The Tamagawa Number Conjecture of Bloch-Kato for Dirichlet Motives at the prime 2

板倉 兼介 (Kensuke Itakura) *
東京大学大学院数理科学研究科
(The Department of Mathematical Sciences, The University of Tokyo)

kita kura@ms.u-tokyo.ac.jp

This survey article is oriented to introducing the Tamagawa number conjecture along the line of the author's talk in Kyoto 2005, December, with special emphasis on the cohomological side.

It is commonly believed that the Tamagawa Number Conjecture and the Iwasawa Main Conjecture in the sense of Kato are incarnations of the same mathematical content, though the author only explains the Tamagawa number conjecture side in this article. Note that the conjecture exposed in this article is non-equivariant i.e. original one by Bloch-Kato, and the one generalized by Fontaine-Perrin-Riou.

The author wants to apologize that he gave the talk under too much assumption on the subject, so he prepared this article for the beginners on the conjecture. When writing this article, he learned a lot from the beautiful survey article due to O. Venjakob [V]. The author thanks K. Nakamura for pointing out many mistakes in the previous version of this article.

1 Notations and Definitions.

1.1 Notations.

In this paper, E/Q is a coefficient number field of motives, and put $O := O_E$, the integer ring of E. For a rational prime p, let us denote $O_p := O \otimes Z Z_p$, and for a rational place v, $E_v := E \otimes Q_v$. Let us denote $G_p = \text{Gal}(\bar{F}/F)$ for a field F. We denote by c the complex conjugation, in G_Q. Frobenii are chosen to be geometric, and denote them by F_r for a finite place v. In this paper, the reciprocity isomorphism is fixed as follows:

$$\text{rec} : \text{Gal}(Q(\zeta_N)/Q) \simeq (Z/NZ)^{\times}; F_p \mapsto p \mod N.$$

If an $O_p[[G_Q]]$-module M has a $\text{Gal}(C/R)$-action, M^+ always means $H^0(R, M) = \{m \in M| c \cdot m = m\}$, and it does not mean $\frac{1-c}{2}M$. These two are in general different if 2 is not invertible in O_p. For an E-module M over rational numbers Q, we will abbreviate the statement of the Tamagawa number conjecture for the motif M', by $	ext{TNC}_M$. If we consider a continuous E_p-linear G_Q-module M_p, fix a finite closed subset of $\text{Spec} Z$, which includes the ramified primes of M_p. Fix such one S. Then, we can regard the Galois module M_p as the étale sheaf on $\text{Spec} Q$. Let us denote the open immersion of generic point by $j: \text{Spec} Q \hookrightarrow \text{Spec} Z[1/Sp]$. Then, we denote in the bounded derived category of E_p-modules,

$$\text{R} \Gamma(S[1/Sp], M_p) := \text{R} \Gamma(\text{Spec} Z[1/Sp], j_*M_p),$$
$$\text{R} \Gamma_c(S[1/Sp], M_p) := \text{Cone} [\text{R} \Gamma(S[1/Sp], M_p) \xrightarrow{i_n} \bigoplus_{v|Spoc} \text{R} \Gamma(Q_v, M_p)].$$

*The author is supported by the 21st century COE program at Graduate School of Mathematical Sciences, The University of Tokyo.
For the O_p-coefficient case, we also define it in the same way. That is, for O_p-lattice T_p of M_p, we also define the compact supported cohomology functor $\mathcal{R}\Gamma_c(Z[1/Sp], T_p)$ in the derived category of O_p-modules bounded below, by

$$\mathcal{R}\Gamma_c(Z[1/Sp], T_p) := \text{Cone}[\mathcal{R}\Gamma(\text{Spec} Z[1/Sp], T_p) \bigoplus_{v \mid Sp} \mathcal{R}\Gamma(Q_v, T_p)].$$

Note that for the case $p = 2$, we have the different definition from the Milne's one of $\mathcal{R}\Gamma_c$ because we need to compute $H^i(\mathbb{R}, T_p)$, $i = 1, 2$. And by this consideration, this complex $\mathcal{R}\Gamma_c(Z[1/Sp], T_p)$ is bounded both. We consider the determinant functor of Knudsen-Mumford up to sign (cf. [K][Section 2.1]). Finally, the K-groups are always Quillen's ones.

1.2 Motives.

We present the definitions enough to formulate TNC for the case of pure (Chow) motives. Readers can assume the motives always to be pure, which are explained below. See [FP] for the mixed case.

Definition 1.1 (Pure Chow Motives, cf [Sch1]). Let V_k be the categories of projective schemes, smooth over a field k. For a scheme X, we denote by $\mathcal{Z}(X)$, the group generated by irreducible codimension i cycles on X. For a morphism $\phi: X \to Y$ in V_k with irreducible Y, we denote $T_\phi \in \mathcal{Z}^i(X \times Y)$, the graph of ϕ. (If Y is not irreducible, then consider it componentwise.) Let us define $CH^i(X) := Z^i(X)/\sim_{\text{rat}}$. Here, for $Z_1, Z_2 \in Z^i(X)$, $Z_1 \sim_{\text{rat}} Z_2$ if and only if there is a rational function $f \in k(X)$, such that $\text{div}(f) = [Z_1] - [Z_2]$.

On the group $CH^i(X)$, we can define the product by intersection theory, and pull-backs and push-forwards by maps in V_k. Then, for pure d-dimensional X, we define the group of r-th algebraic correspondences, $\text{Corr}^r(X, Y) := CH^{r+d}(X \times Y)$. The category of Chow motives \mathcal{M}_k, is defined to be a pseudo-abelian category (i.e. exact category, which is closed under taking images and kernels of projectors) with tensor structures, as follows. Objects are the triplets (X, p, m) for $X \in V_k, p = p^2 \in \text{Corr}^1(X, X), m \in \mathbb{Z}$. Morphisms are defined by

$$\text{Hom}_{\mathcal{M}_k}((X, p, m), (Y, q, n)) = q \cdot \text{Corr}^{n-m}(X, Y).$$

We also denote $h^i(X)(m) := (X, p_i, m)$, for p_i is the Künneth projector for i-th cohomology. The Tate object $Q(r)$ is defined to be $(\text{Spec } k, id, r)$. This definition is compatible with the tensor structure. We use the term E-motif, we consider these motives by extending correspondences from Q to E.

Remark 1.2. If we do not assume the standard conjecture of Grothendieck, we can not prove the existence of projectors p_i, satisfying $(X, p_i, 0) = h^i(X)$, which gives i-th cohomologies of X with pure dimension d, for Weil cohomologies via realization functors, for $i \neq 0, 1, 2d - 1$. But we can define without any conjecture, $h^i(X)$ for any curve X over k.

We will define realizations only for pure motives. Readers can also find realization functors from the Voevodsky's category $\mathcal{D}im(k)$, for any subfield k of \mathbb{C} in [Hu].

Definition 1.3 (Realizations). Let $M = h^i(X)(j)$ be a pure motif over Q, with coefficients in E. We define the Betti realization M_B, de Rham realization M_{dR}, and ℓ-adic realization M_{ℓ} of M, to be the cohomology groups

$$H^i_{\text{sing}}(X(C), Q(j)) \otimes_E E, H^i_{dR}(X/Q) \otimes_Q E, H^i_{\ell}(X \times Q \bar{Q}, Q_d(j)) \otimes_Q E.$$

These are E-vector space, E-vector space, E_{ℓ}-module respectively, which are given by additional structures; the action of complex conjugation, the Hodge filtration, the Galois action of $G_{\mathbb{Q}}$. And they are compared by comparison maps.

