O_{\mathfrak{l}}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}\mathrm{S}$ a split extension (i.e., $O_{L_{1}}\oplus O_{L_{\mathrm{t}}}$ ).

We will explain later on how superspecial orders arise as endomorphism orders
$\mathrm{E}\mathrm{n}\mathrm{d}_{O_{L}}(A)$ of superspecial abelian varieties $A$ with $\mathrm{B}\mathrm{M}$ .

Example 2.8. Let $p$ be unramified. Then a superspecial order of level $p$ is an
Eichler order $i.e.$ , the intersection of two marimal orders (not necessarily distinct).
This follows from the facts that $p$ is squarefree and being Eichler is a local property.

Remark 2.9. (For experts) In general, superspecid orders are Bass orders, but
they are not special orders (cf. [13], [14]) $e.g.$ , the superspecial order of level $\mathfrak{p}^{2}$ for
$g=2$ is not special.

3. THE BASIS PROBLEM FOR HILBERT MODULAR FORMS

We explain the derivation of a particular case of the Basis Problem for Hilbert
modular forms from the Jacquet-Langlands correspondence i.e., we show that theta
series coming from ideaJs of an Eichler order of level $p$ in $B_{p,\infty}\otimes L$ span th. $\mathrm{e}$ space
of Hilbert modular newforms of weight two for $\Gamma_{0}(p)$ (and trivial character).
The Jacquet-Langlands correspondence ([17, Thm. 16.1]) establishes, for any to-
tally definite quatemion algebra $B$ , a Hecke-equivariant injection $\pi-\rangle$ $JL(\pi)$ from
the set of classes of automorphic representations $\pi=\otimes_{v}\pi_{v}$ of $G_{B}(\mathrm{A})=(B\otimes_{L}\mathrm{A})^{\mathrm{x}}$

with the set of classes of automorphic representations of GL2 (A). The image of the
map is the set of cuspidal automorphic representations of $\mathrm{G}\mathrm{L}_{2}(\mathrm{A})$ that are discrete
series (i.e., special or supercuspidal at a finite place) at all ramified places of $B$ .
Imposing that the representation is of the discrete series at infinite places means
that it is holomorphic of weight $k\geq 2$ . The key fact that we use is that the repre-
sentation $\pi_{\mathfrak{p}}$ corresponding to a newform at a prime $\mathfrak{p}$ whose exponent is odd in the
level is necessarily in the discrete series, since the conductor at $\mathfrak{p}$ is not a square (see
[8, Proof of Prop. 5.21, p. 95; Table 4.20, p. 73] $)$ . Recall that a prime $\mathfrak{p}$ dividing
$p$ is ramified in $B_{p,\infty}\otimes L$ if and only if $[L_{\mathfrak{p}} : \mathbb{Q}_{p}]$ is odd. It is necessary for this
to happen that the exponent a of $\mathfrak{p}^{\alpha}$ occuring in the prime decomposition of $p$ is
odd. Thus for level exactly $p$ , only odd exponents occur for ramified primes, thence
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the local representation $\pi_{\mathfrak{p}}$ of any cuspidal automorphic representation of $\mathrm{G}\mathrm{L}_{2}(\mathrm{A})$

of level $p$ occurs in the discrete series at $\mathfrak{p}$ for any ramified place $p$ of $B_{p,\infty}\otimes L$ .
In brief, in the case of level exactly equal to $p$ , the Jacquet-Langlands correspon-
dence implies that all cuspidal automorphic representations of $\mathrm{G}\mathrm{L}_{2}(\mathrm{A})$ arise as
quaternionic representations on the adelic group associated to the quaternion alge-
bra $B_{p,\infty}\otimes L$ .
Recall that for $p$ unramified, superspecial orders of level $p$ are Eichler orders. We
derive from the above representation-theoretic argument that the corresponding
space of Hilbert newforms of weight 2 and level $(p)$ is spanned by theta series by
translating in classical terms the fact that the Jacquet-Langlands correspondence
is a theta correspondence (cf. also [12], [8]).

