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Abstract

This is a report on joint work with H.Katsurada and R.Schulze-
Pillot ; we also use some recent results by Y.Hironaka and F.Sato [12]
generalizing parts of [14]; this allows us to treat general squarefree
levels (not only prime levels).

The most familiar examples of (holomorphic) Siegel modular forms are theta
series attached to lattices in a positive definite quadratic space. The basis
problem for Siegel (cuspidal) modular forms asks whether one can get all cusp
forms of a given congruence subgroup of type $\Gamma_{0}(N)$ as linear combinations
of such theta series attached to lattices of level dividing N. For level $\mathrm{N}=1$

this was solved affirmatively provided that the weight is divisible by 4 and
large enough [2]. For higher levels only for degree 1 there are definite results
due to the deep work of Waldspurger [17]. If one wants to follow the lines of
thought of these works in the case of arbitrary degree $n$ and level $N$ one has
to consider for a given cusp form $f$ of degree $\mathrm{n}$ and weight $\mathrm{k}$ an integral of
type

$\Lambda_{E}^{2n,k}(f)(z):=\int_{\Gamma_{0}(N)\backslash \mathbb{H}_{n}}f(w)\overline{E^{2n}((\begin{array}{ll}w 00 -\overline{Z}\end{array}))}det(w)^{k}d^{*}w$

where $\mathrm{E}$ is an appropriate Eisenstein series of degree $2n$ and weight $k$ . In the
case of nontrivial levels one has to make a choice. The most ambitious choice
is to take $\mathrm{E}$ to be the genus theta series of a fixed genus of quadratic forms.
There will in general be delicate problems related with the bad primes and
there seems at the moment not much hope to do this in general (see however
[4] where some cases are done from this point of view with some pain). The
problem of the contribution of bad primes to such integrals is also addressed
in other works (mostly with aims different from ours, see e.g. [16]).
In this work we have a more modest aim. There is one type of Eisenstein
series, for which we can compute $\Lambda_{E}(f)$ in a particularly simple fashion,
namely

$F_{k}^{n}(Z, \chi):=\sum_{C,D}\chi(det(C))det(CZ+D)^{-k}$
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where $\chi$ is any Diricblet character modulo $\mathrm{N},$ $N>1$ . The integral was
computed explicitely in $[5, 7]$ . It can be zero, if the level is not squarefree;
we will be interested only in the squarefree case; as essential new tools (not
available when $[5, 7]$ were written) we use

$\bullet$ the injectivity of the Hecke operators $U(p)$ if $p|N[3]$

$\bullet$ the Eisenstein series $F$ is a linear combination of genus theta series
for genera of positive quadratic forms of levels dividing $N$ (at least
if the weight $\mathrm{k}$ is large enough and of course the character has to be
quadratic) ([14] and more generally [12]).

The first of these statements allows us (when combined with the information
from $[5, 7]$ about the contribution of the bad primes, where $U(p)$ appears
in the “numerator”) to deduce the injectivity of the map $\Lambda_{F}^{2n,k}$ on the space
of cusp forms in question, provided that the weight is large enough. It was
somewhat surprising for us that we do not need any kind of newform argu-
ment here. The second statement implies that the i.mage of $\Lambda_{F}^{2n,k}$ consists of
linear combinations of theta series.
Our results (see \S 3 for precise statements) say that Siegel cusp forms of
squarefree level and quadratic nebentypus are linear combinations of appro-
priate theta series, provided that the weight is large enough. Here “appropri-
ate’) means that the theta series in question have level (dividing) $N$ and they
also have the correct nebentypus. We have to allow all such theta series; in
particular, we cannot fix the genus of the quadratic forms, even the quadratic
space cannot be specified! Rom the point of view of theta liftings, this is
not satisfying, because we have possibly to deal with automorphic forms on
several orthogonal groups simultaneously! In this way we can avoid more
delicate questions about the bad primes.
It should be clear (at least to experts) that our methods immediately (but
with much more burden concerning terminology) carry over to theta series
with harmonic coefficients and also to the case of vector valued modular
forms. Also non-cusp forms can be included. We will briefly describe the
main modifications in section 4.

