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CLASS ONE WHITTAKER FUNCTIONS ON REAL SEMISIMPLE LIE
GROUPS

B & (TAKU ISHII)

Introduction. Maass wave form f is an automorphic form on the upper half plane
$H ={z=1x++/-1y|y > 0} which is an eigenfunction of the Laplacian of £, that is,

9 2 1
22 L9 _(1_,2
V(g2 + 52) @) = (3-+) £
(v € C). Then f has the Fourier expansion of the form

flz+V=-1y) = Z anvy K, (27|nly) exp(2mv/=1nz) + ay? /% + by +1/2,
n#0

Here K, (z) is the K-Bessel function (= class one Whittaker function on SL,(R)) and
satisfies Bessel’s differential equation ‘

[(zé—iz—)z ~ (2 + )| Ku(2) = 0.

When v ¢ Z, the fundamental solution of the above differential equation around z = 0 is
{I(2),I-,(2)} with '

Iu(z) _ f: (z/2)2m+u

m!T'(v+m+1)

m=0

the I-Bessel function (= fundamental Whittaker function on SL,(R)) and there is the
relation :

K,(2) = é-S-i%“;;(]_u(z) - L(2)).

In this note we shall discuss the explicit formula of these special functions on higher
rank groups, and its application to automorphic L-functions.

1. WHITTAKER FUNCTIONS FOR CLASS ONE PRINCIPAL SERIES REPRESENTATIONS

We recall the notion of Whittaker functions for class one principal series representations
of real semisimple Lie groups. Our main reference is Hashizume’s paper [3]. Let G be a
real semisimple Lie group with finite center and g its Lie algebra. Fix a maximal compact
subgroup K of G and put & = Lie(K). Let p be the orthogonal complement of £ in g and 8
the corresponding Cartan involution. For a maximal abelian subalgebra a of p and a € a*,
put go = {X € g | [H,X] = a(H)X for all H € a} and A = A(g, a) the restricted root
system. Denoted by A% the positive system in A and II the set of simple roots. Then
we have an Iwasawa decomposition g =n® a @ & with n = Y weca+ Ba- Let G = NAK be
the Iwasawa decomposition corresponding to that of g. We denote by S the Weyl group
of the root system A.



Let Py = M AN be the minimal parabolic subgroup. of G with M = Zk(A). For a linear
form v € ag = a* ®g C, define a character e” on A by e”(a) = exp(v(loga)) (a € A). We
call the induced representation

Ty, = L2—Ind,Gpo(1M ® 6U+p & 1N)

the class one principal series representation of G. Here p = 3", o+ Mqo is the half sum
of positive roots (m, = dim g,).

Let U(gc) and U(ac) be the universal enveloping algebras of gc and ac, the complex-
ifications of g and a respectively. Set

Ulge)® = {X € U(gc) | Ad(k)X = X for all k € K}.
Let p be the projection U(gc) = U(ac) along the decomposition
U(gc) = Ulac) @ (nU(gc) + Ulac)®).

Define the automorphism vy of U(ac) by v(H) = H + p(H) for H € ac. For v € ag,
define the algebra homomorphism y, : U(gc)X — C by

xv(2) = v(yop(2))
for z € U(gc)X.

Let n be a unitary character of N. Since n = [n,n] ® > . 8a, 7 is determined
by the restriction 7, := dn|;, (a € II). The length |n,| of 7, is defined as |n,|*> =
Y icicm(a) —aM(Xas)? (note that dn(Xa.) € vV—1R), where the root vector X, is chosen
as B(Xq,,0Xa,;) = —06;; (1 <¢,j < m(a)). Here B(, ) is the Killing form on g. In this
paper we assume that 7 is nondegenerate, that is, 7, # 0 for all a € II.

Definition 1.1. Denote by Wh(v, 1) the space of smooth functions w : G — C satisfying

e w(ngk) =n(n)w(g) forallne N, g€ G and k € K,
e Zw = x,(Z)w for all Z € U(gc)X.

Remark 1. Because of the Iwasawa decomposition w € Wh(v,n) is determined by its
restriction w|4 to A, which we call radial part of w. Then w can be considered as n-variable
function (n is the real rank of G).

1.1. Fundamental Whittaker functions. Hashizume [3] constructed the basis of the
space Wh(v,n). Let (, ) be the inner product on ag induced by the Killing form B(, ).
We denote by L the set of linear functions on ac of the form Zaen nea With ng € Zx.