Theorem 3.1. Let $p$ unramified. Let $S_{2}(\Gamma_{0}(p), 1)^{n\epsilon w}$ be the subspace of new-
forms of the vector space of Hilbert modular forms of weight two, level $\mathrm{p}$ . Then
$S_{2}(\Gamma_{0}(p), 1)^{\mathrm{n}\epsilon w}$ is spanned by theta series coming from left ideals of an Eichler
order of level $p$ in the quatemion algebra $B_{p,\infty}\otimes L$ .
For more general orders, the Jacquet-Langlands correspondence imposes a non-
trivial hypothesis on the exponents arising in the level.
$\mathrm{c}_{0_{\dot{\mathfrak{U}}^{\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}}}}3.2$ . Let $pO_{L}=\mathfrak{p}^{g}$ . Let $0\leq j\leq[g/2]$ . If $[L:\mathbb{Q}]$ is odd, suppose that
$g-j$ is odd. Then the theta series attached to the (locally principal) left ideals of a
superspecial order of level $\mathrm{p}^{g-j}$ span the vector space of Hilbert modular newforms
of level $\mathfrak{p}^{g-j}$ .
Remark 3.3. For $g=2$ and level $\mathfrak{p}$ , Conjecture 3.2 holds since the underlying
order is also an Eichler order.

4. GEOMETRIC INTERPRETATION

In this section, we explain the origin of the concept of a superspecial order (cf.
Definition 2.7) and we give a geometric interpretation of the quadratic modules
giving rise to theta series. Note that the result referred to in the title of this paper
is proved under the hypothesis that the narrow class number $h^{+}(L)=1$ .

Theorem 4.1. For any superspecial abelian variety $A$ with $RM$ by $O_{L}$ , the endo-
morphism order $\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A)$ is a superspecial order.

Proof. (Sketch for $p$ unramified)
Let $A$ be an abelian variety defined over $\overline{\mathrm{F}}_{\mathrm{p}}$ . For a rational prime $\ell\neq p$ , we let

$T_{\ell}(A)= \lim_{arrow}A[\ell^{n}]$ i.e., the Tate module at $\ell$ . At $\ell=p$, let $\mathrm{D}(A)$ be the Dieudonn\’e

module (cf. Section 5 for details). Then we have the presumably well-known RM
version of Tate’s theorem (where the finite field $k$ is such that $A_{1},$ $\mathrm{A}_{2}$ and all $O_{L}-$

homomorphisms are defined over it):

Theorem 4.2. Let $A_{1},$ $A_{2}$ be two supersingular abelian varieties with $RM$ by $O_{L}$ .
Then for $\ell\neq p$ ,

$\mathrm{H}\mathrm{o}\mathrm{m}_{O_{L},k}(A_{1},A_{2})\otimes \mathbb{Z}_{\ell}$ $\underline{\simeq}\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{O}_{\mathrm{L}}Q}\mathrm{z}_{p}(T_{\ell}(A_{1}),T_{t}(A_{2}))$

$\underline{\simeq}_{M_{2}(O_{L}\otimes \mathbb{Z}_{t})}$ ,
$\mathrm{H}\mathrm{o}\mathrm{m}_{O_{\mathrm{L}},k}(A_{1}, A_{2})\otimes \mathbb{Z}_{\mathrm{p}}$ $\cong \mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}\mathfrak{H}W(k)[F,V]}(\mathrm{D}(A_{2}), \mathrm{D}(A_{1}))$ ,

where the homomorphisms respect the $O_{L}$ -structures.
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Since local deformation theory decomposes according to primes, $p$ unramified, im-
plies there is a unique isomorphism class of Dieudonn\’e module $\mathrm{D}$ with RM by
reduction to the inert case. We can thus pick any point that we like to compute
the discriminant of the order e.g., the superspecial abelian variety $E\otimes_{\mathrm{Z}}O_{L}$ . Since

$\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(E\otimes \mathrm{z}\mathcal{O}_{L})=\mathrm{E}\mathrm{n}\mathrm{d}(E)\otimes_{\mathrm{Z}}\mathcal{O}_{L}$ ,

we find that it is $p\mathcal{O}_{L}$ , since the discriminant of the order End$(E)$ is $p$ , since it is
maximal in $B_{p,\infty}$ .