Example 1.4 (Realizations of Dirichlet Motives). For the case of a Dirichlet motif, we can define them as follows. The readers who do not like motivic treatment can consider the following system of realizations plus the motivic cohomology, as the definition of a Dirichlet motif.
\begin{itemize}
\item p-adic étale realization:
$$M_{\text{et}}(\chi)(r) := p_{\chi^{-1}}[H^{0}_{\text{et}}(\text{Spec} \, \mathbb{Q} \langle \zeta_{N} \rangle \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}, \mathbb{Q}_{p}(r)) \otimes \mathbb{Q} E].$$
\item Betti realization:
$$M_{B}(\chi)(r) := p_{\chi^{-1}}[H^{0}_{B}(\text{Spec} \, \mathbb{Q} \langle \zeta_{N} \rangle \otimes_{\mathbb{Q}} \mathbb{C}, \mathbb{Q}(r)) \otimes_{\mathbb{Q}} E],$$
where $E(r) = E(2\pi i)^{r}$.
\item de Rham realization:
$$M_{dR}(\chi)(r) := p_{\chi^{-1}}H^{0}_{\text{dR}}(\text{Spec} \, \mathbb{Q} \langle \zeta_{N} \rangle / \mathbb{Q}) \otimes_{\mathbb{Q}} E,$$
with Hodge filtration shifted by r.
\end{itemize}

\textbf{Definition 1.5} (Motivic Cohomologies). Let us consider a pure \mathbb{Q}-motif $M = h^{t}(X)(j)$ over k. For this motif, we define the rational motivic cohomology, by the following

$$H^{j}_{M}(X, \mathbb{Q}(j)) = \begin{cases}
\text{Hom}_{M_{\mathbb{Q}}}(M, \mathbb{Q}) & j = 0, \\
H^{j}_{M}(X, \mathbb{Q}(j)) = \begin{cases}
K_{2j-i-1}(X)_{\mathbb{Q}} & 2j - i \neq 1, \\
CH_{0}(X)_{\text{hom}} & 2j - i = 1.
\end{cases}
\end{cases}$$

We also abbreviate $H^{0}_{M}(M) = H^{0}_{M}(X, \mathbb{Q}(j))$, and $H^{j}_{M}(M) = H^{j}_{M}(X, \mathbb{Q}(j))$. These groups are known to be extentsions in the motivic derived category $DM_{gm}(k)$ of Hanamura, Levine, and Voevodsky. We further need the finite motivic cohomology. If there is a regular model \mathcal{X} of X, which is proper over \mathbb{Z}, let us define

$$H^{j}_{\mathcal{X}}(M) = H^{j}_{\mathcal{X}}(X, \mathbb{Q}(j)) = \text{Image}(K_{2j-i-1}(\mathcal{X})_{\mathbb{Q}} \twoheadrightarrow K_{2j-1}(X)_{\mathbb{Q}}).$$

Here, we denote by $K_{n}(\mathcal{X})_{\mathbb{Q}}^{(j)}$ the eigenspace for Adams operations ψ_{k}, for any $k \geq 1$. This group is not yet interpreted as the extentsions in the motivic category. For the definition without taking the model, see [Sch2] using alteration. These groups are conjecturally finite dimensional.

\textbf{Example 1.6} (The case of Dirichlet Motives). Let $F = \mathbb{Q} \langle \zeta_{N} \rangle_{\text{Ker} \chi}$ and consider the E-motif $M(\chi)(r)$ over \mathbb{Q}. We assume that $\mathbb{Q}(\chi)$ is contained in E. Then, we have

$$H^{j}_{0}(M(\chi)(r)) = \begin{cases}
E & r = 0, \chi = 1, \\
H^{j}_{0}(M(\chi)(r)) = \begin{cases}
p_{\chi^{-1}}[K_{2r-1}(\mathcal{O}_{F}) \otimes \mathbb{Q} E] & r \geq 1, \\
0 & \text{else}.
\end{cases}
\end{cases}$$

The case for which the finite dimensionality is known is only for $\text{Spec} \, \mathcal{O}_{F}$, that is the miraculous result of A. Borel ([Bu]). Note that for this case, we have $K_{2j-1}(\text{Spec} \, \mathcal{O}_{F})^{(j)} = K_{2j-1}(\text{Spec} \, \mathcal{O}_{F})$. See the proof in [W][Theorem 47], where the proof reduces to the computation in the étale cohomology, done by Soulé.

\textbf{Definition 1.7} (L-function of motives). Let M be an E-motif over \mathbb{Q}. We consider the function

$$L(M, s) = \prod_{v} P_{v}(M, s)^{-1}.$$

Here, v runs over rational primes, and we put $P_{v}(M, s) = \det_{\mathbb{Q}_{v}}[1 - F_{v} v^{-s} |M_{\mathbb{Q}}^{e}]$, where I_{v} is an inertia subgroup at $v \neq \ell$. This is conjecturally independent of the choice of ℓ, which is proved at the good reduction prime v. We call this function L-function of M, or Hasse-Weil L-function of M.

\section{Statements of TNC and the Main Theorem.}

\subsection{Motivating Examples - Special Values Side -}

The Tamagawa number conjecture of Bloch-Kato is a vast generalization of the class number formula of Dirichlet, the Birch-Swinnerton-Dyer conjecture, and astonishingly, the Iwasawa theory. But without difficult definitions, the ideas and philosophy of the conjecture can be understood already in these formulas. (And recall that Iwasawa Main Conjecture is also reduced to the class number formula.) So, let us see the motivating cases first, before stating the general TNC. The difficulties for $p = 2$ can also be seen below.
Example 2.1 (The Class Number Formula). The simplest case of TNC is the case of Dedekind zeta function, that is, \(E = \mathbb{Q}, M = h^0(\text{Spec} F) \). By definition, we have

\[
L(M, s) = \prod_p \det_{\mathbb{Q}}[1 - \text{Fr}_p p^{-s} | H^0(\text{Spec} F \otimes_{\mathbb{Q}} \mathbb{Q}_p)]^{-1} = \prod_p \det_{\mathbb{Q}}[1 - \text{Fr}_p p^{-s} | H^0(\text{Spec} \mathcal{O}_F[1/p] \otimes_{\mathbb{Z}} \mathbb{Q}_p)]^{-1}.
\]

The Euler factor is interpreted via Shapiro's Lemma,

\[
\det_{\mathbb{Q}}[1 - \text{Fr}_p p^{-s} | H^0(\text{Spec} \mathcal{O}_F[1/p] \otimes_{\mathbb{Z}} \mathbb{Q}_p)] = \prod_{v \mid p} \det_{\mathbb{Q}}[1 - \text{Fr}_v N(v)^{-s} | H^0(\text{Spec} \mathbb{Z}[1/p] \otimes_{\mathbb{Z}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}_p)] = \prod_{v \mid p} (1 - N(v)^{-s}).
\]

Here, \(N_v \) is the cardinality of the residue field of \(v \). So, we have \(\zeta_F(s) = L(M, s) \). For \(r \in \mathbb{Z} \), we define

\[
\zeta^r = \lim_{s \to 0} s^{-r-M} \zeta_F(s), \quad r_M := \text{orders of zeroes of } \zeta_F \text{ at } s = r.
\]

