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ABSTRACT. Let $\mathrm{O}$ be the ring of integers of a totally real number field $E$ and set $\mathrm{G}:=\mathrm{B}\epsilon\epsilon_{B}/0(\mathrm{G}\mathrm{L}_{2})$ . Fix
an ideal $\mathrm{c}\subset$ O. For each ideal $\mathrm{m}\subset \mathrm{O}$ let $T(\mathfrak{m})$ denote the mh Hecke operator associated to the standard
compact open subgroup $U_{0}(\mathrm{c})$ of $\mathrm{G}(\mathrm{A}^{f})$ . Setting

$X_{0}(\mathrm{c}):=\mathrm{G}(\mathbb{Q})\backslash \mathrm{G}(\mathrm{A})/K_{\infty}U_{0}(\mathrm{c})$,
where $K_{\infty}$ is a certain subgroup of $\mathrm{G}(\mathrm{R})$ , we use $T(\mathrm{m})$ to deflne a Hecke cycle

$Z(\mathfrak{m})\in IH_{2[E:\mathrm{Q}]}(X_{\mathit{0}}(\mathrm{c})\mathrm{x}X\mathit{0}(\mathrm{c}))$ .
Here $IH$. denotes intersection homology. We use Zucker$‘ \mathrm{s}$ conjecture (proven by Looijenga and indepen-
dently by Saper and Stern) to obtain a formula relating the intersection numbers $Z(\mathrm{m})\cdot Z(\mathfrak{n})$ to the trace
of $*\tau(\mathrm{m})\mathrm{o}T(\mathfrak{n})\infty \mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}$ as an endomorphism of the space of Hilbert cusp forms on $U0(\mathrm{c})$ .

1. SYNOPSIS

This note is a synopsis of the main results of the forthcoming paper [Get] as described during a talk at
RIMS. We begin by recalling the main theorem of Hirzebruch and Zagier’s famous paper [HZ76]. In their
paper they examine a set of pairs of CM points, namely the intersection points of certain “Hirzebruch-Zagier
cycles“ $Z_{m}$ which are the the closures of images of modular “embeddings” of the usual (afflne) modular curve
$\mathrm{Y}_{0}(p)$ and certain compact Shimura curves into the Hilbert modular surface $\mathrm{S}\mathrm{L}_{2}(\mathrm{O}_{\mathrm{Q}(\sqrt{\mathrm{p}})})\backslash \mathfrak{H}^{2}$ in a toroidal
compactification. Here $\mathfrak{H}$ is the usual complex upper half plane, $p\equiv 1$ (mod 4) is a prime and $O_{\mathrm{Q}(\sqrt{\mathrm{p}})}$ is
the ring of integers of $\mathbb{Q}(\sqrt{p})$ . In particular, if $Z_{m}$ . $Z_{n}\dot{\mathrm{d}}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the “number of intersections” of $Z_{m}$ and $Z_{n}$ ,
then the bulk of [HZ76] is devoted to proving that for each $m\in \mathbb{Z}_{>0}$ the generating series

(1.1) $\sum_{n=0}^{\infty}(Z_{m}\cdot Z_{n})q^{n}$

is a weight 2 modular form for $\Gamma_{0}[p$) with character (4). Here $Z_{m}\cdot Z_{0}$ is essentially the volume of $Z_{m}$ and
$q:=\mathrm{e}^{2\pi}:z$ for $z\in \mathfrak{H}$ .

In this paper we provide a kind of generalization of Hirzebruch-Zagier. Since their seminal work, a number
of cohomology theories useful for studying topological intersection theory on Hermitian locally symmetric
spaces such as Hilbert modular varieties have developed, including intersection homology, $L^{2}$-cohomology,
and Harder’s theory of Eisenstein cohomology. These theories have intrinsic interest, but our treatment of
them is utilitarian; they provide a natural hamework for studying the interplay between intersection theory
on modular varieties and the coefficients of modular forms. Our goal is to revisit Hirzebruch-Zagier armed
with these theories with the idea of proving comparison theorems for pairings that arise naturally in the
context of intersection homology on the one hand, and Hecke algebras on the other.