$\square$

Theorem 4.3. Let $h^{+}(L)=1$ . Fix a (principally polarized) superspecial abdian
variety $A_{0}$ with $RM$ by $O_{L}$ , with Dieudonn\’e module $\mathrm{D}(A_{0})$ . There $\dot{\mathrm{u}}$ a bijection
between principdly polarized superspecial abelian varieties $A$ with $RM$ by $O_{L}$ such
that $\mathrm{D}(A)\cong \mathrm{D}(A_{0})$ (as $O_{L}\otimes W(k)$ -modules) and locally principal lefl ideal classes
of the order $\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A_{0})$ .
This bijection essentially follows from the tensor construction matching to an ideal
$I$ the abelian variety $A_{0}\otimes_{\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A_{0})}I$ . In particular, the modules $\mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}}(A_{i}, A_{0})$ ,
as $i$ varies, run through all left ideal classes of $\mathrm{E}\mathrm{n}\mathrm{d}_{O_{L}}(A_{0})$ .

Remark 4.4. (Class and type numbers) For $p\mathrm{u}nramified_{J}$ since there is a unique
superspecial Dieudonn\’e module, the class number of a superspecial order of level
$p$ is the number of superspecial points on the Hilbert moduli space. Given that
superspecial abelian varieties with RM are also defined over $\mathrm{F}_{p^{2}}$ , the geometric
inte$\eta retation$ of the type number can be studied in a way similar to [16], where
principally polarized superspecial abelian varieties were considered ($i.e.$ , the Siegel
$case)_{i}$ see [9].

Theorem 4.5. Let $h^{+}(L)=1$ . Let $P=pifp$ is unramified in $O_{L}$ and $P\in$

$\{\mathfrak{p}^{g}, \ldots,\mathfrak{p}^{g-[g/2]}\}$ if $p=\mathfrak{p}^{g}$ is totally ramified in $O_{L}$ . Then for any superspecial
order $O$ of level $\mathcal{P}$ , there $e$ vists a superspecial abelian variety $A$ with $RM$ by $O_{L}$

such that End$o_{L}(A)$ or $O$ .

Proof. (Sketch) This essentially follows from the bijection between $\mathrm{P}\mathfrak{j}^{\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}}$ po-
larized superspecial abelian varieties with RM and projective, left ideal classes of
a superspecial order in $B_{p,\infty}\otimes L$ . Indeed, all superspecial orders of $\mathrm{f}\mathrm{i}\backslash$xed level are
locally isomorphic, and the set of right orders of a complete set of representatives
of left, projective ideal classes of any superspecial order of level $\mathcal{P}$ represents

$\mathrm{f}\mathrm{f}\mathrm{i}\square$

isomorphism classes of superspecial orders of level $P$ .

Example 4.6. Let $g=2$ . Let $A$ be a superspecial abelian surface with $RM$ by $O_{L}$ .