For each A € L, we can define the rational function ¢, on ag as follows. Put co(v) =1
and determine ¢, for A € L\{0} by

((A’ ’\> + 2(’\’ V))C,\(l/) =2 Eaen Ina!2cA—2a(V)’
inductively. It comes from that w is an eigenfunction of the Casimir element. Here we
assumed that (A, A) + 2(\, v) # 0 for all X € L\{0}.

Definition 1.2. For v € ag and unitary character n of N, define a series M, ,(a) on A
by

My, (a) = a”*"Zc,\(u)a’\ a€c A,
XeL
and extend it to the function on G by

M, 4(9) = n(n(9)) M, n(a(g))
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with g = n(g)a(g)k(g) the Iwasawa decomposition of g € G. We call M,,,, the fundamental
Whittaker function or the secondary Whittaker function on G.

Actually Hashizume proved the following.
Theorem 1.3. ([3, Theorem 5.4]) If v € ag is regular, then the set
{Mon(g) | s € W}

forms a basis of Wh(v,n). Here an element v € ag is called regular if the following two
conditions are satisfied.

o (AN +2(\sv) #0 for all \ € L\{0} and s € S,
o su—tv ¢ D enMa | ma €Z} foralls#teS.

If we suitably fix n, and take a coordinate on A by y = (y1,...,¥yn) (n = dim A), the
radial parts of fundamental Whittaker functions can be written as the form:

MJ(y) = MG W)=y Y. G )™ ()™ (G o) = 1),
m=(my,...,Mn )EN"

where the recurrence relations satisfied by cm(v) = ¢&,(v) for G = SLn41(R), SOn41(R),
Spn(R), SO2,(R) and G,(R) are

(A) {Xrmim? = Y mima + Yk (4 — vis)miem(V) = Yy emee: (V)
(B) {21 1 m? + 3 m?u Z?—;l mimiy1 + Z::ll('/i — Vit1)Mi + VpMip }om (V)
= 21—1 Cm— e.(V) + 35 Cm—en(V)7
(C) {Z =1 m + 2m - Z::f MiMip1 — 2Mp_1My + E;:ll (Vi — Vig1)m; + UMy Yem(V)
Z Cm—-e,( V) + 2Cm—e, (V).
D) {¥r, m? = Sl mimiyt — Ma—amn + S0 (U — Vig1)Mi + (Va1 + Un) M }em(¥)
= Z?=1 Cm~e‘.(l/),
(G) (m% + 3m§ - 3m1m2 +rimy + V2m2)cm1,m2 (V) = Cm;-~1,m; (V) +3 me,mz—l(y)'
Here e; is the i-th standard basis in R and E"’T v; = 0in (A).

1.2. Jacquet integrals and class one Whittaker functions. Jacquet [8] introduced
the integral

W,a(0) = /N 7™ (n)a(sying)*dn,

where s is a longest element in S. It gives a unique moderate growth Whittaker function
and it is known that as a function of v, W,, converges absolutely and uniformly on
{v € ag | Re({v,a)) > 0 for all @ € A*} and can be continued to a meromorphic
function. We call W, ,, the class one Whittaker function on G.

Remark 2. Jacquet integral of course gives an integral representation of Whittaker func-
tion, however, it is not satisfactory form for our use, such as computation of gamma factors
of automorphic L-functions. For example the radial part of Jacquet integral on SL3;(R)
is

yl—U1+1y;u1—V2+1 / (1 + n% + ng)(—u1-2uz—l)/2{l + ng + (n1n2 _ n3)2}(—-lq+l/2—1)/2
v JR3

. exp{—27r\/ —'1(61711 + Czng)}d’nld’ngdn:;,
where (nonzero) real numbers c;, ¢; are parameters of 7.
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Now we recall the linear relation between W, ,(g) and M, ,(g) (s € S).

Theorem 1.4. ([3, Theorem 7.8]) Let c(v) be the Harish Chandra c-function:

c(v) ::/ a{sy'n)"*Pdn

- 1] 2 ma—mzﬂ)/z( m )("‘“’“mzam L(va)T(5(va + %))
(a,a) D(vg + %1)1"(%(1/& + B2 4 my,))

aeAd

Here vo = (v,0)/{a,a) and Al = {a € AT | La ¢ A}. For s € S, we define y(s;v,1) as
follows. For a simple reflection s = s, (a € II), put
v(s;v,1m) := ( A )2"" F(l(""Va ot 1)r (%( Vo + 75 + Maq))
v 2v/2(a, a) T((ve + 5 m + 1)L (3 (~va + B +maa))

and extend it by

V(sas; v, m) = v(s;v,m)Y(Sa; 5V, 1),
for l(sq8) = I(s) + 1 where I(s) is the length of s. Then, if v is regular,

