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1 Introduction and Main results
We consider the following map $\Psi^{(2n-1)}$ from elliptic modular forms to Siegel modular
forms of half-integral weight, which is the decomposition of the following three maps:

$\Psi^{(2n-1)}$ : $S_{2k}(SL_{2}(\mathbb{Z}))arrow S_{k+n}(\Gamma_{2n})arrow J_{k+n,1}^{\mathrm{c}usp}(\Gamma_{2n-1}^{J})arrow S_{k+n-\frac{1}{2}}^{+}(\Gamma_{0}^{(2n-1)}(4))$ .

(For the notations, see below.) To study this map was suggested to the author by
Professor T. Ikeda.

The purpose of this article is to show the following two results :

1. The map $\Psi^{(2n-1)}$ maps normalized Hecke eigenforms to Hecke eigenforms.
Moreover, the $\mathrm{L}$-function of a Hecke eigenform and its image under $\Psi^{(2n-1)}$

are related by an explicit formula. (cf. Theorem 1.)

2. The Fourier-Jacobi coefficients of the image under the Ikeda lifting can be writ-
ten explicitly in terms of the first Fourier-Jacobi coefficient, by using certain
Hecke operators which increase the index of Jacobi forms. (cf. Theorem 2.)

We remark that the second statement was already known to Yamazaki [10] in
the case of Siegel-Eisenstein series. In fact, we use his theorem to show the second
statement.

We explain our results more precisely. Let $k+n(k, n\in \mathrm{N})$ be an even integer
and let $f\in S_{2k}(SL(2, \mathbb{Z}))$ be a normalized Hecke eigenform of weight $2k$ . We denote
by $I(f)\in S_{k+n}(Sp(2n, \mathbb{Z}))$ the image of $f$ under the Ikeda lifting.

We put $e(*):=\exp(2\pi i*)$ , and we denote by $\hslash_{n}$ the Siegel upper half space of
degree $n$ . We denote by $\phi_{r}$ the r-th Fourier-Jacobi coefficient of $I(f)$ , namely,

$I(f)((^{\tau z}{}^{t}z\tau’))$ $=$
$\sum_{r>0}\phi_{r}(\tau, z)e(r\tau’)$

$((_{\iota_{z\tau}^{\mathcal{T}z}}, )\in \mathfrak{H}_{2n}$ , $\tau\in fl_{2n-1}$ , $\tau’\in \mathfrak{H}_{1})$ ,

where $\phi_{r}\in J_{k+n,r}^{cusp}(\Gamma_{2n-1}^{J})$ is a Jacobi cusp form of weight $k+n$ of index $r$ of de-
gree $2n-1$ . Associated for $f$ we have the Siegel modular form (in the plus space)
$\Psi^{(2n-1)}(f)\in S_{k+n-1/2}^{+}(\Gamma_{0}^{(2n-1)}(4))$ of weight $k+n-1/2$ of degree $2n-1$ , which
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corresponds to the first Fourier-Jacobi coefficient $\phi_{1}\in J_{k+n,1}^{cusp}(\Gamma_{2n-1}^{J})$ of $I(f)$ by the
isomorphism between the space of Jacobi forms of index 1 and the plus space. (cf. [3],
[6], [9], see also subsection 2.3.)

We have the following two Theorems.

Theorem 1. Let $f\in S(SL_{2}(\mathbb{Z}))$ be a normalized Hecke eigenform. Then the form
$\Psi^{(2n-1)}(f)$ is a Hecke eigenform, and its $L$-function satisfies the following identity
up to the Euler 2-factors:

$L(s, \Psi^{(2n-1)}(f))$ $= \prod_{i=0}^{2n-2}L(s-i, f)$ .

Here $L(s, f)$ is the usual $L$-function of $f$ , and the $L$-function of $\Psi^{(2n-1)}(f)$ is the
one introduced by Zhuravlev [$\mathit{1}\mathit{2}J,$ [$\mathit{1}\mathit{3}J$ (and will be recalled in subsection 2.2.)

We denote by $\alpha_{p}$ the Satake parameter of $f$ , which is determined by the identity
$\alpha_{p}+\alpha_{p}^{-1}=a_{f}(p)p^{-k+1/2}$ , where $a_{f}(p)$ is the p-th Fourier coefficient of $f$ . We obtain
the following Theorem.