There are a few cases, where the simple Eisenstein series $F$ is indeed a genus
theta series (possibly after “Hecke summation”). One such example is the
case of degree $n\geq 3$ , weight 2, trivial character and the genus of quaternary
quadratic forms of level $p$ arising from a definite quaternion algebra; this case
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is (at least implicitly) considered in [5].
In the last section we consider another such case where our method works
also outside the range of convergence, namely for modular forms of prime
level $p\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4$ and primitive nebentypus. Here we can give a characteri-
zation of those modular forms which can be represented by (positive definite)
binary quadratic forms of level $\mathrm{p}$ in terms of $L$ -functions; we rediscover in
explicit form some of the consequences of the Gelbart-Jacquet lift [10].
Finally we point out that our overall strategy is not new at all. E.g. we used
it before [5, \S 4] to consider the basis problem for small weights $\frac{n}{2}\leq k\leq n$

(again in the squarefree case). The property of the Eisenstein series $F$ (after
Hecke summation!) to be a linear combination of (genus-) theta series was
in that case a consequence of the theory of singular modular forms. The
injectivity of $U(p)$ allows to reformulate some of the statements there in a
more elegant way (in particular [5, Theorem 4.1]).

\S 1 Preliminaries
For basic facts about Siegel modular forms we refer to [1, 9, 11]. The
group $GSp(n, \mathbb{R})$ acts on the upper half space $\mathbb{H}_{n}$ in the usual way. Let
$\rho$ : $GL(n, \mathbb{C})arrow V_{\rho}$ be a finite dimensional (irreducible) polynomial repre-
sentation. Then we define the slash-operator for functions $f$ : $\mathbb{H}_{n}arrow V_{\rho}$ and

$M=$ by

$(f|_{\rho}M)(Z):=(\sqrt{\mu(M)})^{\Sigma\lambda}:\rho(CZ+D)^{-1}f((AZ+B)(CZ+D)^{-1})$

Here $\mu(M)$ denotes the similitude factor of $M$ and $(\lambda_{1}, \ldots, \lambda_{n})$ denote the
weight of the representation $\rho$ . In the case of one-dimensional represen-
tations, we write just $\mathrm{k}$ instead of $det^{k}$ . For a natural number $\mathrm{N}$ we put
$\Gamma_{0}(N):=$ { $\in Sp(n,$ $\mathbb{Z})|C\equiv 0$ mod $N$}; we view a Dirichlet

character mod $\mathrm{N}$ as a character of $\Gamma_{0}^{n}(N)$ by $\chi(M):=\chi(det(D)$ . Then the
space of Siegel modular forms of degree $\mathrm{n}$ , weight $\rho$ and character $\chi$ for
the congruence subgroup $\Gamma_{0}(N)$ is the space of all holomorphic functions
$f$ : $\mathbb{H}arrow V_{\rho}$ which satisfy

$f|_{\rho}M=\chi(M)f$

for $\mathrm{a}\mathrm{U}M\in\Gamma_{0}^{n}(N)$ . We denote this space by $[\Gamma_{0}^{n}(N), \rho, \chi]$ and the subspace
of cuspforms by $[\Gamma_{0}^{n}(N), \rho, \chi]_{0}$ . In the case of scalar-valued weights we just
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write $k$ instead of $det^{k}$ .

\S 2. The pullback formula for $F$

Here we just recall the result of a computation done in $[5, 7]$ . We can use
a more general framework for the moment: Let $N>1$ be arbitrary, $\chi$ an
arbitrary Dirichlet character mod $\mathrm{N}$ and $\mathrm{k}$ a positive number with $\chi(-1)=$

$(-1)^{k}$ . Then for a complex number $s$ with $k+2\Re(s)>n+1$ the degree $\mathrm{n}$

Eisenstein series

$F_{k}^{n}(Z, \chi, s):=\sum_{C,D}\chi(det(C))det(CZ+D)^{-k}\frac{\det(\mathrm{Y})^{s}}{|det(CZ+D)|^{2s}}$

converges absolutely and uniformly in domains of type $\Im(Z)\geq\lambda\cdot 1_{n}$ For a
cusp form $f\in[\Gamma_{0}^{n}(N), k, \chi]_{0}$ we consider

$\Lambda_{F}^{2n,k}(f)(z, s):=\int_{\Gamma_{0}(N)\backslash \mathbb{H}_{n}}f(w)F_{k}^{2n}(, \chi,\overline{s})det(w)^{k}d^{*}w$

The result can be formulated completely linearly, but we prefer to assume
that $f$ is an eigenform for all Hecke operators coming from Hecke pairs
$(Sp(n, \mathbb{Q}_{p}),$ $Sp(n, \mathbb{Z}_{p}))$ for all “good primes” $p$ (i.e.comprime to $N$). Then
we can associate to such an eigenform $f$ the standard L-function