Concretely, we consider the graphs of Hecke correspondences on the product of two Hilbert modular
varieties associated to totally real fields of arbitrary dimension. In order to make this precise, we must
develop some notation: Let $E$ be a totally real number field with degree $[E:\mathbb{Q}]=n$ , ring of integers $O$ , and
narrow class number $h^{+};$ thus $h^{+}$ is the order of the ray class group modulo $\beta_{\infty}$ , the product of the infinite
places. To every ideal $\mathrm{c}\subset \mathrm{O}$ we associate the Hilbert modular variety

$\mathrm{Y}_{0}(\mathrm{c}):=\bigcup_{j=1}^{h^{+}}\Gamma_{j}\backslash \mathfrak{H}^{n}$
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via a well-known construction (see $[\mathrm{v}\mathrm{d}\mathrm{G}88,$ \S I.7]). This variety has $h^{+}$ components, each of complex dimen-
sion $n$ (the $\Gamma_{j}$ are discrete subgroups of $(\mathrm{G}\mathrm{L}_{2}(\mathbb{R})^{+})^{n}$). For convenience, denote its Baily-Borel compactifi-
cation by $X_{0}(\mathrm{c})$ . We then define, for every ideal $\mathrm{m}\subset O$ , a Hecke cycle

$Z(\mathrm{m})\in IH_{2n}(X_{0}(\mathrm{c})\mathrm{x}X_{0}(\mathrm{c}))$ .
Here $IH$. denotes Goresky and $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{P}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}’ \mathrm{s}$ intersection homology theory (with middle perversity). The
class $Z(\mathrm{m})$ is determined by the Hecke operator $T(\mathrm{m})$ for $X_{0}(\mathrm{c})$ .

Recall the standard compact open subgroups $U_{0}(\mathrm{c})\leq({\rm Res}_{E/\mathrm{Q}}\mathrm{G}\mathrm{L}_{2})(\mathrm{A}^{f})$ of Hecke type, where $\mathrm{c}\subset \mathrm{O}$ is
an ideal as above and $\mathrm{A}^{j}$ denotes the finite ad\‘eles of Q. Let $\mathrm{I}_{t}$ denote the Hecke algebra associated to
$U_{0}(\mathrm{c})$ ; thus $‘ \mathrm{F}_{\mathrm{c}}$ acts on the space $M(U_{0}(\mathrm{c}))$ of weight $(2, \ldots, 2)$ Hilbert modular forms on $U_{0}(\mathrm{c})$ . Moreover,
this action preserves the subspace $S(U_{0}(\mathrm{c}))$ of Hilbert cusp forms. There are two natural bilinear pairings
associated to $\mathrm{T}‘$ . The first is just

$\prime \mathrm{F}_{\mathrm{c}}\mathrm{x}’\mathrm{F}_{\mathrm{c}}$ $arrow$ $\mathbb{C}$

(1.2) $(T_{1}, T_{2})$ $rightarrow$ Tr $( *\tau_{1}\circ T_{2})$ ,

where we view $T_{1}$ and $T_{2}$ as endomorphisms of $S(U_{0}(\mathrm{c})_{\text{ノ}}\backslash$ and the adjoint is taken with respect to the Petersson
inner product. Secondly, attached to each element $\sum c_{\mathrm{m}}T(\mathrm{m})$ of the subspace of $\mathrm{T}_{\mathrm{c}}$ spanned by the $T(\mathrm{m})$ ,
we have the cycle $\sum c_{\mathrm{m}}Z(\mathrm{m})$ , and thus can consider the pairing on these cycles induced by the generalized
Poincar\’e pairing

$IH_{2n}(X_{0}(\mathrm{c})\mathrm{x}X_{0}(\mathrm{c}))\mathrm{x}IH_{2n}(X_{0}(\mathrm{c})\mathrm{x}X_{0}(\mathrm{c}))arrow H_{0}(X_{0}(\mathrm{c})\mathrm{x}X_{0}(\mathrm{c}))arrow$ C.
Theorem 1.1 below, the main result of this work, is essentially a comparison of these two pairings. To

state it, we set notation for the finite sum
(1.3)

$\sigma_{\mathrm{c}}’(a):=.\dotplus^{\supset l}\sum_{=\mathcal{O}}.\mathrm{N}(n^{-1}a)$

,

where $\mathrm{N}(\mathfrak{n}):=\mathrm{N}\mathrm{o}\mathrm{r}\mathrm{m}_{E/\mathrm{Q}}(\mathfrak{n})$ . The reader may recognize $\sigma_{\mathrm{c}}’(a)$ as a generalized divisor function that appears
in the Fourier coefficients of a certain Eisenstein series. One can also relate $\sigma’‘(\mathrm{m})$ in a simple manner to the
volume of $Z(\mathrm{m})$ .