Theorem 2. Let $f\in S(SL_{2}(\mathbb{Z}))$ be a normalized Hecke eigenform. Then for any
positive integer $r$ , the r-th Fourier-Jacobi coefficient $\phi_{r}$ of $I(f)$ satisfies the identity:

$\phi$, $=$ $\phi_{1}|_{k+n}D_{2n-1}(r, \{\alpha_{\mathrm{p}}\}_{p})$ ,

where the $D_{2n-1}(r, \{\alpha_{p}\}_{p})$ are defined by

$\sum_{r>0}\frac{D_{2n-1}(r,\{\alpha_{p}\})}{r^{s}}=$

$\prod_{p:pr1me}(1-G_{p}(\alpha_{p})T(p)p^{\frac{1}{2}(n-1)(n+2)-\delta}+T_{0,2n-1}(p^{2})p^{2n(2n-1)-1-2s})^{-1}$

Here $T(p)$ and $T_{0,2n-1}(p^{2})$ are Hecke operators (introduced by Yamazaki $[\mathit{1}\mathit{0}J, [\mathit{1}\mathit{1}]$ ,
and whose precise definition will be recalled in subsection 2.3), and for each $p$, we
use

$G_{\mathrm{p}}(\alpha_{p})$ $= \prod_{i=1}^{n-1}\{(1+\alpha_{p}p^{\frac{1}{2}-i})(1+\alpha_{p}^{-1}p^{1}\pi^{-i})\}^{-1}$ ,

for $n>1,$ $G_{p}(\alpha_{\mathrm{p}})=1$ for $n=1$ .

We remark that the above Theorem gives a generalization of Yamazaki’s theorem
(see subsection 2.3) on Siegel cusp forms obtained from elliptic modular forms by
Ikeda lifting.

The main tool of the proof of the above theorems is the study of the Fourier
coefficients of $I(f)$ using Eisenstein series.
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2 Notations and proofs

2.1 Ikeda lifting
The existence of the Ikeda lifting was first conjectured by Duke-Imamoglu and was
shown by Ikeda [7]. Following [7], we shall introduce some notations. Let $f$ be a
cusp form of weight $2k$ with respect to $SL(2, \mathbb{Z})$ , assume that $f$ is a normalized
Hecke eigenform. We fix a positive integer $n$ which satisfies $k+n\in 2\mathbb{Z}$ . For a
positive-definite half-integral symmetric matrix $B$ , we put

$A(B):=c( \delta_{B})f_{B}^{k-1/2}\prod_{p}\tilde{F}_{p}(B, \alpha_{p})$
,

where $c(\delta_{B}),$ $f_{B}$ are certain constants and $\tilde{F}_{p}(B, X_{p})$ is a certain Laurent-polynomial
of $X_{p}$ which corresponds to Siegel series, and where $\alpha_{p}$ is the Satake parameter of $f$ .
More precisely, $\delta_{B}$ is the absolute value of the discriminant of the quadratic field
$\mathbb{Q}(\sqrt{(-1)^{n}\det(2B)})$ , and $f_{B}$ is the positive integer which is determined by the iden-
tity $\det(2B)=\delta_{B}f_{B}^{2}$ , and $c(\delta_{B})$ is the $\delta_{B^{-}}\mathrm{t}\mathrm{h}$ Fourier-coefficient of the modular form
of half-integral weight which corresponds to $f$ under the Shimura correspondence.
It is known that the Laurent-polynomial $\tilde{F}_{p}(B, X_{p})$ satisfies the functional equation
$\tilde{F}_{p}(B, X_{p})=\tilde{F}_{p}(B, X_{p}^{-1})$ for any $B$ .

The following Theorem is known.

Theorem 3 (Ikeda [7]). The form $(I(f))( \tau):=\sum_{B}A(B)e(B\tau)(\tau\in \mathfrak{H}_{2n})$ is a

Siegel modular form of weight $k+n$ of degree $2n$ . Moreover $I(f)$ is a Hecke eigen-

form, and its standard $L$-function satisfies $L(s, I(f))= \prod_{1i=\wedge}^{2n}L(s+k+n-i, f)$ .