So far, we provided a geometric interpretation of projective modules of superspecial
orders as modules of $O_{L}$-isogenies $\mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}}(A_{i},A_{j})$ . We now explain how these latter
modules can be also be given a quadratic module structure in a natural way by
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using the geometry of the abelian varieties. For $(\mathrm{A}_{1}, \lambda_{1}),$ $(A_{2}, \lambda_{2})$ , two principally
polarized superspecial abelian varieties and $\phi\in \mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}}(A_{1}, A_{2})$ , define

$A_{2}^{t}arrow^{\lambda_{2}}A_{2}$

$||\phi||\mathit{0}_{L}=||\phi||\mathit{0}_{L}:=\lambda_{1}^{-1}0\phi^{t}\circ\lambda_{2}\circ\phi$, $\phi^{\mathrm{t}}\downarrow$ $\uparrow\phi$

$A_{1}^{t}arrow\lambda_{1}^{-1}A_{1}$

The application $||-||\mathit{0}_{L}$ is an $O_{L}$-integral quadratic form:
$||-||\mathit{0}_{L}$ : $\mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}}(A_{1}, A_{2})arrow \mathrm{E}\mathrm{n}\mathrm{d}_{O_{L}}(A_{1})^{R=1}=O_{L}$ .

The only non-trivial fact that needs to be checked is that it indeed takes values in
$O_{L}$ . This holds because the formula $\lambda_{1}^{-1}\circ\phi^{t}\circ$ A2 $\circ\emptyset$ is stable under the Rosati
involution, which is simply the canonical involution of the totally definite quaternion
algebra $B_{p,\infty}\otimes L$ .
The theta series

$\Theta(\mathrm{H}\mathrm{o}\mathrm{m}_{O_{L}}(A_{1},A_{2})):=$ $\sum$ $a_{\nu}q^{\nu}$ ,
$O_{L}\ni\nu\gg 0$ or $\nu=0$

where $a_{\nu}=|$ { $\phi\in \mathrm{H}\mathrm{o}\mathrm{m}o_{L}(A_{1},$ $A_{2})$ such that $||\phi||\mathit{0}_{L}=\nu$ } $|$ , is the $q$-expansion of a
Hilbert modular form of parallel weight 2 for the group $\Gamma_{0}((p))\subset \mathrm{S}\mathrm{L}_{2}(O_{L})$ .
We can now state the geometric interpretation of Eichler’s Basis Problem for Hilbert
modular forms:

Theorem 4.7. Let $h^{+}(L)=1$ , and $p$ be unramified. Let ($A_{i},$
$\iota_{i}$ , Ai) run through

the superspecial points on the Hilbert moduli space. The theta series coming from
the quadra$tic$ modules

$(\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{o}_{\mathrm{L}}(A_{\mathfrak{i}}, A_{j}),$ $||-||\mathit{0}_{L})$

span the vector space $S_{2}^{new}(\Gamma_{0}((p)))$ of Hilbert modular newforms.
Remark 4.8. $fi\vdash om$ the theory of newforms, it follows that if $S_{2}^{new}(\Gamma_{0}((p)))$ is
spanned by theta series of level $p$ , then $S_{2}(\Gamma_{0}((p)))$ is spanned by theta series of
level dividing $p$ and their tmnslates. Since we used up all superspecial points on
the Hilbert moduli space, a geometric origin for those extra theta series has to be
found elsewhere. Indeed, we can cook up suitable (superspecial) points with bigger
endomorphism orders (e.g., for $p$ inert, $g=2$, the quaternion dgebra $B_{\infty_{1},\infty 2}$

is unramified at any finite prime: in particular, it $\dot{u}$ thus possible to construct
modular foms of level 1 from abelian vaneties in characteristic $p$), albeit these
exotic abelian varieties cannot be found on any familiar moduli space; see [9]. In the
other direction, adding prime-to-p levd structure allows to increase correspondingly
the level of the endomorphism order.

5. CLASSIFICATION UP TO ISOMORPHISM OF DIEUDONN\’E MODULES OVER
TOTALLY RAMIFIED WITT VECTORS

Let $A$ be a superspecial abelian variety with RM by $O_{L}$ over a perfect field $k$ .
When $p$ is ramified in $O_{L}$ , it is not true that the order $\mathrm{E}\mathrm{n}\mathrm{d}_{O_{L}}(A)$ always has level
$p$ . This is related t\‘o the number of isomorphism classes of superspecial Dieudonn\’e
modules with RM being in general greater than one (in contrast with the unramified
case, cf. the proof of Theorem 4.1). Dieudonn\’e modules arise in geometry in a way
relevant to us as the first crystalline cohomology group $H_{cris}^{1}(A/W(k))$ of an abelian
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variety $A/k$ . Since this construction is functorial, additional structure (such as real
multiplication) carry over from $A$ to the Dieudonn\’e module. In this section, we
thus sketch the classification up to isomorphism of Dieudonn\’e modules over totally
ramified Witt vectors (our proof in [19] follows Manin ([18]) mutatis mutandis).