In the case \(r = 0 \) or \(1 \), we have the classical class number formula:

\[
\zeta^0 = \lim_{s \to 0} s^{-r-M-1} \zeta_F(s) = \frac{h_F R_F}{w_F}, \quad \zeta^1 = \lim_{s \to 1} (s-1) \zeta_F(s-1) = \frac{2^r(2\pi)^2 h_F R_F}{w_F \sqrt{d_F}}.
\]

Here, we adopt the conventions \(h_F, R_F, w_F, d_F \) respectively to be the class number, the Dirichlet regulator, the number of the roots of unity, and the absolute value of the discriminant of \(F \). For simplicity, consider the case of \(s = 0 \) and the \(p \)-part of this formula, modulo the irrational part. Then, we have by [Mi][Chapter 2, Proposition 2.1] and using the Kummer sequence, we have

\[
H_{dR}^0(\text{Spec} \mathcal{O}_F[1/p], \mathbb{Q}_p(1)) = 0, H_{dR}^1(\text{Spec} \mathcal{O}_F[1/p], \mathbb{Q}_p(1))_{\text{tors}} = \{w_F\}, H_{dR}^2(\text{Spec} \mathcal{O}_F[1/p], \mathbb{Q}_p(1)) = |h_p|.
\]

So, we are able to see that the value \(\zeta^0/R_F \) has the \(p \)-adic interpretation via \(p \)-adic Euler characteristic up to sign. For the case \(p = 2 \), it is easy to imagine that \(2^r \)-power makes complicated in this formula to see exactly the effect of the 2-adic part of cohomology. This consideration above is highly generalized to the Cohomological Lichtenbaum Conjecture. See Theorem 2.16.

Example 2.2 (BSD). Let \(A \) be an abelian variety over \(\mathbb{Q} \). In this case, we consider \(M = h^1(A, 1) \). Then, we have the conjectural formula for the special value of \(L(M, s) = L(A, s+1) \), by

\[
L^*(M, 0) = 2^{r} \frac{\Omega^+_A R_A | A^0(1)_{\text{tors}} | |A(1)_{\text{tors}}|}{\prod \epsilon_{\ell}(A)}.
\]

Here, \(r = \text{rank } A(\mathbb{Q}), R_A = \text{regulator of } A(\mathbb{Q})/A(\mathbb{Q})_{\text{tors}}, \) and \(\Omega^+_A \) is the Néron period, and \(\epsilon_{\ell}(M) \) is Tamagawa factor. The Tate-Shafarevich group \(III(A/\mathbb{Q}) \) is conjectured to be a finite group. In Appendix, we will see these values are interpreted via motivic cohomology groups, i.e. motivic meaning of these values and prove that this formula and TNC for the motif \(M \) is equivalent. Note that also in this conjectural formula, the power of the prime 2 appears, and 2 is also distinguished in this case.

Conjecture 2.3 (The Period-Regulator sequence). For a \(\mathbb{Q} \)-motif \(M \) over \(\mathbb{Q} \), let \(\alpha_M \) be the map, which is induced by taking the c-fixed part of the Hodge's comparison morphism \(M_B \otimes_{\mathbb{Q}} C \cong M_{dR} \otimes_{\mathbb{Q}} C \),

\[
\alpha : M^0_{dR} \otimes_{\mathbb{Q}} \mathbb{R} \to M_{dR} \otimes_{\mathbb{Q}} \mathbb{R}/\text{Fil}^0 M_{dR} \otimes_{\mathbb{Q}} \mathbb{R}.
\]
Then, we have the following exact sequence of finite dimensional \mathbb{R}-vector spaces,

$$0 \longrightarrow H^0_f(M) \longrightarrow \ker(\alpha_M) \longrightarrow (H^1_f(M^*(1)))^* \longrightarrow H^1_f(M) \longrightarrow \cdots \longrightarrow (H^2_f(M^*(1)))^* \longrightarrow 0.$$

Here, $r_M, c_M = cI, h = h_M$ is called (Beilinson) regulator map, cycle map, and height pairing. $(-)^*$ is the dual of those maps.

2.2 Preliminaries for TNC.

In the followings, we assume the motives are defined over \mathbb{Q}, with coefficients in E. We need more preliminaries for our result. These are important objects in the cohomological side. Let V be an E_p-linear continuous $G_\mathbb{Q}$-representation. We regard V as $G_\mathbb{Q}_p$-module via $G_{\mathbb{Q}_p} \rightarrow G_{\mathbb{Q}}$.

Definition 2.4 (Local Finite Cohomologies). We define the *finite cohomology of Bloch-Kato* by

$$H^1_f(\mathbb{Q}_p, V) := \ker[H^1(\mathbb{Q}_p, V) \rightarrow H^1(\mathbb{Q}_p, V \otimes \mathbb{Q}_{\ell, p})].$$

Here, we used the p-adic period ring of Fontaine, which is the p-adic period ring of good reduction varieties (see [Co][p512]). Also, we define the subcomplex $R\Gamma_f(\mathbb{Q}_p, V)$ of $R\Gamma(\mathbb{Q}_p, V)$, which sits in degree 0 and 1 (cf. Section 3.2), defined by

$$R\Gamma_f(\mathbb{Q}_p, V) := [D_{\text{cris}}(V) \otimes_{\mathbb{Q}_{\ell}} D_{\text{cris}}(V) \oplus D_{\text{dR}}(V)].$$

This complex has the following cohomologies (cf. Section 3.2)

$$H^0(R\Gamma_f(\mathbb{Q}_p, V)) = H^0(\mathbb{Q}_p, V), H^1(R\Gamma_f(\mathbb{Q}_p, V)) = H^1_f(\mathbb{Q}_p, V).$$

For $l \neq p$, we define $R\Gamma_f(\mathbb{Q}_l, V)$ by the complex $R\Gamma_f(\mathbb{Q}_l, V) = [V^l, 1 - \mathbb{Q}_{\ell} V^l]$. We put $R\Gamma_f(\mathbb{Q}_v, V) := \text{Cone}(R\Gamma_f(\mathbb{Q}_v, V) \rightarrow R\Gamma(\mathbb{Q}_v, V))$ for all v. These are objects in the derived category of \mathbb{Q}_p-vector spaces.

Definition 2.5 (Global Finite Cohomologies, cf. [FP][CHAPITRE II, p643]). Let V be an E_p-linear continuous $G_{\mathbb{Q}}$-representation. We define a complex $R\Gamma_f(Z[1/Sp], V)$ by the mapping fiber

$$R\Gamma_f(Z[1/Sp], V) := \text{Cone}(R\Gamma(\text{Spec} Z[1/Sp], V) \rightarrow \bigoplus_{v \in \text{Sp}} R\Gamma_f(\text{Spec} \mathbb{Q}_v, V) \otimes \mathbb{Q}_{\ell}).$$

Using the octahedral axiom in the derived category (see [H][p21, (TR4)]) to the distinguished triangle $R\Gamma_f(Z[1/Sp], V) \rightarrow R\Gamma(Z[1/Sp], V) \rightarrow \bigoplus_{v \in \text{Sp}}$ of $R\Gamma(\mathbb{Q}_v, V)$, and to the defining triangle above, we have the following distinguished triangle,

$$R\Gamma_f(Z[1/Sp], V(1)) \rightarrow R\Gamma_f(Z[1/Sp], V(1)) \rightarrow \bigoplus_{v \in \text{Sp}} R\Gamma_f(\mathbb{Q}_v, V(1)) \otimes R\Gamma(\mathbb{R}, V(1)).$$

This cohomological complex $R\Gamma_f(Z[1/Sp], V)$ is conjecturally closely related to the integral motivic cohomology in the previous section, as follows.