2.2 Jacobi forms of higher degree and Siegel modular forms
of half-integral weight

We need some notations to describe the definitions of Jacobi forms and the plus
space. Let $G_{n}^{J}\subset Sp(n+1, \mathbb{R})$ be the Jacobi group defined by

$G_{n}^{J}:=$ {$M\in Sp(n+1,$ $\mathbb{R})|$ The last row of $M$ is $(0,$
$\ldots,$

$0,1)$ }

We set $\Gamma_{n}^{J}:=G_{n}^{J}\cap Sp(n+1, \mathbb{Z})$ .
Let $\phi(\tau, z)$ be a holomorphic function on $fl_{n}\cross \mathbb{C}^{n}$ , where we regard $z$ as a column

vector. By definition, we call the form $\phi$ a Jacobi cusp form of weight $k$ of index
$m$ of degree $n$ , if the form $\tilde{\phi}():=\phi(\tau, z)e(m\tau’)(\in fl_{n+1})$ satisfies the
identity $\tilde{\emptyset}|_{k\gamma}=\tilde{\phi}$ for any $\gamma\in\Gamma_{n}^{J}$ and satisfies the well-known cusp condition. (In the
case of $n>1$ the cusp condition is automatically fulfilled by the Koecher-Principle.
(cf. Ziegler [14].) We denote by $J_{k,m}^{\mathrm{c}usp}(\Gamma_{n}^{J})$ the space of Jacobi forms of weight $k$ , of
index $m$ and of degree $n$ .
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The plus space is a certain subspace of Siegel modular forms of half-integral
weight introduced by Kohnen [8] in the case of degree 1, and generalized for higher
degree by Ibukiyama [6]. We denote by $S_{k-1/2}(\Gamma_{0}^{(n)}(4))$ the space of cusp forms of
Siegel modular forms of weight $k-1/2$ of degree $n$ with level 4. We denote the
plus space of weight $k-1/2$ of degree $n$ by $S_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4))$ , which is the subspace
of $S_{k-1/2}(\Gamma_{0}^{(n)}(4))$ defined by

$S_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4))=\{F\in S_{k-1/2}(\Gamma_{0}^{(n)}(4))|\exists_{\lambda\in \mathbb{Z}^{n}\mathrm{s}.\mathrm{t}N+\lambda^{t}\lambda\in 4\mathrm{S}\mathrm{y}\mathrm{m}_{n}^{*}}A(F,N)=0\mathrm{u}\mathrm{n}1\mathrm{e}\mathrm{s}\mathrm{s}\}$ ,

where $A(F, N)$ is the $\mathrm{N}$-the Fourier coefficient of $F$ , and where $\mathrm{S}\mathrm{y}\mathrm{m}_{n}^{*}$ denotes the
set of all half-integral symmetric matrices of size $n$ .

It is known that the space of Jacobi cusp forms of index 1 of weight $k$ of de-
gree $n$ is linearly isomorphic to the plus space of degree $n$ of weight $k-1/2$ . (cf.
Eichler-Zagier [3] for $n=1$ , Ibukiyama [6] for $n>1$ , and also Takase [9] by using
representation theory.) This isomorphism is Hecke-equivalent. By virtue of this
isomorphism, the Fourier coefficients of Jacobi forms of index 1 coincide with those
of Siegel modular forms of half-integral weight.

Let $G\in S_{k-1/2}(\Gamma_{0}^{(n)}(4))$ be a Hecke eigenform. We define $L(s, G)$ by

$L(s, G):= \prod_{p\neq 2}\prod_{i=1}^{n}\{(1-\alpha_{i,p}p^{-s+k-3/2})(1-\alpha_{i,p}^{-1}p^{-s+k-3/2})\}^{-1}$ ,

where $\alpha_{i,p}^{\pm}$ are the Satake parameters of $G$ (cf. Zhuravlev [12], [13].)

2.3 Hecke operators acting on the space of Jacobi forms and
Yamazaki’s theorem

We define $GSp^{+}(n, \mathbb{R})$ by:

$GSp^{+}(n, \mathbb{R}):=$ { $M\in GL(2n,$ $\mathbb{R})|MJ_{n}^{t}M=\nu J_{n}$ for some $\nu>0$ },

where $J_{n}=(_{-1_{n}0_{n}^{n}}^{0_{n}1})$ , and we write $\nu(M)=\nu$ . For a holomorphic function
$F$ on $\hslash_{n}$ and for $M=(_{CD}^{AB})\in GSp^{+}(n, \mathbb{R})$ , we define the operator $|_{k}$ by :
$(F|_{k}M)(\tau):=\det(M)^{\frac{k}{2}}\det(C\tau+D)^{-k}F((A\tau+B)(C\tau+D)^{-1})$ .