Let $k$ be algebraically closed, and let 3 be a totally ramified extension of $\mathbb{Q}_{\mathrm{p}}$ . The
Witt vectors $W(k)$ is a complete discrete valuation ring in characteristic zero with
residue field $k$ i.e., $W(k)/pW(k)$ or $k$ . Let $K$ be the fraction field of $W(k)$ . Denote
by $K_{\}:=K\cdot \mathfrak{F}$ the compositum of $K$ and 3, with ring of integers $W_{\mathfrak{F}}$ . The main
tools that appear in Manin’s classification are two finiteness theorems and some
algebro-geometric classifying spaces. The key idea behind the finiteness theorems
is the concept of a special module (due to Remark 5.6, we refer the reader to [19,
Def. 1.3.11] for the definition); a crucial fact is that every Dieudonn\’e module has
a unique maximal special submodule, of finite colength.

Definition 5.1. A Dieudonn\’e module $\mathrm{D}$ is a left $W\mathrm{f}\mathrm{f}[F,$
$V_{\mathrm{I}}^{\rceil}$ -module free of finite

rank over $W_{\mathfrak{F}}$ with the condition that $\mathrm{D}/F\mathrm{D}$ has finite length.

Deflnition 5.2. Two Dieudonn\’e modules $\mathrm{D}_{1},$ $\mathrm{D}_{2}$ are isogenous if there is an injec-
tive homomorphism $\phi$ : $\mathrm{D}_{1}arrow \mathrm{D}_{2}$ such that $\mathrm{D}_{2}/\phi(\mathrm{D}_{1})$ has finite length over $W_{S}$ . If

$\mathrm{D}_{1}$ is isogenous to $\mathrm{D}_{2}$ , we write: $\mathrm{D}_{1}\sim \mathrm{D}_{2}$ .

Theorem 5.3. (First Finiteness Theorem) Let $\mathrm{D}$ be a Dieudonn\’e module. There
$e$ vists only a finite number of non-isomorphic special modules isogenous to D.

Theorem 5.4. (Second Finiteness Theorem) Let $\mathrm{D}$ be a Dieudonn\’e module. The
module $\mathrm{D}$ has a maximal special submodule $\mathrm{D}_{0}$ . The length $[\mathrm{D} : \mathrm{D}_{0}]$ is bounded
uniforrnly in the isogeny class of D.

Theorem 5.5. (Classification Theorem) Let $k$ be an algebraically dosed field. $A$

Dieudonn\’e module $\mathrm{D}$ is determined by the following collection of invariants:
$\bullet$ the Newton polygon slopes of $\mathrm{D}$;
$\bullet$ the maximal special submodule $\mathrm{D}_{0}\subset \mathrm{D}$ (parametrized by discrete invari-

ants);
$\bullet$ a $\Gamma(\mathrm{D}_{0}, H)$ -orbit of a point corresponding to $\mathrm{D}$ in a constructible algebraic

set $A(\mathrm{D}_{0}, H)$ , where $H$ is a nonnegative integer that depends only on the
slopes; $A(\mathrm{D}_{0},H)$ and $\Gamma(\mathrm{D}_{0}, H)$ depend only on $\mathrm{D}_{0}$ and $H$ , and $\Gamma(\mathrm{D}_{0}, H)$ is
$a$ finite group.

Two Dieudonn\’e modules are isomorp$hic$ if and only if all these invariants coin-
cide.