Conjecture 2.6 ("Finite Cohomologies have Motivic Origin"). In the terminology above, we should have the isomorphisms (cycle map and p-adic regulator)

$$H^0_f(M) \otimes_{\mathbb{Q}} \mathbb{Q}_p \rightarrow H^0_f(Z[1/Sp], M_p), H^1_f(M) \otimes_{\mathbb{Q}} \mathbb{Q}_p \rightarrow H^1_f(Z[1/Sp], M_p).$$
The proposition above tells us that $H_f^j(M)$'s should behave like some kind of Euler characteristics of M. The only example, for which Conjecture 2.6 is known until now, is the case $M = h^0(\text{Spec } \mathcal{O}_F)(r)$ by the miraculous result of A. Borel.

In the followings, we always assume the finite dimensionality of $H_f^j(M), q = 0, 1, 2, 3$. Upon this conjecture, we can define the following E-vector space, which plays the key role to formulate TNC.

Definition 2.8 (Fundamental Line). For an E-motif M over \mathbb{Q}, let us define an E-vector space,

$$\Delta_f(M) := L_f(M) \otimes L_f(M^*(1)) \otimes \det_{E} M_{DR}/\text{Fil}^0M_{DR} \otimes \det_{E}^{-1}M_{\mathbb{Q}}.$$

Proposition 2.9 (θ_{∞}). For a \mathbb{Q}-motif M, we have an identification $\theta_{\infty} : \Delta_f(M) \otimes \mathbb{Q} \cong \mathbb{R}$, by taking the \mathbb{R}-determinant of the exact sequence in Conjecture 2.3. For the case of E-motif, tensor E over \mathbb{Q}.

For the space $\Delta_f(M)$, the following E_p-module is associated, under Conjecture 2.6 and finite-dimensionality of $H_f^j(M)$'s.

Definition 2.10 (Euler-Poncaré line). Define $\Delta_{EP}(M_p) := \det_{E_p}^{-1}\Gamma_{\mathbb{Q}}(\mathbb{Z}[1/Sp], M_p)$, for p-adic realization M_p. Also for any \mathbb{Q}-equivariant \mathcal{O}_p-lattice T_p of M_p, we put the Euler-Poncaré line, which is the \mathcal{O}_p-lattice of $\Delta_{EP}(T_p)$, by $\Delta_{EP}(T_p) := \det_{\mathcal{O}_p} \Gamma_{\mathbb{Q}}(\mathbb{Z}[1/Sp], T_p)$.

Claim. This is independent of the choice of T_p, i.e. well-defined.

Proof. Let T_p, T'_p be two choices. By considering intersection of these two lattices, the claim is reduced to showing: For a finite p-primary \mathbb{Q}-module T, we have the equality $\prod_q |H^q(\mathbb{Z}[1/Sp], T)|^{(-1)^q} = 1$. To prove this claim, it suffices to compute

$$\prod_q |H^q(\mathbb{Z}[1/Sp], T)|^{(-1)^q} = 1.$$

But from the local and global Tate's Euler characteristic formula ([Mi][Theorem 2.8, Theorem 5.1]), we can compute the numerator $|T^+|/|T|$, and the inverse of the denominator, $|T^+|/|T|$, and the inverse of the denominator, $|T^+|/|T|$. Here, $\hat{H}^*(\mathbb{R}, T)$ is Tate's modified cohomology. Because T is finite, $|\hat{H}^*(\mathbb{R}, T)| = |\hat{H}^2(\mathbb{R}, T)|$. So everything is canceled and we have the claim.

Proposition 2.11. There is an isomorphism $\theta_{\infty} : \Delta_f(M) \otimes \mathbb{Q} \cong \Delta_{EP}(M_p)$.

Proof. Use Proposition 2.7, and the distinguished triangle (\ref{cat}).

Finally, we can state our conjecture. The conjecture is stated by the behavior of the zeta element.

Definition 2.12 (Zeta elements of Motives). For an E-motif M, define $\delta(M) \in \Delta_f(M)$ which goes $L^*(M)^{-1}$ via the map θ_{∞}. We call it the zeta element of M.

Conjecture 2.13 (Bloch-Kato, Tamagawa Number Conjecture (=TNC)). Let M be an E-motif over \mathbb{Q}, fix a \mathbb{Q}-equivariant \mathcal{O}_p-lattice T_p of M_p. Then, we have the followings.
(1) *(Beilinson-Deligne conjecture)* $\delta(M)$ is in $\Delta_f(M)$, which is apriori only in $\Delta_f(M) \otimes_{\mathbb{Q}} \mathbb{R}$.

(2) *(Bloch-Kato conjecture)* $\theta_p(\delta(M) \otimes 1_{\mathbb{Q}}) = \Delta_{EF}(T_p)$.

Theorem 2.14 *(Main Theorem, Burns-Flach, Flach, Itakura).* Let M be a Dirichlet motif with Tate twists over \mathbb{Q}. Then, TNC$_M$ holds also for $p = 2$.

Remark 2.15. If $p \neq 2$, this is deduced from the results of Burns-Greither, and Huber-Kings for $M(\chi)(r)$, which is the refined version of TNC (called ETNC). For $p = 2$, this is also proved recently by Flach [Fl] and Burns-Flach [BF], independently by the author [I] with slightly different method. The author needs to remark that their result is even stronger than Theorem 2.14. The difficulty for the prime 2 is due to the fact : Prime number 2 is the king of prime numbers, as is said by Prof. H. Hida with his humour.

We have a striking consequence for the special values of the Dedekind zeta functions for an abelian extension of \mathbb{Q}. This is my original motivation for the problem.

Corollary 2.16 *(Cohomological Lichtenbaum Conjecture).* Let the case $E = \mathbb{Q}$, and F is an abelian extension of \mathbb{Q}. Put $M = h^0(F)(1-k), k \geq 2$. Then, TNC$_M$ implies the following formula :

$$\zeta^*_F(1-k) = \begin{cases} \prod_p \frac{|H^2_p(\mathcal{O}_F[1/p], Z_p(k))|}{|H^2_p(\mathcal{O}_F[1/p], Z_p(k))|}, & \text{for } k \text{ even, } F \text{ any field,} \\ \prod_p \frac{|H^2_p(\mathcal{O}_F[1/p], Z_p(k))|}{|H^2_p(\mathcal{O}_F[1/p], Z_p(k))|_{tor}} \times R_k(F), & \text{for } k \text{ odd, } F \text{ totally imaginary field.} \end{cases}$$

Remark 2.17. For the case k is even and $p = 2$, this is the result of Wiles via Main Conjecture, and totally real F is the one of Kolster, via Bloch-Kato-Milnor conjecture. Other cases are new. In the survey of Flach, this is announced for all abelian F. But it seems to be false, because it relies on the argument of Huber-Kings, which fails for $p = 2$.

3 Key Ingredients

Proof goes on along the “bootstrapping process using functional equation” by Huber-Kings. We will introduce the key ingredient to go on the process, which is named “compatibility of the conjecture with functional equation”. Assume in this section, $M = M(\chi)(r)$ with $r \geq 2$ for simplicity. But concerning the matter of this section, we do not need any conjecture for the finite dimensionality of the cohomologies.