We let $\rho$ : $GSp^{+}(n, \mathbb{R})arrow GSp^{+}(n^{\lrcorner-}1, \mathbb{R})$ by $\rho(M)$ $:=$, where

$M=(_{CD}^{AB})\in GSp^{+}(n, \mathbb{R})$ .
Let $\phi\in J_{k,m}^{\mathrm{c}usp}(\Gamma_{n}^{J})$ be a Jacobi form of weight $k$ of index $m$ of degree $n$ . For

$M\in GSp^{+}(n, \mathbb{Q})\cap M(2n, \mathbb{Z})$ , we define the action of the double coset $\Gamma_{n}^{J}\rho(M)\Gamma_{n}^{J}$

by
$\phi|\Gamma_{n}^{J}\rho(M)\Gamma_{n}^{J}:=\sum_{i}\phi|_{k}M_{i}$

, where $\Gamma_{n}^{J}\rho(\Lambda \text{ノ}f)\Gamma_{n}^{J}=\bigcup_{i}\Gamma_{n}^{J}M_{i}$
is the right $\Gamma_{n}^{J}$-coset

decomposition of $\Gamma_{n}^{J}\rho(M)\Gamma_{n}^{J}$ .
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Following Ibukiyama [6] and Yamazaki [10], we define three operators $T_{s}(p^{2})$

$(s=0, \ldots, n)$ (cf. [6]), $T(p)$ and $T_{0,n}(p^{2})$ (cf. [10]) as follows :

$\phi|T_{s}(p^{2})$

$:=p^{kn} \sum_{\lambda,\mu\in(\mathrm{Z}p/Z)^{n}}e(^{t}\lambda\tau\lambda+2^{t}z\lambda)$
$\sum$

$(_{0D}^{AB})\in Sp(n,\mathrm{Z})\backslash Sp(n,\mathrm{Z})k_{\mathrm{p},s}Sp(n,\mathrm{Z})$

$\cross\det(D)^{-k}\phi((A\tau+B)D^{-1},p^{t}D^{-1}(z+\tau\lambda+\mu))$ ,
$\phi|T(p)$ $:=p^{-n(n+1)/2}$ $\sum$ $((\phi(\tau, z)e(m\tau’))|_{k}\rho(_{0D}^{AB}))e(-mp\tau’)$ ,

$(_{0D}^{AB})\in Sp(n,\mathrm{Z})\backslash Sp(n,\mathrm{Z})M_{\mathrm{p}}Sp(n,\mathrm{Z})$

$\phi|T_{0,n}(p^{2})$ $:=p^{-n(n+1)}((\phi(\tau, z)e(m\tau’))|_{k})e(-mp^{2}\tau’)$ ,

where $k_{p,s}=$ , and where $M_{p}$ $:=$ .

Then we have the following Lemma.
Lemma 1. For each $\phi\in J_{k,m}^{\sigma usp}(\Gamma_{n}^{J})$ and for each $p$ the following identity hold:

$\phi|T_{s}(p^{2})$ $=$ $c_{1}(p)\phi|\Gamma_{n}^{J}\overline{k_{p,s}}\Gamma_{n}^{J}$ ,

$\phi|T(p)$ $=$ $c_{2}(p)\phi|\Gamma_{n}^{J}\Gamma_{n}^{J}$ ,

$\phi|T_{0,n}(p^{2})$ $=$ $c_{3}(p)\phi|\Gamma_{n}^{J}\Gamma_{n}^{J}$ ,

where $\overline{k_{p,s}}=diag(1_{n-s}, p1_{\theta}, p, p^{2}1_{n-s}, p1_{s}, p)$ . Here the $c_{j}(p)$ are constants (not
depending on $\phi.$)

Proof. This follows from a direct calculation of representatives of left $\Gamma_{n}^{J}$-coset of
the double-cosets of the right hand side.