We are now ready to state Theorem 1.1. In our setting, in which we consider the product of two copies of
a Hilbert modular variety $X_{0}(\mathrm{c})$ associated to a totally real number field $E$ of arbitrary degree $n$ and narrow
class number $h^{+}$ , this theorem gives a formula for $Z(\mathrm{m})\cdot Z(\mathfrak{n})$ in terms of traces of Hecke operators and
coefficients of Eisenstein series:

Theorem 1.1. Let $\mathrm{m},$
$\mathfrak{n}\subset O$ be ideals. If $\mathrm{m},$

$\mathfrak{n}$ are ideals that are equivalent in the ray class group modulo
$\beta_{\infty}$ , then we have the formula

$Z(\mathrm{m})\cdot Z(\mathfrak{n})=2^{n}((-1)^{n}\mathrm{R}(^{*}T(\mathrm{m})\circ T(\mathfrak{n}))+h^{+}\sigma_{\mathrm{c}}’(\mathrm{m})\sigma_{\mathrm{c}}’(\mathfrak{n}))$ .
Otherunse, $Z(\mathrm{m})\cdot Z(\mathfrak{n})=0$ .
Remark. We remark that the method of proof of Theorem 1.1, which is different from the approach of
Hirzebruch and Zagier, boils down to a formal argument using a Lefschetz coincidence formula in intersection
homology and Zucker’s conjecture (now a theorem). Both of these hold for arbitrary Hermitian locally
symmetric varieties and cohomology groups with coefficients in a representation, which indicates that some
analogue of the formula in Theorem 1.1 should hold in great generality.

From the shape of the formulae in Theorem 1.1, one would expect that some analogue of the generating
series (1.1) would be modular. This is indeed the case. More precisely, we have the following:

Theorem 1.2. If $S(U_{0}(\mathrm{c}))=S^{n\epsilon w}(U_{0}(c\rangle)$ and either $[E:\mathbb{Q}]>1$ or $\mathrm{c}\neq O$ , then for each (integral) ideal
$\mathrm{m}\subset O$ the formal Fourier expansion

$\Phi_{\mathfrak{n}\iota},‘():=\delta(\mathrm{c})(Z(\mathrm{m})\cdot Z(0))(y)|y|+\sum_{0\ll\epsilon\in E}Z(\mathrm{m})\cdot Z(\xi y)|y|e(\mathrm{t}\mathrm{r}(\xi iy_{\infty}))\chi_{E}(\xi x)$

defines an element of $M(U_{0}(\mathrm{c}))$ . Here we set $Z(a)=0$ if the ideal associated to $a$ is not integral, and $0\ll\xi$

means that $\xi$ is totally positive.
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Here

$\delta(\mathrm{c}):=\{$

1 if $\mathrm{c}=O_{E}$

$0$ otherwise

and $S^{\mathrm{n}\mathrm{e}\mathrm{w}}(U_{0}(\mathrm{c}))$ is the new subspace (also known as the primitive subspace, see [Shi78, p. 652]). The
constant term $(Z(\mathrm{m})\cdot Z(\mathrm{O}))(y)$ is essentially the volume of $Z(\mathrm{m})$ in one component and zero elsewhere.

Remark. One should compare Theorem 1.2 with the formula for the generating series (1.1) obtained by
Zagier in [Zag76], which we now recall. Let $(, )$ denote the Petersson inner product (we won’t specip
the normalization), and denote by $f\wedge$ the Doi-Naganuma lift of an elliptic modular form $f$ for $\Gamma_{0}(p)$ with
nebentypus (4) (see [Zag76]). Rom Zagier’s results, one can reformulate the main identity of [HZ76] as

(1.4) $\sum_{n=0}^{\infty}(Z_{m}\cdot Z_{n})q^{n}=\pi_{+}(t(m)E_{2,\mathrm{p}}(z)-\frac{4}{p^{2}}\sum_{n=1}^{\infty}(\sum\frac{(ff)\wedge,\wedge}{(f,f)^{2}}a_{f}(m)a_{f}(n))\prime q^{n})$ .

Here the prime indicates the summation over the basis of normalized weight two elliptic newforms (i.e.
eigenforms for all the Hecke operators)

$f(z):= \sum_{n=1}^{\infty}a_{[}(n)q^{n}$

for $\Gamma_{0}(p)$ with character (2.), $\pi_{+}$ is the canonical projection to the plus space, $t(m)$ is a rational number
depending only on $m$ , and $E_{2,p}$ is a weight two Eisenstein series for $\Gamma_{0}(p)$ with character (4) (see [Zag76,
(98-99) $])$ . In the course of the proof of Theorem 1.2, we shall see that $\Phi_{\mathrm{m},\mathrm{c}}$ can be similarly decomposed as
the sum of an Bisenstein series and a sum of weighted newforms.