Recall that a supersingular Dieudonn\’e module is a Dieudonn\’e module whose
Newton polygon slopes are $\frac{1}{2}$ .
Remark 5.6. A supersingular Dieudonn\’e module is superspecial if and only if it
is special.

Corollary 5.7. The number of isomorphism classes of superspecial Dieudonn\’e
modules with $RM$ by $O_{L}$ of rank 2 over a totally ramified prime $p=\mathfrak{p}^{\mathit{9}}$ is: $[_{2}^{\mathrm{g}}]+1$ .

Remark 5.8. This explains why in Theorem 4.5, the levels only take values in the
set $\{\mathfrak{p}^{g}, \ldots,\mathfrak{p}^{g-[g/2]}\}$ when $p$ is totally ramified.
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5.1. Application ofManin’s theory to a truncation $\mathrm{c}\mathrm{o}_{\mathrm{R}}|\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ ofTraverso.
The first application deals only with the case $\mathfrak{F}=\mathbb{Q}_{p}$ i.e., Manin’s original version.

Conjecture 5.9. ([27, Conj. 4]) Let $k$ be an algebraically closed field of character-
istic $p$ , and let $g\in \mathrm{N}$ . Suppose that $\mathrm{D}$ is a Dieudonn\’e module of height $2g$ . Then $\mathrm{D}$

is uniquely determined up to isomorphism by $\mathrm{D}/p^{g}\mathrm{D}i.e.$ , its truncation modulo $p^{g}$ .

Theorem 5.10. Raverso’s conjecture holds for $s$upersingular Dieudonne modules.

See [21] for a proof of this result and a principally polarized version (with the same
bound).

5.2. Application to Hilbert moduli spaces over totally ramifled primes.
In this section, we explain that the stratification of the Hilbert moduli space over a
totally ramified prime $p=\mathfrak{p}^{\mathit{9}}$ introduced by Andreatta-Goren in [1] coincides with
the stratification suggested by the decomposition of the moduli spaces \‘a la Manin,
at least on the supersingular stratum.
We recall briefly the definition of the stratification of [1]. Let $p$ be a totally ramified
prime. Let $A/k$ be a polarized abelian variety with $\mathrm{R}\mathrm{M}$, defined over a field $k$ of
characteristic $p$ . Fix an isomorphism $O_{L}\otimes_{\mathrm{Z}}k\underline{\simeq}k[T]/(T^{\mathit{9}})$ . One knows that $H_{dR}^{1}(A)$

is a free $k[T]/(T^{\mathit{9}})$ -module of rank 2, and there are two generators $\alpha$ and $\beta$ such
that:

$H^{1}(A, O_{A})=(T^{i})\alpha+(T^{j})\beta,$ $i\geq j,i+j=g$ .
The index $j=j(A)$ is called the singularity index. For perspective, recall the short
exact sequence:

$\mathrm{O}arrow H^{0}(A, \Omega_{A}^{1})arrow H_{dR}^{1}(A)arrow H^{1}(A, O_{A})arrow \mathrm{O}$.
These modules are Dieudonn\’e modules of group schemes, and we rewrite this exact
sequence as:

$0arrow(k, \mathrm{R}^{-1})\otimes_{k}\mathrm{D}(\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{R}))arrow \mathrm{D}(A[p])$ — $\mathrm{D}(\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{V}\mathrm{e}\mathrm{r}))arrow \mathrm{O}$ .