We call a Jacobi form $\phi$ a Hecke eigenform if $\phi$ is an eigenform for any $T_{s}(p^{2})$ .
The above operators also act on the space of non-cusp forms. As for Siegel-

Eisenstein series, the following Theorem is known.
Theorem 4 (Yamazaki [10]). Let $k>2n+1$ be an even integer and for $r>0$
let $e_{k,r}^{(2n-1)}$ be the r-th Fourier-Jacobi coefficient of Siegel Eisenstein series $E_{k}^{(2n)}$ of
weight $k$ of degree $2n(i.e. E_{k}^{(2n)}((_{\iota_{z\tau}^{\tau z}}, ))= \sum_{r\geq 0}e_{k,r}^{(2n-1)}(\tau, z)e(r\tau’).)$ Then we have

the following identity:
$e_{k,r}^{(2n-1)}$ $=e_{k,1}^{(2n-1)}|_{k}D_{2n-1}(r, \{p^{k-n-\frac{1}{2}}\}_{p})$ .

(Here the $D_{2n-1}(r,$ $\{p^{k-n-}\not\supset\}_{p})1$ are the operators introduced in Theorem 2.)

We remark that a similar identity was also shown for odd integers instead of $2n$ .
However in this article we treat only the case of even integers.
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2.4 The proof of Theorem 1

We prove Theorem 1. Let $k>n+2$ be an even integer and let $E_{k,r}^{(n)}$ be the Jacobi-
Eisenstein series of weight $k$ of index $r$ of degree $n$ . This Jacobi-Eisenstein series
was first introduced by Eichler-Zagier [3] in the case $n=1$ and was generalized for
higher degree by Ziegler [14]. Let $e_{k,1}^{(n)}$ be the first Fourier-Jacobi coefficient of Siegel-
Eisenstein series of even weight $k$ of degree $n+1$ . By Satz 7 of Boecherer [1] (cf.
also Yamazaki [10] Theorem 5.5), we have that the first Fourier-Jacobi coefficient
$e_{k,1}^{(n)}$ coincides with the Jacobi-Eisenstein series $E_{k,1}^{(n)}$ of index 1.

Moreover, by using Lemma 1 and by using an argument as in Freitag $[4](\mathrm{B}\mathrm{e}-$

merkung 4.7 p.268), we have that the Siegel-Eisenstein series $E_{k,1}^{(n)}$ is an eigenform for
any operator $T_{s}(p^{2})$ . Therefore we conclude that the first Fourier-Jacobi coefficient
$e_{k,1}^{(n)}$ is also a Hecke eigenform.

The main idea of the proof of Theorem 1 is to deduce certain properties of
$\tilde{F}_{\rho}(B, X_{p})$ from properties of Siegel-Eisenstein series. The following lemma was
shown by Ikeda [7], and play an important rule to the proofs of Theorem 1 and
Theorem 2.

$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}2.LetF(\{X_{p}\})\in \mathbb{C}[X_{2}+X_{2}^{-1}, X_{3}+X_{3}^{-1}, X_{5}+X_{5}^{-1},\ldots]beaLauoent- Polynomial.IfFsatisfiesF(\{p^{k-1/2}\})=0forsuffi\mathrm{c}ientlymanyintegersk_{f}then$

$F(\{X_{\mathrm{p}}\})=0$ .

Proof. It is not difficult to show this and the details will be omitted here.

$E_{k}^{(2n)}$ of weight $k$ of degree $2n$ can be written as $\mathrm{f}o$llows :

$A(E_{k}^{(2n)}, B)=h_{k-n-1/2}( \delta_{B})f_{B}^{k-n-1/2}\prod_{p1j_{B}}\overline{F}_{p}(B,p^{k-n-1/2})$
.

Here $h_{k-n-1/2}(\delta_{B})$ is the $\delta_{B^{-}}\mathrm{t}\mathrm{h}$ Fourier coefficient of the Cohen-Eisenstein series of
weight $k-n-1/2$ (cf. Cohen [2].)

For a positive integer $m$ , we define two sets by

$S_{n,m}$ $:=$ $\{(N, R)\in \mathrm{S}\mathrm{y}\mathrm{m}_{n}^{*}\cross \mathbb{Z}^{n}|N\geq 0,4Nm-R^{t}R\geq 0\}$ ,
$S_{n,m}^{+}$ $:=$ $\{(N, R)\in S_{n,m}|4Nm-R^{t}R>0\}$ .