We can rephrase Theorem 1.2 in the language of modular forms as follows: let $M(\Gamma_{j})$ be the space of
classical Hilbert modular forms of weight $(2, \ldots, 2)$ for $\Gamma_{j}$ . Moreover, let $s_{1},$ $\ldots,$ $s_{h^{+}}$ be id\‘eles of $E$ with
$(s_{j})_{\nu}=1$ for each infinite place $\nu$ such that the the fractional ideals associated to $s_{1},$ $\ldots,$ $s_{h+}$ form a set
of representatives for the classes in the ray class group modulo $\beta_{\infty}$ . Using this notation we can phrase
Corollary 1.2 in terms of classical Hilbert modular forms simply by inverting the formulae for converting
classical Fourier expansions to adelic Fourier expansions:

Corollary 1.3. Suppose that $\mathrm{m}$ is in the ray class of $s_{j}^{-1}$ modulo $\beta_{\infty}$ . If $S(U_{0}(\mathrm{c}))=S^{\mathrm{n}\mathrm{e}\mathrm{w}}(U_{0}(\mathrm{c}))$ and either
$[E:\mathbb{Q}]>1$ or $\mathrm{c}\neq O$ , then

$\delta(\epsilon)\mathrm{N}(s_{j})(Z(\mathrm{m})\cdot Z(0))(s_{j}^{-1})+\sum Z(\mathrm{m})\cdot Z(\xi s_{j})\mathrm{N}(s_{j})e(\mathrm{t}\mathrm{r}(\xi z))\in M(\Gamma_{j}(\mathrm{c}))$ .
$‘ 0\mathrm{C}^{\cdot}\xi\in j$

Remark. The case $n=1,$ $E=\mathbb{Q},$ $\mathrm{c}=\mathbb{Z}$ is not covered by Theorem 1.2 or Corollary 1.3. However, using
Theorem 1.1 in this case and an easy analogue of the argument given in [Get, \S 8], one can prove that

$- \frac{1}{24}E_{2}(z):=-\frac{1}{24}+\sum_{n\geq 1}(\sum_{d|n}d)e(nz)=\mathrm{N}(s_{j})(Z(\mathrm{r}\mathfrak{n})\cdot Z(0))(s_{1}^{-1})+\sum_{\mathrm{o}\dot{\mathrm{e}}^{1}}‘ Z(\mathrm{m})\cdot Z(\xi s_{1}^{-1})\mathrm{N}(s_{j})e(\mathrm{t}\mathrm{r}(\xi z))\epsilon \mathrm{e}$ .

Here we choose $s_{\mathit{1}}=\mathbb{Z}$. The function $E_{2}(z)$ is not a modular form (the space $M(\mathrm{S}\mathrm{L}_{2}(\mathrm{Z}))=M_{2}(\mathrm{S}\mathrm{L}_{2}(\mathrm{Z}))$ is
zero dimensional). However, this “quasi-modular” function is often useful in the classical theory of elliptic
modular forms. Furthermore, it is in some sense the first nontrivial example of a p–adic modular form (see
[Ser73] $)$ .

Under the assumptions of Theorem 1.2, one can use the automorphic forms $\Phi_{\mathfrak{n},\mathrm{c}}$, to define a $\mathrm{C}$-linear map
$\Psi$ by

$\Psi$ : $HC(()$ $rightarrow$ $M(U_{0}(\mathrm{c}))$ $rightarrow$ $S(U_{0}(\mathrm{c}))$

(1.5)
$\sum\alpha_{\mathrm{m}}Z(\tau \mathfrak{n}\rangle$ $rightarrow$ $\sum\alpha_{m}\Phi_{\mathrm{r}},,$

‘

where $HC(\epsilon)$ is the subspace of $IH_{2n}(X_{0}(\mathrm{t})\mathrm{x}X_{0}(\epsilon))$ spanned by the Hecke cycles $Z(\mathrm{m})$ as $\mathrm{m}$ varies over
$\mathrm{t}\mathrm{k}\mathrm{e}$ ideals of $O$ and the second map is the canonical projection. In [Get, \S 8] we prove that this map has full
image:
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Theorem 1.4. If $S^{\mathrm{n}\mathrm{e}\mathrm{w}}(U_{0}(\epsilon))=S(U_{0}(\epsilon))$ and either $\mathrm{c}\neq O$ or $\mathrm{c}=O$ and $n\neq 1$ , then the map
$\Psi$ : $HC(\epsilon)arrow S(U_{0}(\epsilon))$

of (1.5) is surjective.

Here $S^{\mathrm{n}\mathrm{c}\mathrm{w}}(U_{0}(\mathrm{c}))$ denotes the new subspace (see [Shi78]).
Now that we have stated the main theorems of this paper, we pause to point the reader to some related

results in the literature:

Remark.
(1) Kudla and Millson prove theorems similar to Theorem 1.2 in their study of special cycles on orthog-

onal and unitary groups (see [KM90]).
(2) Arithmetic analogues of (1.1) and Theorem 1.2 have appeared in $([\mathrm{B}\mathrm{K}], [\mathrm{K}\mathrm{K}])$ and the program of

Kudla, Rapoport, and Yang (see [Kud04], [RY04]).
(3) Lefschetz fixed point numbers of Hecke correspondences on certain Hermitian locally symmetric vari-

eties in weighted cohomology and $L^{2}$-cohomology are computed in [KM97] and [Ste89], respectively.
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