$L^{N}(f, s):= \prod_{(p,N)=1}\frac{1}{(1-\chi(p)p^{-s})}\prod_{i=1}^{n}\frac{1}{(1-\chi(p)\alpha_{i}(p)p^{-s})(1-\chi(p)\alpha_{i}(p)^{-1}p^{-s})}$

Here the $\alpha_{i}$ denote the Satake parameters attached to the eigenform $f$ .
It is well known that this (partial) Euler product converges absolutely for
$\Re(s)>>0$ and has a meromorphic continuation to the whole complex plane.
We also need Hecke operators for the bad primes; we describe them in greater
detail: Let

$D=$ $(d_{i}|d_{i+1})$

be an (integral) elementary divisor matrix with $det(D)|N^{\infty}$ . Then

$GL(n, \mathbb{Z})\cdot D\cdot GL(n, \mathbb{Z})\mapsto\Gamma_{0}(N)\cdot\Gamma_{0}(N)$
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induces an embedding of a GL(n)-Hecke algebra into the Hecke algebra of
the pair ( $\Gamma_{0}(N),$ $Sp(n, \mathbb{Z}[\frac{1}{N}])$ . For $D$ as above, we define the Hecke operator
$T(D)$ on $[\Gamma_{0}(N), k, \chi]_{0}$ by

$f|T(D):= \sum_{i}\chi(\det(D)\det(\alpha_{i}))f|_{k}(\alpha_{i}\gamma_{i}$
$\sqrt\delta_{i}i)$

where
$\Gamma_{0}(N)\cdot\Gamma_{0}(N)=\bigcup_{i}$

.
$\Gamma_{0}(N)\cdot(\alpha_{i}\gamma_{i}\sqrt\delta_{i}i)$

(one may choose representatives with $\gamma_{i}=0$).
Then the formulas (2.37) and (3.23) from [7] give for an eigenfunction $f$ for
all good Hecke operators the formula $(\Re(s)>>0)$

$\Lambda_{F}^{2n,k}(f)(z, s)=\Omega(s)\frac{N^{\frac{n(n+1)-nk}{2}}}{\mathcal{L}^{N}(k+2s,\chi)}\cdot L^{N}(f|_{k}, k+2s-n)\cross$

$\sum_{D}f|_{k}(z)|U(N)\cdot T(D)det(D)^{-k-2s}$

Here $D$ runs over all elementary divisor matrices with $\det(D)|N^{\infty},$ $\Omega$ is
essentially a $\Gamma$-factor

$\Omega(s)=(-1)^{\frac{nk}{2}}2^{\frac{n(n+1)}{2}+1-2ns}\pi^{\frac{n(n+1)}{2}}\frac{\Gamma_{n}(1+s-\frac{n}{2})\Gamma_{n}(1+s\frac{n(n+1)}{2})}{\Gamma_{n}(k+s)\Gamma_{n}(k+s\frac{n}{2})}=$

and $L^{N}(s)$ comes from a normalizing factor of the Eisenstein series:

$\mathcal{L}^{N}(s, \chi)=L^{n}(s, \chi)\prod_{i=1}^{n}L^{N}(2s-2i, \chi^{2})$ .

To analyse this formula, we should mention the following well known facts

$\bullet$ $U(N)$ commutes with all the $T(D)$

$\bullet$ The $T(D)$ are weakly multiplicative, i.e.

$T(D_{1}\cdot D_{2})=T(D_{1})\circ T(D_{2})$

if $\det(D_{1})$ and $\det(D_{2})$ are coprime.
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$\bullet$ There is Tamagawa’s rationality theorem:

For $p|N$ we write $T_{p}(i_{1}, \ldots, i_{n})$ instead of$T()$ and

$\pi(p)_{n,i}:=T_{p}(1, \ldots 1;0, \ldots, 0);\vee\vee in-i$
then

$\sum_{0\leq i_{1}\leq\cdots\leq i_{n}}T_{p}(i_{1}, \ldots, i_{n})X^{i_{1}+\cdots+i_{n}}=\frac{1}{\sum_{i=0}^{n}(-1)^{i}p^{\frac{(i-1}{2}}\pi(p)_{n,i}X^{i}}.\cdot$

$\bullet$ The operator $U(N)$ is injective on $[\Gamma_{0}(N)^{n}, k, \chi]_{0;}$ we may therefore
consider its inverse $U(N)^{-1}$ on this space.