Let di $\in J_{k,m}(\Gamma_{n}^{J})$ be a Jacobi form and let $(N, R)\in S_{n,m}$ . We denote by
$A(\phi, (N, R))$ the $(N, R)$-th Fourier coefficient of $\phi$ , that is,

$\phi(\tau, z)=\sum_{(N,R)\in S_{n,m}}A(\phi, (N, R))e(N\tau+R^{t}z)$
$((\tau, z)\in \mathfrak{H}_{n}\cross \mathbb{C}^{n}.)$
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Let $(N, R)\in S_{2n-1,1}^{+}$ , and put $B_{1}=$ . The $(N, R)$-th Fourier-coefficient of
$e_{k,1}^{(2n-1)}$ can be written as

(2.1)
$A(e_{k_{)}1}^{(2n-1)}, (N, R))=h_{k-n-1/2}( \delta_{B_{1}})f_{B_{1}}^{k-n-1/2}\prod_{p1f_{B_{1}}}\tilde{F}_{p}(B_{1},p^{k-n-1/2})$ .

Let $\Gamma_{n}^{J}\overline{k_{q,s}}\Gamma_{n}^{J}$ be a double-coset as defined in subsection 2.3. For a Jacobi form
di $\in J_{k,m}(\Gamma_{n}^{J})$ , we denote by $A(\phi, (N, R),\overline{k_{q,s}})$ the $(N, R)$-th Fourier coefficient of
$\phi|\Gamma_{n}^{J}\overline{k_{q,\delta}}\Gamma_{n}^{J}$ .

By a direct calculation, we find that the $(N, R)$-th Fourier-coefficient of the form
$e_{k,1}^{(2n-1)}|\Gamma_{n}^{J}k_{\epsilon,q}\Gamma_{n}^{J}$ can be written as the form:

(2.2) $A(e_{k,1}^{(2n-1)}, (N, R), k_{s,q})$

$=h_{k-n-1/2}( \delta_{B_{1}})f_{B_{1}}^{k-n-1/2}\sum_{:}\sqrt i\prod_{1}.,\tilde{F}_{p}(B_{i,1},p^{k-n-1/2})p|f_{B}$ ’

where $\beta_{i}$ are certain constants, and where $B_{i,1}$ are certain matrices of the form
$B_{i,1}=\in M_{2n}(\mathbb{Z})$ . These $\beta_{i}$ and $B_{i,1}$ depend only on the choice of $(N, R)$

and of $\Gamma_{n}^{J}\overline{k_{q,s}}\Gamma_{n}^{J}$ . Because $e_{k,1}^{(2n-1)}$ is a Hecke eigenform for any even integer $k>2n+1$ ,
(using Lemma 2, and identities (2.1), (2.2)) we have that there exists a certain
Laurent polynomial $\Phi(\Gamma_{n}^{J}\overline{k_{q,s}}\Gamma_{n}^{J}, X_{q})$ which satisfies :

(2.3)
$\Phi(\Gamma_{n}^{J}\overline{k_{q,s}}\Gamma_{n}^{J}, X_{q})\prod_{\mathrm{p}1f_{B_{1}}}\tilde{F}_{p}(B_{1}, X_{p})=\sum_{:}\sqrt i\prod_{p1f_{B_{11}}},\tilde{F}_{p}(B_{i,1}, X_{p})$

.

On the other hand, the $(N, R)$-th Fourier-coefficient of $\phi_{1}$ and of $\phi_{1}|\Gamma_{n}^{J}\overline{k_{q,s}}\Gamma_{n}^{J}$ are
given by:

$A( \phi_{1}, (N, R))=c(\delta_{B_{1}})f_{B_{1}}^{k-1/2}\prod_{p1f_{B_{1}}}\tilde{F}_{p}(B_{1}, \alpha_{p})$
,

$A( \phi_{1}, (N, R),\overline{k_{q,s}})=c(\delta_{B_{1}})f_{B_{1}}^{k-1/2}\sum_{i}\beta_{i}\prod_{p1f_{B}:1},\tilde{F}_{p}(B_{i,1}, \alpha_{p})$
.

Hence if we put $X_{p}=\alpha_{p}$ in (2.3) and multiply both sides by $c(\delta_{B_{1}})f_{B_{1}}^{k-1/2}$ , we
conclude that $\phi_{1}$ is a Hecke eigenform. Hence $\Psi^{(2n-1)}(f)$ is also a Hecke eigenform.