3.1 Definitions.

Definition 3.1 *(e-line).* Define the 1-dimensional E-vector space $\Delta_{loc}(M) = \det_E M_{dR} \otimes_{E} \det^{-1}_E M_{B}$. We will call this space e-line of M. Easily to guess, $\Delta_{loc}(M)$ and $\Delta_f(M), \Delta_f(M^{*}(1))$ are related by the following Poincare duality θ^{PD}, which is defined by

$$\theta^{PD}: \Delta_f(M) \otimes \Delta_f(M^{*}(1)) \simeq \det_E M_{dR}/Fli^1 M_{dR} \otimes \det^{-1}_E M_{dR}^{1}/Fli^{-1} M_{dR}^{1} \otimes \det^{-1}_E M_B \otimes \det E_B^{1} \simeq \Delta_{loc}(M).$$

For all rational places v, let us introduce an identification θ^{loc}_{v}, which are analogues of those for θ_p. We define the identification θ^{loc}_{v}: $\Delta_{loc}(M) \otimes_{\mathbb{Q}} \mathbb{R} \simeq E_{\infty}$, induced by the + part of Hodge’s comparison map $M_{B} \otimes_{\mathbb{Q}} \mathbb{C} \simeq M_{dR} \otimes_{\mathbb{Q}} \mathbb{C}$. For the p-adic realizations, we define

$$\theta^{loc}_{p}: \Delta_{loc}(M) \otimes_{\mathbb{Q}} Q_p \simeq \det_{E_p} M_{dR} \otimes_{Q_p} Q_p \otimes \det^{-1}_{E_p} M_p \otimes \det^1_{E_p} R_{\Gamma}(Q_p, M_p) \otimes \det^{-1}_{E_p} M_p,$$

to be the composite map of base change of determinants and the map η_p explained below. We call the last E_p-module $\Delta_{EF}(M_p) = \det^{-1}_{E_p} R_{\Gamma}(Q_p, M_p) \otimes \det^{-1}_{E_p} M_p$, the functional equation line of M at p. (This is only my terminology, so maybe readers should not use this term as if everyone knew it.)
Definition 3.2 (ε-element). Let us put the element in \(\Delta_{loc}(M) \otimes_{Q} R \), which satisfies \(\delta_{loc}(\varepsilon) = \frac{L^*(M^*, 1)}{L^*(M, 0)} \).

We call it ε-element of \(M \). In other words, \(\varepsilon = \delta_{PD}(\delta(M) \otimes \delta^*(M^*(1))) \).

Now, we introduce the compatibility with functional equation of TNC, which is the key ingredient to prove the whole case of TNC via brattoprocess.

Theorem 3.3 (Huber-Kings [HK], Burns-Flach [BF], Itakura [I]). Let \(M = M(\chi)(r) \) be a Dirichlet motif, and fix a \(\mathbb{Q} \)-equivariant \(\mathbb{O}_p \)-lattice \(T_p \) of \(M_p \). Then, we have the followings.

1. \(\varepsilon \) is in \(\Delta_{loc}(M) \), which is apriori only in \(\Delta_{loc}(M) \otimes_{Q} R \).
2. \(\delta_{P}^{loc}(\varepsilon \otimes 1_{Q_p}) = 2^{\chi(1)} \Delta_{EF}(T_p) \).
3. The right hand side of (2) = \(\Delta_{EF}(T_p) \otimes \Delta_{EP}(T^*_p(1)) \).

Corollary 3.4. Suppose Theorem 3.3 holds for Dirichlet motif \(M = M(\chi)(r) \). Then it is equivalent to the both of TNC_M and TNC_{M^*(1)}.

Proof. Consider the following diagram,

\[
\begin{array}{cccc}
\delta(M) & \otimes & \delta(M^*(1)) & \in \Delta_f(M) \otimes E \Delta_f^*(M^*(1)) \otimes Q_p \\
\theta_p(M) & \otimes & \theta_p^*(M^*(1)) & \xrightarrow{\varepsilon \otimes Q_p} \triangle_{loc}(M) \otimes Q_p \ni \varepsilon \\
\Delta_{EF}(M_p) \otimes Q_p & \xrightarrow{\theta_p^*(M^*(1))} & \triangle_{EF}(T_p) \otimes Q_p.
\end{array}
\]

First, we have by Theorem 3.3 (2), \(\varepsilon \in \Delta_{loc}(M(\chi)(r)) \) goes to \(2^{\chi(1)} \Delta_{EF}(T_p(\chi)(r)) \). On the other hand, in the line below, we have the lattices \(\Delta_{EF}(T_p(\chi)(r)) \otimes \Delta_{EF}(T_p(\chi^{-1})(r-1)) \) and \(2^{\chi(1)} \Delta_{EF}(T_p(\chi)(r)) \). And Theorem 3.3 (3) shows these are equal. So, we have \(\delta(M) \) goes to a generator of \(\Delta_{EF}(T^*_p(1)) \) whenever \(\delta(M^*(1)) \) goes to a generator of \(\Delta_{EF}(T^*_p(1)) \).

3.2 On the map \(\eta_p \).

We need to remark that, not only for the case of Dirichlet motives, we have the identification (\(\ast \)), for all pure motives of proper smooth varieties, via the great results of G. Faltings and T. Tsuji. In the p-adic world, there is an exact sequence of p-adic period rings

\[
0 \rightarrow Q_p \rightarrow B_{cri} \xrightarrow{(1 - \phi p)} B_{cri} \otimes B_{dR} / \textrm{Fil}^0 B_{dR} \rightarrow 0.
\]

Here, \(\phi \) is the arithmetic Frobenius on \(B_{cri} \), and \(pr \) is the composition of the natural maps \(B_{cri} \hookrightarrow B_{dR} \rightarrow B_{dR} / \textrm{Fil}^0 B_{dR} \). For the definition of these p-adic period rings and exactness of this sequence, see [Co][III Proposition 3.1]. The author wants to remark that this sequence is the p-adic analogue of the exponential sequence in the classical topology. It is reasonable to call the boundary map of this sequence,

\[
\exp_p : D_{dR}(M_p) / \textrm{Fil}^0 D_{dR}(M_p) \rightarrow H^1(J, Q_p, M_p).
\]

If \(M_p \) is a de Rham representation, this is an isomorphism. So, if we consider the derived functor of \((- \otimes Q_p, M_p)^{\otimes p} \), we have an identification of \(\det_{E_p}^{-1} \Gamma_f(Q_p, M_p) \) to the determinant

\[
\det_{E_p}[0 \rightarrow H^1(J, Q_p, M_p) \rightarrow D_{cri}(M_p) \rightarrow D_{cri}(M_p) \otimes D_{dR}(M_p) / D_{dR}^0(M_p) \rightarrow 0].
\]

For the case \(r \geq 2 \), we have \(H^1(J, Q_p, M_p) = H^1(J, Q_p, M_p) \) (every extension of \(Q_p \) by \(Q_p(r) \) is cristalline for \(r \geq 2 \) and \(\textrm{Fil}^0 M_{dR,p} = 0 \). So \(\Gamma_f(Q_p, M_p) \simeq \Gamma_f(Q_p, M_p) \). Therefore, we have the identification

\[
\eta_p : \det_{E_p}^{-1} \Gamma_f(Q_p, M_p) \simeq \det_{E_p}^{-1} \Gamma_f(Q_p, M_p) \simeq \det_{E_p}^{-1} M_{dR,p}.
\]
4 Outline of the Proof.

Because we need a lot of pages, we will only see in this section, how Theorem 3.3 (3) is proved, and give some comments on the whole proof of TNC for Dirichlet motives.

Definition 4.1 (Basis' of realizations). Suppose we are given a Dirichlet character \(\chi \) with conductor \(N \).