Finally let us denote by $T_{N}(s)$ the endomorphism of $[\Gamma_{0}^{n}(N), k, \chi]_{0}$ defined
by

$f \mapsto f|T_{N}(s):=f|(\prod_{p|N}\sum_{i=0}^{n}(-1)^{i}p^{\frac{i(:-1)}{2}}\pi(p)_{n,i}p^{-is}))$

and by $W_{N}$ the isomorphism $[\Gamma_{0}^{n}(N), k, \chi]_{0}\simeq[\Gamma_{0}^{n}(N), k,\overline{\chi}]_{0}$ defined by the
“EYicke involution”

$f\mapsto f|W_{N}:=f|_{k}$

Then the integral formula from above can be rewritten as

$\Lambda_{F}^{2n,k}(f|T_{N}(k+2s)^{-1}|U(N)^{-1}|W_{N}^{-1}, s)=\Omega(s)\cdot L^{n}(f, k+2s)\cdot f(z)$

Only a simple very special consequence of the formula above will be needed
later on:
Proposition: Let $\chi$ be a quadratic character. Assume that $k$ is large enough
such that

$\bullet$ The $\Gamma$ -factor $\Omega(s)$ has neither pole nor zero in $s=0$

$\bullet$ For all eigenforms $f\in[\Gamma_{0}(N), k, \chi]_{0}$ of the Hecke operators at the good
places, the Euler product $L^{N}(f, s)$ converges absolutely in $s=k$ .
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Then
$f\mapsto\Lambda_{F}^{2n,k}(F|T(N)(k)^{-1}|U(N)^{-1}|W_{N}^{-1},0)$

defines an automorphism $\Lambda$ of the space $[\Gamma_{0}^{n}(N), k, \chi]_{0}$

Remark: The conditions on $k$ are certainly satisfied for $k>2n+1$ (standard
elementary estimate [1] $)$ ; more sophisticated estimates show that $k> \frac{5n}{2}+1$

is sufficient [8]. Any progress towards Ramanujan-Petersson will improve
this bound.

\S 3. Theta series
We start with the following elementary
Observation: Let $N$ be squarefree and let that $\chi$ be a quadratic character
mod $N$ and assume that $F_{k}^{2n}(Z, \chi, 0)$ is a linear combination of theta series
attached to appropriate lattices $L_{i}$ in positive definite quadratic spaces; here
“appropriate “ means that the rank of $L_{i}$ is $2\mathrm{k}$ , the levels of $L_{i}$ divides $\mathrm{N}$ and

the nebentypus characters fit, i.e. $\chi=(^{\underline{(-1)^{k}d\epsilon t(L)}})$ :

$F_{k}^{2n}(Z, \chi, 0)=\sum_{i}a_{i}\theta^{2n}(L_{i}, Z)$

Under these assumptions, for all $f\in[\Gamma_{0}^{n}(N), k, \chi]_{0}$

$\Lambda_{F}^{2n,k}(f)=\sum_{i}\overline{a_{i}}<f,$
$\theta^{n}(L_{i})>\cdot\theta^{n}(L_{i})$

At the moment we do not have to care about the nature of the coefficients
$a_{i}$ (they will only depend on the genus of the $L_{i}$ ). The only interesting point
here is that the image of $\Lambda_{F}^{2n,k}$ consists of theta series!

Theorem ( $\mathrm{K}\mathrm{a}\mathrm{t}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{a}/\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{u}\mathrm{l}\mathrm{z}$ -Pillot and $\mathrm{H}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}/\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{o}$ ):
The assumptions above are true for $k>2n+1_{j}$ more precisely, $\underline{all}$ Siegel
Eisenstein series (of weight $k$ , level $N$ with $N$ squarefree and quadratic neben-
typus $\chi$) can be $w7\dot{\tau}tten$ as linear combinations of genus theta series.

Combining the proposition of \S 2, the observation and the Theorem from
above we obtain
Theorem: Assume that $N$ is squarefree and $k>2n+1$ ; then all cusp foms
in $[\Gamma_{0}^{n}(N), k, \chi]$ are linear combination of theta series.
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\S 4 Variants

\S 4.1 Holomorphic differential operators
The calculus of holomorphic differential operators as described in [13] and
already used in [6] allows us to extend our results to the case of vector-valued
modular forms and theta series with harmonic coefficients.
We need these differential operators here only for the “convergent case’) (i.e.
we apply it to an Eisenstein series of degree $2\mathrm{n}$ , weight $\mathrm{k}$ with $s=0$ and
$k>2n+1$ . We give a very short summary of the main facts needed here.
For details we refer to [11, 13, 6]. For a polynomial represention $\rho=det^{k}\otimes\rho 0$

there is a holomorphic differential operator $D_{k,\rho}$ acting on $\mathbb{H}_{2n}$ , which is a
polynomial in the partial derivatives, evaluated for $z_{2}=0$ . This operator
maps $C^{\infty}$-functions $F$ on $\mathbb{H}_{2n}$ to $V_{\rho}\otimes V_{\rho}$ valued functions on $\mathbb{H}_{n}\cross \mathbb{H}_{n}$ and
satisfies for all $M\in Sp(n, \mathbb{R})$