The slope $n=n(A)$ is defined by the relation $j(A)+n(A)=a(A)$ , where $a(A)$

is the $a$-number of the abelian variety. The subsets $\mathfrak{U}_{(j,n)}$ parameterizing abelian
varieties with singularity index $j$ and slope $n$ are quasi-affine, locally closed and
form a stratification ([1, Thm. 10.1], [2, \S 6.1]). Note that for any Dieudonn\’e module
$\mathrm{D}$ with RM of rank 2, we can define abstractly $j(\mathrm{D})$ and $n(\mathrm{D})$ without any reference
to abelian varieties e.g., $j(\mathrm{D})=j$ is the integer such that

$T^{i}\alpha+T^{j}\beta=\mathrm{K}\mathrm{e}\mathrm{r}(V:\mathrm{D}/p\mathrm{D}arrow \mathrm{D}/p\mathrm{D}),$ $i\geq j$ ,

for $\alpha,\beta$ some generators of D. The slope is $n(\mathrm{D}):=a(\mathrm{D})-j(\mathrm{D})$ .
Consider the supersingular Newton stratum. It decomposes in $(([g/2]+1)\cdot$

$([g/2]+2)/2)$ strata $\{\mathfrak{U}_{(j,n)}\}_{j,n}$ indexed by the type $(j,n)$ , for $n/g\geq 1/2$ . For a
fixed superspecial module $\mathrm{D}_{c}$ , denote by $\mathfrak{M}_{c}^{d}$ the component classifying modules of
index $(0, d)$ over the special module $\mathrm{D}_{c}$ .
Conjecture 5.11. Define $\mathfrak{R}_{c}^{d}$ as the strata on the Hilbert moduli space such that for
$\underline{A}\in\Re_{c}^{d}$ , the Dieudonn\’e module $\mathrm{D}(\underline{A})$ of $\underline{A}$ belongs to $\mathfrak{M}_{c}^{d}$ . Then the stratification
induced by the components $\mathfrak{M}_{c}^{d}$ coincide with the slope stratification $\{\mathfrak{U}_{(\mathrm{j},n)}\}_{j,n}i.e.$ ,

$\Re_{c}^{d}=\mathfrak{M}_{(c-d,g-c)}$ .
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Theorem 5.12. ([19, Section 1.6]) Let $\mathrm{D}$ be a Dieudonn\’e module, with $\mathrm{D}_{c}$ its
maximal $(super)special$ submodule.

$\bullet$ The slope $n(\mathrm{D})$ of $\mathrm{D}$ depends only on the maximal special submodule $\mathrm{D}_{c}$ .
$\bullet$ The a-number of $\mathrm{D}$ depends only on the index $d(\mathrm{D}_{c}, \mathrm{D})$ of $\mathrm{D}$ over its maximal

special module $\mathrm{D}_{c}$ :
$a(\mathrm{D})=a(\mathrm{D}_{c})-d(\mathrm{D}_{c}, \mathrm{D})$ .

Remark 5.13. In view of Remark 5.6, Theorem 5.12 is equivalent to the statement
of Conjecture 5.11 for the supersingular stratum.

6. OPEN QUESTION

Representation-theoretic statements may in propitious circumstances be given
a geometric version in terms of Shimura varieties e.g., the Ribet Exact Sequence
([24, Thm. 4.1]) can be viewed as a geometric Jacquet-Lt.glands correspondence,

$\mathrm{c}\mathrm{o}\mathrm{m}\dot{\mathrm{p}}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}$ Hecke modules supported on the supersingular loci on one hand of a
Shimura curve (associated to the quaternion algebra $B_{\mathrm{p}q}$ ramified at $p$ and $q$ only)
and on the other hand of the modular curve $X_{0}(pq)$ (associated to $\mathrm{G}\mathrm{L}_{2}$ ). Work
in progress of the author concerns the generalization of that result of Ribet to
higher-dimensional (quaternionic) Shimura varieties.
Besides the Jacquet-Langlands correspondence, the most compelling theme to us
is base change. In its simplest terms, it boils down to the following question:

Question 6.1. Is there a natural geometric construction of the $Do|$-Naganuma lift
in terms of Hilbert modular surfaces in characteristic $p^{\rho}$

In particular, the construction sketched in this paper provides only modular forms
with trivial quadratic character. Note that in characteristic zero, this question has
been studied by Hirzebruch and Zagier ([15]).
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