Let us fix an embedding \(\tau_{0} : \mathbb{Q}(\zeta_{N}) \rightarrow \mathbb{C} \), which maps to \(\zeta_{N} \mapsto \exp(2\pi i/N) \). Let us denote a basis \(\delta_{n} \) of \(T_{\mathfrak{p}}(\mathbb{Q}(\zeta_{N})) = \mathcal{O}^{\mathrm{Hom}(\mathbb{Q}(\zeta_{N})), \mathbb{C}} \), the "delta function at \(\tau_{0} \)." We define \(t_{\mathfrak{p}}(\chi) = p_{\chi^{-1}}\delta_{\tau} \), which is a basis of \(T_{\mathfrak{p}}(\chi) \). We define a basis \(t_{\mathfrak{p}}(\chi) = p_{\chi^{-1}}\zeta_{N} \) of \(T_{\mathfrak{p}}(\chi) = p_{\chi^{-1}}[O \otimes \mathbb{Z}[\zeta_{N}]], \) by taking \(\zeta_{N} \otimes 1_{\mathbb{Z}[\zeta_{N}]} \) as a basis of \(T_{\mathfrak{p}}(\mathbb{Q}(\zeta_{N})) = \mathcal{O} \otimes \mathbb{Z}[\zeta_{N}] \).

Proposition 4.2 (Explicit description of \(e \)-element). Let \(N, r \geq 1 \) be a natural number, \(\chi \) is a Dirichlet character with conductor \(N \). We put \(\delta = \delta_{\tau} = 0 \) if \(\chi \) satisfies \(\chi(-1) = (-1)^{r} \) and \(\chi \) is non-trivial, and put \(1 \) if \(\chi(-1) = (-1)^{r-1} \). We put \(\delta = 0 \) for the case \(\chi \) is trivial. We denote \(\tau(\chi) = \sum_{\sigma \in \Gamma} \chi(\sigma) \zeta_{N}^{\sigma} \), the Gauss sum of \(\chi \). Then we have the following.

(1) From the functional equation of \(L \)-function of \(\chi \), we have

\[
L^{*}(\chi^{-1}, 1 - r) = \frac{2(1 - \chi(2)^{-1})}{\tau(\chi)2^{r-1}}.
\]

(2) \(\epsilon \in \Delta_{\nicefrac{(M(\chi))}{(r)}} \) is given by \(\epsilon = 2^{\chi(-1)}N^{-1}(r-1)!t_{dR}(\chi) \otimes t_{B}(r-\delta)^{-1} \) in \(\Delta_{\nicefrac{(M(\chi))}{(r)}} \).

Proof. (1) is easy computation. Note that \(2^{\chi(-1)} \) is from the differentiation by \(s \) of \(\sin(\pi(s-\delta)/2) \). This formula is also valid for the case \(\chi \) is trivial. (2) is from explicit computation of \(\theta_{\chi}^{\text{loc}} \) via \(t_{dR}, t_{B} \). \(\square \)

From this proposition, Conjecture 3.3 (3) is reduced to showing ([HK][Proposition 1.2.5]),

\[
exp_{2}(t_{dR}(\chi) \otimes 1_{\mathbb{Z}[\zeta_{N}]}) = \frac{(1 - \chi(2)^{-1})}{(r-1)!N^{r-1}} \det_{\overline{\mathcal{O}}_{\mathbb{L}}^{1}}(\mathbb{Q}_{2}(\mu_{2^{n}}), V_{2}(\chi)(f)) \rightarrow \mathrm{H}_{2}(\mathbb{Q}_{2}(\mu_{2^{n}}), V_{2}(\chi)(r)) = \mathrm{H}_{2}(\mathbb{Q}_{2}(\mu_{2^{n}}), V_{2}(\chi)(r)). \tag{\textcircled{\textodot}}
\]

Proposition 4.3. (cf. [HK][Corollary B. 2.7] for \(p \neq 2 \)) Let the Galois group of \(\mathbb{Z}_{2} \)-extension \(\Gamma = \mathrm{Gal}(\mathbb{Q}(\mu_{2^m})/\mathbb{Q}) \), and put \(\Gamma_{n} = \mathrm{Gal}(\mathbb{Q}(\mu_{2^m})/\mathbb{Q}) \), \(\Gamma_{n} = \Gamma/\Gamma_{n} \). The Iwassawa algebra \(\mathcal{A} = \lim_{\rightarrow} \mathcal{O}_{2}[\Gamma] \) is not regular. Put intermediate fields \(k_{n} = \mathbb{Q}(\mu_{2^m}), K_{n} = \mathbb{Q}(\mu_{2^m}) \otimes_{\mathbb{Q}} \mathbb{Q} \simeq \prod k_{n} \), Galois groups \(\Delta = \mathrm{Gal}(\mathbb{Q}(\mu_{2^m})/\mathbb{Q}) \), \(H = \mathrm{Gal}(k_{0}/\mathbb{Q}) \). We identify \(\mathrm{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \simeq \Delta \times \Gamma, \mathrm{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \simeq H \times \Gamma \). Then, we have the following isomorphism

\[
\det_{\overline{\mathcal{O}}_{\mathbb{L}}^{1}}(\mathbb{Q}_{2}(\mu_{2^m}), T_{2}(\chi)(r)) \simeq \det_{\overline{\mathcal{O}}_{\mathbb{L}}^{1}}(\mathcal{O}_{\mathbb{K}_{0}}[\mathbb{G}], T_{2}(\chi)(r)).
\]

This isomorphism is rationally induced by an isomorphism

\[
s_{\chi^{-1}} : H^{1}(\mathbb{Q}_{2}(\mu_{2^m}), V_{2}(\chi)(r)) \rightarrow \mathrm{H}_{2}(\mathbb{Q}_{2}(\mu_{2^m}), V_{2}(\chi)(r)).
\]

By Proposition 4.3, seeing the image of \(t_{dR}(\chi) \) by \(\exp_{2} \) is reduced to doing the image of \(t_{dR}(\chi) \) by \(s_{\chi} \circ \exp_{2} \) in \(\mathrm{H}_{2}(\mathbb{Q}_{2}(\mu_{2^m}), V_{2}(\chi)(r)) \). Let us choose a \(\mathbb{Z}_{2}\Delta \)-generator \(\zeta_{N'} \) of \(\mathcal{O}_{\mathbb{K}_{0}} \), and we fix an isomorphism evaluation at \(\zeta_{N'} \), noted \(\text{ev}_{\zeta_{N'}} \):

\[
\text{Hom}_{\mathbb{Z}_{2}\Delta}(\mathcal{O}_{\mathbb{K}_{0}}[\Gamma], V_{2}(\chi)(r)) \simeq V_{2}(\chi)(r).
\]

Lemma 4.4. (cf. [HK, Lemma B 3.1]) There is an equality in \(V_{2}(\chi)(r) \):

\[
\text{ev}_{\zeta_{N'}}((s_{\chi} \circ \exp_{2})(t_{dR}(\chi))) = \frac{(N' r - 1 - \chi(2)^{-1})}{(r-1)!N^{r-1}} t_{dR}(\chi)(r).
\]
Proof. From the choice of ζ_{N}', we have $\mathbb{Z}_{2}[\Delta]\zeta_{N}' \simeq \mathcal{O}_{K_{0}}$. Furthermore, this choice induces

$$\text{Hom}_{\mathcal{O}_{m} \times \Delta}(\mathcal{O}_{K_{0}}[[\Gamma]], E_{2}(r)) \simeq \text{Hom}(\mathcal{O}_{K_{0}}[G_{m}], E_{2}(r))$$
$$\simeq \text{Hom}(\mathbb{Z}_{2}[G_{m} \times \Delta], E_{2}(r)).$$