27(505 v,n 305’/) su,n(g)‘

sEW

2. THE CASE OF SL,(R)

Bump [1] and Vinogradov and Tahtajan [15] studied Whittaker functions on SL3(R).
The Jacquet integral is evaluated to derive integral representation involving K-Bessel
functions and the recurrence relation (A) is solved. Extending these studies, Stade [10]
discovered integral representation of class one Whittaker function on SL,(R), which is
recursive relation between W, -~® (y) and W Ln-2(R) (y). An analogue for the fundamen-
tal Whittaker function has conjectured by Stade [12] and verified in [6]. Recently, Stade
and the author (7] find new inductive relations between Whittaker functions on SL,(R)
and SL,_1(R), and these formulas seem to be natural expressions.

Theorem 2.1. ([7]) The solution of the recurrence relation (A) can be written as

kan(l?c) )( 7)
SLn11(R) 1yeeeyKn—1
c (U {kl Z l} Hl-—-l{( ] V" - Vn+1 + 1)mt‘“kt—1}

where the indices k; run through such that 0 < k; <m; 1 <i<n—-1)end v = (1, +

n/n,...,vps +va/n) forv=(v,...,0n41) (Z?fll v; = 0). Here (a)n = ['(a+n)/T(a)
18 the Pochhammer symbol. :

Remark 3. Bump [1) expressed c(m"”‘( ) (v) as a ratio of Gamma functions and Stade [11]

m2)
wrote c(ml(:‘z) ma)( v) in terms of generalized hypergeometric series 4F3(1). We first arrive

at the above result from these formulas by using Gauss’ formula for 5 F(1).

Theorem 2.2. ([7]) Let W, L"“(R)(y) = WL+ (B)(1) be the radial part of the class
one Whittaker function on SL,.1(R). Up to the constant multiple, we have the following
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inductive relation:

00 n
—_ 1 —~ 2 t
Wokrri R (y) = / l I exp{"‘(ﬂ'yi)%i ey } Wy ® (?h\/ —:, s Ung [ )
t1,eestn=0 i=1 1 /1 tn..l

B 2nm1) yvng Yo dts
' (H Y " ti) -
i=1 =1
Remark 4. The proof is based on the formula of Stade [10, Theorem 2.1] (and its Mellin-
Barnes type analogue {13}):

— o
W‘;S'Ln-f—l(R) (y) — /t o] Hy(n+l 24)( U1+”n+])/(n_1)K”1_Vn+l (27"211‘\/(1 + tiul)(l + ti_l))
1yeesln~—1=
-1
WSL,.-1(R)< / T bn— 2) Ht—(ﬂ+1)(V1+Vn+1)/2(n~ H %
=1 i=1 ¢

with g = (o + (1 + Vpt1)/(n = 1), ..., Un + (U + V1) /(n = 1)).
3. THE CASE OF SO3,:1(R)

We can solve the recurrence relation (B):

Theorem 3.1. Put v = (11,...,v5-1) forv=(v1,...,v,). Then
c?kozn I(R))( )
SOzn+1(R)( )_‘ Lyeskn—1
C v
- {ll,%; 1}, H ( (m" — kn ) Hz—l (l — ks i)!
(kla n 1}
1

bl

H?:l(ui + Un + 1)mi~¢i-1 H?—.—_ll(yi —Vn+ l)li—k -
where the indices k;,l; run through such that 0 < k; < l; < m; (1 <i<n-1) and
0 < kn_1 < m, and we promise kg =1y = 0.

The recursive integral representation of class one Whittaker function is the following:

Theorem 3.2. Let W,}qoz"“(R)(y) = y"W,;g Orm+1(R) (y) be the radial part of the class one
Whittaker function on SOzn41(R). Up to the constant multiple, we have the following
wnductive relation:

— o0 o0 i 1A ti 1
WSO0mni(R) () = / / Hexp{——(ﬂ'yifti - ?} H eXP{—(Wyi)2Ui - =
thyeenstn=0 Juy,...,upn_1=0 i=1 i i=1

tivr U

T=502n-1(R) [tiug tn—2Un—1 tn—1
g (y2 tauy oo Uno \/tn—lun—2 > U \/un—l

n n—1 v (Pt L g
AWw) (I ves)e} TTTIS

i=1

0 n
=c/ HK,," (27l'y,\/ 1+u,-_1)(1+u,-_1))
UlyeUn—1=0 ;1

n-1
5500, -1(R [u Up—9 du;
W.; -1 )(y2 u—:,---,yn—l - l,ym/un-1) —.
n—

= Ui
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Remark 5. We can prove it by using Theorems 1.4 and 3.1. We remark that there is
an interesting relation between Whittaker function for certain generalized principal series
representations of Sp;(R) and W0, Roughly speaking, in the first expression in
Theorem 3.2 with n = 3, the inner integrals with respect to u;, us give the mentioned
Whittaker function on Sp3(R). See [4] for the details.

4. THE CASE OF Sp,(R) AND SO;,(R)

As for the fundamental Whittaker function on SO;,(R), we have an inductive relation
similar to the previous sections, on the other hand we have not yet obtained such formula
for Sp,(R). However there is a relation between Whittaker functions on Sp,(R) and
SO9,(R) in view of Fourier-Whittaker coefficients of symplectic-orthogonal theta lifting

[5].

Theorem 4.1. (i) Put ¥ = (v1,...,Vn_1) for v = (v1,...,Vn). Then the solution of the
recurrence relation (D) s

SO02n-2(R) )

C
CSOZn(R) (V) (kls sykn— 1)
" {11,; 1} H ('m'z - )' (mn 2 = lp—2 — ln 1)(mn 1~ kn 1)'( - ln—-l)!
{k1,eskn-1}
1 1
Hz—l (l ) H?;ll (Vi —Unt 1)mi—‘li—l (Vn—l +vnt+ l)mn—kn—z
1

12 (v + vn + Dty nm2 + Vn + Dty ytay ks
where the indices k;, l; run through such that0 < k; <[; (1 <i<n—-1),0< kp_1 <mp_1,
0<5;<m(1<i<n—3),0<l,a+1l-1 <Mp_2 and 0 < np1 < my, and we promise
ko =T = 0.
(i) We have the relation

SOzn (R) (l/)

SPn(R)( ) - (kli vkﬂ)
C v - n
- Uﬂ%n} H?:lz(ml - k'l)" : (mﬂ—l - kn—l - ‘n)' (mﬂ - k‘")| Hi:l(ui + 1)""'—’““1

where the indices k; run through such that 0 < k; < m; (1 <1 < n—2i= n) and
0 < kpn-y+ kn < myp_1 and we promise kg = 0.

b}

5. THE CcASE OF G2(R)

Theorem 5.1. The solution of the recurrence relation (G) is

G2(R) 1
V) =
(mama) () 0<m§,‘?‘2<ml (my — ny — ng)! (Mg — nz)! ny! (ng — n3)! (n3 — ng)! ng!
0<na<nz<na<ms
1
(Vl + v» + 1)m1-—n3(’/2 + l)mz—nl (Vl + l)nx—m
1

. (1 + 200 + 1)y (201 + 302 + D) (V1 + 312 + 1),



Moreover, the radial part of the fundamental Whittaker function Mg;’(:?; (y) is related to
that of SL3(R):

G R ) v2)/3 SL3(R
A/I(uf,(ugg = ylyg Z ’ y y2) Abitkat2ntan)/s (kla(z))(lll + va, 1y, —1) — 21y)
ky,k2=0
. MS5Ls(R)

(k1 Hey-+201+802)/3, (~2ks-+hg =) /3, (k12— —30g)/3) (¥)-
In view of the relation between M) (y) and MS L"‘(R)(y), we have the following.

Theorem 5.2. Let WS*®(y) = YW ( ) and W5L3(R)(y) = y1y2WfL3(R)(y).
Then up to the constant multiple,

1 1 11¢
Wemw = [ [ exo{ -t - @wyte - e - L~ L - L)

i1 to I3t
=SL3(R dt; dt, dt,
W(,,ILZ,,,Z,_,,I 22) (Juzvtlts, ny 5 ) T

6. APPLICATION TO THE COMPUTATION OF GAMMA FACTORS OF AUTOMORPHIC
L-FUNCTIONS

As an application of the explicit formula of the class one Whittaker functions, we
can compute the gamma factors of automorphic L-functions attached to generic cuspidal
representations 7 = ®'m, whose infinite type 7., is isomorphic to class one principal series
representation.