Next we shall show the second statement of Theorem 1. Zharkovskaya’s theorem
is also known for half-integral weight (cf. [5]). Let $E_{k-1/2}^{(2n-1)}$ be the Siegel modular
form of weight $k-1/2$ and degree $2n-1$ which corresponds to $e_{k1}^{(2n-1)}$ . By using
Zharkovskaya’s theorem, for any even integer $k>2n+1$ , we have the following
identity:

$L(s, E_{k-1/2}^{(2n-1)})$ $=$ $\prod_{i=0}^{2n-2}L(s-i, E_{2(k-n)}^{(1)})$ ,
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(up to Euler 2-factors,) where $E_{2(k-n)}^{(1)}$ is the Eisenstein series of weight $2(k-n)$ of de-
gree 1. This identity implies a property of $\Phi(\Gamma_{n}^{J}k_{s,q}\Gamma_{n}^{J}, X_{q})$ . Because $\Phi(\Gamma_{n}^{J}k_{s,q}\Gamma_{n}^{J}, \alpha_{q})$

is the Hecke eigenvalue of $\phi_{1}$ for $\Gamma_{n}^{J}k_{s,q}\Gamma_{n}^{J}$ , and because the form $\phi_{1}$ corresponds to
$\Psi^{(2n-1)}(f)$ , we have the identity:

$L(s, \Psi^{(2n-1)}(f))$ $= \prod_{i=0}^{2n-2}L(s-i, f)$ ,

up to Euler 2-factors.

2.5 The proof of Theorem 2
The proof of Theorem 2 is almost the same as the proof of Theor$e\mathrm{m}1$ . We deduce
some properties of $\tilde{F}_{p}(B, X_{p})$ by using Yamazaki’s theorem.

Let $\phi_{r}$ be the r-th Fourier-Jacobi coefficient of $I(f)$ , and let $A(\phi_{r}, (N, R))$ be the
$(N, R)$-th Fourier coefficient of $\phi_{r}$ for $(N, R)\in S_{2n-1,r}^{+}$ . Then we have

(2.4)
$A( \phi_{r}, (N, R))=A(I(f), B_{r})=c(\delta_{B,})f_{B_{\mathrm{r}}}^{k-1/2}\prod_{p1f_{B_{f}}}\tilde{F}_{p}(B_{r}, \alpha_{p})$

,

where $B_{r}=$ .
Using Yamazaki’s theorem, we obtain

(2.5) $A(e_{k,r}^{(2n-1)}, (N, R))=A(e_{k,1}^{(2n-1)}, (N, R), D_{2n-1}(r, \{p^{k-n-1/2}\}_{\mathrm{p}}))$,

where $A(e_{k,1}^{(2n-1)}, (N, R), D_{2n-1}(r, \{p^{k-n-1/2}\}_{p}))$ is the $(N, R)$-th Fourier coefficient of
$e_{k,1}^{(2n-1)}|D_{2n-1}(r, \{p^{k-n-1/2}\}_{\rho})$ . On the other hand, by a direct calculations, we have

(2.6) $A(e_{k,1}^{(2n-1)}, (N, R), D_{2n-1}(r, \{p^{k-n-1/2}\}_{\rho}))$

$=h_{k-n-1/2}( \delta_{B,})f_{B_{r}}^{k-n-1/2}\sum_{:}\gamma_{i}\prod_{1}\dot{.},\tilde{F}_{p}(B_{i,1}’,p^{k-n-1/2})p|f_{B’}$
’

where the $\gamma_{i}$ are certain constants and the $B_{i,1}’$ are certain matrices of the form

$B_{i,1}’=$ , and where $\gamma_{i}$ does not depend on the choice of $k$ .
By using Lemma 2, and identities (2.4), $(2.5_{\mathit{1}}^{\backslash }, (2.6)$ , we obtain

$\prod_{p1j_{B_{f}}}\tilde{F}_{p}(B_{r}, X_{\rho})=\sum_{i}\gamma_{i}\prod_{p1f_{B_{*1}’}},\tilde{F}_{p}(B_{i,1}’, X_{\rho})$

.

Hence if we put $X_{p}=\alpha_{p}$ and multiply both sides by $c(\delta_{B_{r}})f_{B,}^{k-1/2}$ , we have

$A(\phi_{r}, (N, R))=A(\phi_{1}, (N, R), D_{2n-1}(r, \{\alpha_{p}\}_{p}))$.
Hence we conclude Theorem 2.
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