Then, the following diagram commutes:

$$\begin{array}{ccc}
V_{dR}(\chi) \otimes_{\mathbb{Q}} \mathbb{Q}_{2} & \xrightarrow{s_{K_{m}} \circ \exp_{2}} & \text{Hom}_{\mathcal{O}_{m} \times \Delta}(\mathcal{O}_{K_{0}}[[\Gamma]], V_{2}(\chi)(r)) \xrightarrow{ev(\zeta_{N}')} V_{2}(\chi)(r) \\
\downarrow & & \downarrow \\
\mathbb{K}_{m} & \xrightarrow{s_{K_{m}} \circ \exp_{2}} & \text{Hom}_{\mathcal{O}_{m} \times \Delta}(\mathcal{O}_{K_{0}}[[\Gamma]], \mathcal{O}_{\Delta} V_{2}(\chi)(r)) \xrightarrow{\iota'} E_{2}(r).
\end{array}$$

Here, the vertical maps are inclusions into the χ-part summand. So, if we put $\epsilon \in \Delta \times G_{m}$ the generator corresponding to $ev(\zeta_{N}')$, we have $\iota'(t_{2}(\chi)(r))(g) = p_{x^{-1}}\delta(g)$. Here, δ is a standard generator, satisfying $\delta(g) = \begin{cases} t_{2}(r) & g = e \\ 0 & g \neq e. \end{cases}$ Then, the commutativity in the right square leads $\iota'(t_{2}(\chi)(r))(p_{x} \zeta_{N}') = \frac{t_{2}(\chi)(r)}{\varphi(N)}t_{2}(r)$. Hence if we see in the whole square, we have for $\alpha \in V_{dR}(\chi)$,

$$(s_{\chi} \circ \exp_{2})(\alpha)(\zeta_{N}') = (s_{K_{m}} \circ \exp_{2})(\alpha)(p_{x} \zeta_{N}') \frac{t_{2}(\chi)(r)}{\varphi(N)}t_{2}(r).$$

It suffices to compute $s_{K_{m}} \circ \exp_{2}$, and it is done in [HK, Lemma B.3.1], using the Kato's explicit reciprocity law unless $m = 0$ (unramified case). They do not prove it in this case, because [BK, Claim 4.8] needs the Fontaine-Messing theory and it fails in the case $p = 2$. By means of a slightly different argument from that in [HK, p460], it suffices to check that the target of the map $s_{K_{m}} \circ \exp_{2} : K_{0,2} \to \text{Hom}(K_{0}, E_{2}(r))$ is the same as the following map:

$$x \mapsto y \mapsto \frac{1}{(r-1)!} \text{Tr}_{K_{0}/\mathbb{Q}_{2}}(x(1 - 2^{-r} Fr_{2})(1 - 2^{r-1} Fr_{2}^{-1})) \otimes t_{2}(r).$$

Here, K_{0} is the product of k_{0}. The deduction of the lemma from this claim, is as follows. Let us put $x = p_{x^{-1}} \zeta_{N}, y = \zeta_{N}'$ in this formula. Then, we have

$$\frac{1}{(r-1)!} \text{Tr}_{K_{0}/\mathbb{Q}_{2}}(p_{x^{-1}} \zeta_{N}(1 - \chi(2)2^{-r})(1 - \chi^{-1}(2)2^{r-1})) \otimes t_{2}(r) = \frac{1}{(r-1)!} \text{Tr}_{K_{0}/\mathbb{Q}_{2}}(1 - \chi(2)2^{-r})(1 - \chi^{-1}(2)2^{r-1}) p_{x^{-1}} \zeta_{N}(1 - \chi^{-1}(2)2^{r-1}) \varphi(N) \otimes t_{2}(r).$$

The $\frac{1}{\varphi(N)}t_{2}(r)$ cancels out in the above formula, and we can prove the lemma. So, it is reduced to proving the claim. But we need to omit it for the shortage of pages.

Proposition 4.5. The equality (\diamond) holds. Hence, Theorem 3.3 (3) holds.

Proof. What we have to see is that

$$
\epsilon' := \frac{(r-1)! N^{-1} (1 - \chi^{-1}(2)2^{-1})}{(1 - \chi(2)2^{-r})} \exp_{2} t_{2}(\chi) \cdot \mathcal{O}_{2} = \text{det}_{\mathcal{O}_{2}} \text{R} \Gamma(\mathbb{Q}_{2}, T_{2}(\chi)(r)).
$$

So, it suffices to show $\epsilon' \zeta_{N}'(s_{\chi} \epsilon') = (N')^{r} t_{2}(\chi)(r)$ is a generator of $T_{2}(\chi)(r)$. If we compare $t_{2}(\chi)(r)$ with the standard generator δ in the last lemma, $s_{\chi} \epsilon'$ differs by $(N')^{r}$ times a generator. Because $(2, N') = 1$, we have the claim. □
The proof of TNC for Dirichlet motives goes on using Theorem 3.3 and Iwasawa Main Conjecture. But there is not enough pages to give a whole proof, so we introduce its summary as follows.

<table>
<thead>
<tr>
<th>TNC_{M(x)}(i)</th>
<th>r < 0</th>
<th>r = 0, \chi(2) \neq 1</th>
<th>r = 1, \chi(2) \neq 1</th>
<th>r > 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\chi(-1) = (-1)^{r}</td>
<td>3</td>
<td>5'</td>
<td>5''</td>
<td>2'</td>
</tr>
<tr>
<td>\chi(-1) = (-1)^{r-1}</td>
<td>2</td>
<td>5'</td>
<td>5''</td>
<td>2'</td>
</tr>
</tbody>
</table>

Here, C is deduced from 1 via Corollary 3.4, for all i = 1, 2, 3, 4.

Remark 4.6. 2 is deduced from non-critical case of Main Conjecture via Euler system argument. And 3'' is deduced from critical case of Main Conjecture.

5 Appendix

In this section, we will see the BSD conjecture for an abelian variety A over Q and the TNC for M = h^1(A^\vee)(1) is equivalent following [V]. A^\vee is the dual abelian variety of A. For simplicity, assume \ell is an odd prime. And we always assume that III(A/Q) is finite. T_p is the Tate module H^1(A^\vee(Q), Z_p), which is a Q\ell-stable lattice of M_p.

Lemma 5.1. For M = h^1(A^\vee)(1) and any \ell, we have the following cohomology groups.

(0) (Motivic) H^1_f(M) = H^1_f(M^* (1)) = 0, H^1_f(M) = A^\vee(Q), H^1_f(M^* (1)) = Hom_Z(A(Q), Q).
(1) (Local) H^1_f(Q, T_p) = 0, H^1_f(Q, T_p) \simeq A^\vee(Q)^{\times}, H^1_f(Q, T_p) = 0, i \neq 0, 1.
(2) (Global) For i \neq \{0, 1, 2, 3\}, H^1_f(Z[1/Sp], T_p) = 0. For remaining i's, H^1_f(Z[1/Sp], T_p) = 0, H^1_f(Z[1/Sp], T_p) \simeq A^\vee(Q)_Z, H^1_f(Z[1/Sp], T_p) \simeq Hom_Z(A(Q)_tor, Q_p/Z_p). H^1_f(Z[1/Sp], T_p) is described by the following exact sequence,

0 \rightarrow III(A/Q)[p] \rightarrow H^1_f(Z[1/Sp], T_p) \rightarrow Hom_Z(A(Q), Z_p) \rightarrow 0.