6.1. L-functions for GL, x GL;. The theory of integral representations of automorphic
L-function L(s, 7 x 7') for GL, x GL; has developed by Jacquet, Shalika and Piatetski-
Shapiro. The functional equation and poles of the global L-function are known, however, it
is worth evaluating the archimedean zeta integrals directly. When 7o = 7, and 7l = 7,
the archimedean zeta integrals for GL, x GL,) and GL,;; X GL,,, become

— - dy;
Zf,?’z(s) ='/(‘R ) Wl;gLn(R)(yla"',yn—l)W;an+l(R)(yla---7yn) (ylyg n)sH yl
)" i=1 7

~ — d
Zg(s) = - Wl ® (g ) Wt B () - (193 - ")’H yy'
X\n )

Stade [13], [14] has evaluated these integrals by using the Mellin-Barnes type integral
representations of class one Whittaker functions and (generalized) Barnes’ lemma. For
($1,...,8a) € C", let V(s1,. .., sy) be the (multiple) Mellin transform of the radial part
of the (p-shifted) class one Whittaker function Wf :

‘/,/G(Sl,...,sn):/ VVuG(yla)y'n)Hy:'I-‘[ﬁ
(Rxo0)" ; Yi
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Then
Zi),on(s) = / VVSLn(R)(Sly 82,1, Sn—l)
81,01y Sn—~1

. VuSL"“(R)(s — 81,28 — 8g,...,(n—1)s ~ $p_1,n8) dsy ++ * dsp_1,

SLns1(R SLnti(R)(
Z2°f’n(s)=/ v, +1( )(31,32,...,.9”)% +1( (s — 81,28 — S9,...,nS — 8,) dsy - - - dsn,
S1y0e0ySn

Here the path of integration in each s; being a vertical line in the complex plane which

is taken to separate the poles integrand appropriately ([13],[14]). Stade’s computation is

based on Barnes’ first lemma:

I'(a+c)'(a+d)T'(b+ c)T'(b+d)
F'a+b+c+d)

Fa+s)T'(b+s)I(c—s)I'(d—s)ds=

’

1
2nv -1 J_y=

where the path of integration is curved, if necessary, to ensure that the poles of I'(c —
s)I'(d — s) lie on the right of the path and of I'(a + s)I'(b + s) on the left.

By the way, we can give a little modified proof of Stade’s result by using a formula in
the previous sections. That is, in view of the recursive relation

n . . ‘
1-—-
VfL"+1(R)(51, ey Sn) = / I I {F(Si + ti — 11/1)]?(3,‘ -+ ti-—l + Zl*i———llll)}
tlyentn—1 =1 n n

. V_SLH(R)(_tl . —tn 1) dtl et dtn—l:

we can see that the evaluation of Z{9, and Z55, is reduced to that of Z2 5—1 and 279,
respectively. Thus these computation is reduced to that of Z3%, which is equivalent to
Barnes’ first lemma. The result is as follows:

Theorem 6.1. ([13], [14]) Let [r(s) = 7r"/2F(s/2). Then, up to constant multiple,

zE(s)= [ Trls+uvi+u),
1<i<n
1<5<n+1
ZOO (S) — H]'Simjs'n'*'l FR(S + Vi + u])
2n Tr((n+1)s)

Remark 6. The numerators coincide with the gamma factors defined from the Langlands
parameters of m, and 7,, and the denominator in Z39(s) is the normalizing factor of
Eisenstein series used in the construction of the global zeta integral.

6.2. L-functions for SO, x GL;. Gelbart and Piatetski-Shapiro [2] constructed zeta
integrals representing the (standard) L-functions for G x GL, for classical group G. As
is the case with GL, x GLg, when G = SO, 1, the archimedean zeta integrals we want
to compute are

n
7SO (R SL,(R I I dys
2%(5) = /R i Woma® (g )W ® () - (s 92 2,
y i=1

SOz2n+1 (R n+1 (R n
7500 = [ T T, ) -5 [T

It is natural to expect the following:

7
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Conjecture Up to constant multiple,

,X,_Hz._ln {Tr(s +vi + )

b H1<i<j<n Ir(25 + pi + ;)
T, I_["+1 Pr(s + vi + ;)

[licicicnr TR(28 + i + )

Z

Zom(s) =

Remark 7. From the inductive relation for class one Whittaker functions on SOy,41(R),
we can see that the evaluation of Z73,(s) is reduced to that of Z§%,_,(s). At the present,
the conjecture is true for Z, , with n =2 (Niwa [9)]), 3, 4 and Z,,, with n = 2, 3.
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