$D_{k,\rho}(F|_{k}M^{\mathrm{t}})$ $=$ $(D_{k,\rho}F)|_{\rho}^{(1)}M$

$D_{k,\rho}(F|_{k}M^{\downarrow})$ $=$ $(D_{k,\rho}F)|_{\rho}^{(2)}M$

Here the arrows $\uparrow \mathrm{a}\mathrm{n}\mathrm{d}\downarrow \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ the standard embeddings of $Sp(n)$ into
$Sp(2n)$ and on the right side the upper indices (1) and (2) indicate to which
component of $\mathbb{H}_{n}\cross \mathbb{H}_{n}$ the element $M$ has to be applied.
We apply such a differential operator to our Eisenstein series $F$ and integrate
then against a vector-valued cusp form of weight $\rho$ .
Now we denote by $\theta^{n}(m, \rho, N, \chi)$ the vector space generated by ( $V_{\rho}$-valued)
theta series for positive definite quadratic forms of rank $m=2k$ and level
dividing $\mathrm{N}$ with character $\chi$ . Then by the same kind of argument as before,
we obtain
Theorem:

$[\Gamma_{0}^{n}(N), \rho, \chi]_{0}\subset\theta^{n}(m, \rho, \chi)$ if $\frac{m}{2}\geq 2n+2$ .

\S 4.2 : The case of non-cusp forms

So far, we have only considered cusp forms (and Siegel Eisenstein series). To
include non-cusp forms, we have to consider pullbacks involving Eisenstein
$s$eries (and differential operators) for

$\mathbb{H}_{r}\mathrm{x}\mathbb{H}_{n}arrow \mathbb{H}_{n+r}$ $(0\leq r\leq n)$
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Also, there are several Siegel $\phi$-operators to be considered, therefore the
Eisenstein series of type $F$ will not be sufficient, we will need some variants
of them (still with the same kind of Hecke operators). We arrive at
Theorem:

$[\Gamma_{0}^{n}(N), \rho, \chi]=\theta^{n}(m, \rho, \chi)$ if $\frac{m}{2}\geq 2n+2$ .

\S 5 The case of binary quadratic forms
We include this section for two reasons; first of all (as already mentioned
in the introduction) it is one of the cases where our method really uses the
genus theta series (and we are out of the range of convergence of both the
Eisenstein series and the Euler product); the second reason is that the result
(about binary theta series of degree one) seems not to be known to many
number theorists.

Here $p$ should be a prime congruent to 3 modulo 4 and $\chi_{p}:=(_{\overline{p}})$ the
quadratic character mod $\mathrm{p}$ . Then the Eisenstein series $F_{1}^{2}(Z, \chi_{p}, s)$ has a
pole of first order in $s_{0}= \frac{1}{2}$ and

$F_{p}(Z):={\rm Res}_{s=s_{0}}F_{1}^{2}(Z, \chi_{p}, s)$

defines a holomorphic modular form of weight 1; moreover there is a constant
$c_{p}\neq 0$ such that

$F_{p}=c_{p} \sum_{i=1}^{h(-p)}\theta^{2}(S_{i}, Z)$

where $S_{i}$ runs over representatives of the integral equaivalence classes of
binary quadratic forms of discriminant $-p$ ; most of these statements are
part of the “folklore”, for an explicit statement we refer to [15].

Theorem: Assume that $f\in[\Gamma_{0}(p), 1, \chi_{p}]_{0}$ is an eigenform of all Hecke
operators. Then

$f$ is a linear combination of binary theta series $\Leftrightarrow$

$L^{p}(f, s)$ has a simple pole in $s=1$ .

As before, using differential operators, we obtain
Theorem’ Assume that $f\in[\Gamma_{0}(p), k, \chi_{p}]_{0}$ is a Hecke eigenform for all Hecke
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operators. Then

$f$ is a linear combination of binary theta series
(possibly with harmonic polynomials)

$\Leftrightarrow$ $L^{p}(f, s)$ has a simple pole in $s=1$ .

In principle, such statements are known from Gelbart-Jacquet [10]. One can
easily reformulate this in terms of the complete L-function.
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