Proof. (0) is by definition. (1) is the result of Fontaine. (2) is implied from (1).

By Lemma 5.1 (0) and by definition, we have the fundamental line of M as follows;

\Delta_f(M) = \det^{-1}A^\vee(Q)_Q \otimes \det Hom_Z(A(Q), Q) \otimes \det^{-1}H^1_f(A^\vee(C), Q)^{\times} \otimes \det Lie A^\vee.

For further argument, we need to fix a Z-basis of A^\vee(Q), \{F_1^{\vee}, \ldots, F_d^{\vee}\}. If we take a standard choice of the dual basis, we have the Z-basis of Hom_Z(A(Q), Z), \{F_1, \ldots, F_d\}. Similarly, choose a Z-basis of \mathcal{B}_Z := H^1_f(A^\vee(C), Z)^{\times} and Lie A^\vee := Hom_Z(\mathcal{B}_Z, Z) by \{\gamma_1, \ldots, \gamma_d\} respectively.

Here, \mathcal{B}/Z is the Néron model of A/Q. Then, we define a lattice of \Delta_f(M), generated by

\delta_0(M) := \det_{\mathcal{B}} T_{A^\vee} \otimes Z \det_{\mathcal{B}} T^*_A \otimes Z \det^{-1} T^*_Z \otimes Z \det_{\mathcal{B}} Lie A^\vee.

By definition, \delta^*_A R_A is the determinant of the maps \alpha_M, h respectively. So, if we assume the full Birch-Swinnerton-Dyer conjecture, we have

\begin{align*}
L^s(M, 0)^{-1} &= 2^{-r} \frac{\|III(A/Q)\|}{|A^\vee(Q)_{tor}|} \prod_{\ell} \alpha_{\ell}(M)^{-1} \\
&= 2^{-r} \frac{\|III(A/Q)\|}{|A^\vee(Q)_{tor}|} \prod_{\ell} \alpha_{\ell}(M)^{-1} \delta_{\alpha}(\delta_0(M) \otimes 1_{\mathcal{B}}).
\end{align*}
So, let us put $\delta = 2^{-r}|\mathrm{III}(A/Q)||A^\vee (Q)_{\text{tors}}|^{-1} |A(Q)_{\text{tors}}|^{-1} \prod_{\ell} c_{\ell}(M)^{-1} \delta_{\ell}$. This is the zeta element up to sign and modulo the BSD conjecture. For the second claim part of TNC, let us see the image of $\delta(M)$ by θ_p. Recall that the map θ_p is the composition of the following maps

$$\Delta_{p}(M) \otimes_{Q_p} \det_{p}^{-1} \Gamma_{f}(Q, M_p) \otimes_{Q_p} \det_{p} M_p^+ \otimes_{Q_p} \det_{p}^{-1} \operatorname{Lie}_Q A^\vee \simeq \Delta_{BP}(M_p).$$

If we use Lemma 5.1, we have

$$\det_{p}^{-1} T_{A^\vee} \otimes_{Z_p} Z_p \simeq \det_{p}^{-1} A^\vee (Q) \otimes_{Z_p} \det_{p}^{-1} (Q)_{\text{tors}} \simeq \left| A^\vee (Q) \right|^{-1} \det_{p}^{-1} H_{f}^{2}(\mathbb{Q}_{p}, T_{p}).$$

$$\det_{p} T_{A^\vee} \otimes_{Z_p} Z_p \simeq \det_{p} \operatorname{Hom}(A(Q), Z_p) \simeq \left| \mathrm{III}(A/Q) \right| \cdot H_{f}^{2}(\mathbb{Q}_{p}, T_{p}).$$

By Lemma 5.1 again, $H_{f}^{2}(\mathbb{Q}_{p}, T_{p}) \simeq \operatorname{Hom}Z(A(Q)_{\text{tors}}, Q_p/Z_p)$. So, it follows

$$\det_{p}^{-1} T_{A^\vee} \otimes_{Z_p} Z_p \simeq \left| \mathrm{III}(A/Q) \right| \cdot \det_{p} \Gamma_{f}(\mathbb{Q}_{p}, T_{p}) \otimes_{Z_p} \det_{p}^{-1} \Gamma_{f}(Q, T_{p}).$$

Next, we see the last two terms $\det_{p}^{-1} T_{p}^\pm$, $\det_{p} \operatorname{Lie}_Q A^\vee$. Also if we use Lemma 5.1 (3), then we have $\det_{p} \Gamma_{f}(Q, T_{p}) \simeq \det_{p}^{-1} H_{f}^{1}(Q, T_{p})$. For $p \neq 2$, we have $\det_{p}^{-1} \Gamma_{f}(Q, T_{p}) \simeq T_{p}^\pm$. Now, we obtain

$$\check{\theta}_p(\delta \otimes 1_{Q_p}) \simeq 2^{-r} \prod_{v} \left| c_v(M) \right|^{-1} \det_{p} \Gamma_{f}(\mathbb{Q}_{p}, T_{p}) \otimes_{Z_p} \det_{p}^{-1} \Gamma_{f}(Q, T_{p}).$$

Assume now $\ell \neq p$. Denoting $H_{f}^{1}(Q, T_{p}) = H_{f}^{1}(Q, T_{p})$, we have

$$\det_{p} \Gamma_{f}(Q, T_{p}) \simeq \det_{p} \left[0 \to T_{p}^\ell \xrightarrow{1-\delta_{\ell}} T_{p}^\ell \to H_{f}^{1}(Q, T_{p}) \to H_{f}^{1}(I_{\ell}, T_{p}) \right] \simeq Z_{p}.$$

Put $c_{p}(M_{p}) = |H_{f}^{1}(I_{\ell}, T_{p})|$, which is trivial for good ℓ. For the case $\ell = p$, $c_{p}(M_{p}) = \eta_{p}(\cdot)^{p-1} Q_{p}$. Here, we used the identification $\eta_{p} : \det_{p}^{-1} \Gamma_{f}(Q, T_{p}) \otimes \det_{p}^{-1} \operatorname{Lie}_Q A^\vee \simeq Z_{p}$. Therefore, we have

$$\check{\theta}_p(\delta \otimes 1_{Q_p}) \simeq 2^{-r} \prod_{v} \left| c_v(M) \right|^{-1} \det_{p} \Gamma_{f}(\mathbb{Q}_{p}, T_{p}) \otimes_{Z_p} \det_{p}^{-1} \Gamma_{f}(Q, T_{p}),$$

$$= 2^{-r} \det_{p}^{-1} \Gamma_{f}(\mathbb{Q}_{p}, T_{p}) \simeq \Delta_{BP}(T_{p}) \mod Z_p.\]}

In [V][p14, 15], Venjakob proved $|c_v(M)| = |c_v(M)|_{p}$, i.e. $c_v(M)$ equals to the p-primary part of the usual definition by the Néron model \mathfrak{B}. Finally, we have the desired equality, which is the claim of TNC (2) for $M : \check{\theta}_p(\delta \otimes 1_{Z_p}) = \Delta_{BP}(T_{p}) \mod Z_p$.}

References

Kensuke Itakura,
The Graduate School of Mathematical Sciences, The University of Tokyo,
Komaba, Meguro-ku, Tokyo 153-8914, Japan.
kitakura@ms.u-tokyo.ac.jp