場の理論における複合粒子

西島和彦

1. 直観的三軸近条件とS行列

LSZ以降で三軸近条件がすでに定式化されていなかった。
Gold-MannとLowはHeisenberg表示と相互作用表示
との関係を導出し、ΦをHeisenberg表示と直観的三角近条件

\[
\phi_{\text{out}}^{-}(\chi_4) \phi_{\text{out}}^{-}(\chi_3) \phi_{\text{in}}^{-}(\chi_2) \phi_{\text{in}}^{-}(\chi_1)
\]

\[
= \sum_{P_1 \rightarrow P_4} \phi_{\text{in}}^{-}(\chi_4) \phi_{\text{in}}^{-}(\chi_3) \phi_{\text{in}}^{-}(\chi_2) \phi_{\text{in}}^{-}(\chi_1)
\]

\[
\times \langle P_3, P_4 | \Sigma | P_1, P_2 \rangle
\]

\[
\times < P_2 | \phi_{\text{in}}^{-}(\chi_4) | 0 > < P_1 | \phi_{\text{in}}^{-}(\chi_3) | 0 >
\]

graphical method

![Diagram](image-url)
\[\langle \Phi_c(x) \Phi_c(x') \rangle \rightarrow \langle \Phi_{c, \text{out}} \Phi_{c, \text{out}} \rangle \]
\[= \sum_P \langle 0 | \Phi_c(x) | P \rangle \langle P | \Phi_c(x') | 0 \rangle \]

\[| P \rangle \text{は一粒子状態} \]

相互作用表示における Reduction formula

\[(s\Phi_x + M) T_L \Phi(x) AB \cdots Z \] は \[= -i \frac{\delta}{\delta \Phi_x} T_L [A B \cdots Z] \]

\[(D_{\alpha} - \mu^2) T_L \Phi(x) AB \cdots Z \] は \[= i \frac{\delta}{\delta \Phi_x} T_L [A B \cdots Z] \]

Dysonのシュレディンガー方程式の Gauss マルコフ law と組み合わせると LSZの Reduction formula が出てくる。

複合粒子を含むシュレディンガー方程式

\[\langle \Phi_{\alpha}(x_1) \Phi_{\alpha}(x_2) \rangle \]

\[= \sum_P \langle 0 | T_L \Phi_{\alpha}(x_1) \Phi_{\alpha}(x_2) | P \rangle \langle P | T_L \Phi_{\alpha}^+(x_1') \Phi_{\alpha}^+(x_2') | 0 \rangle \]

\[| P \rangle \text{は複合粒子状態} \]
\[
\langle (\phi_a(x_1)\phi_b(x_2))^\text{out} \cdots \rangle \\
= \sum_{P} \langle 0| [\phi_a(x_1)\phi_b(x_2)] P \rangle \cdots \langle P_\text{out} | \phi_a(x_1)\phi_b(x_2) | 10 P \rangle \\
\times \langle P | j_\mu(x) | P' \rangle \langle P' | \phi_a(x_1)\phi_b(x_2) | 10 \rangle \\
\]

2. 規格化

conserved current の行列要素を計算する。

\[
\langle (\phi_a(x_1)\phi_b(x_2))^\text{out} \cdots j_\mu(x) (\phi_a^+(x_1')\phi_b^+(x_2')) \cdots \rangle \\
= \sum_{P} \langle 0| [\phi_a(x_1)\phi_b(x_2)] P \rangle \langle P | j_\mu(x) | P' \rangle \langle P' | [\phi_a^+(x_1')\phi_b^+(x_2')] | 10 \rangle \\
\times \langle P | j_\mu(x) | P' \rangle \langle P' | \phi_a(x_1)\phi_b(x_2) | 10 \rangle \\
\]

\(j_\mu\): *conserved current* e.g. *charge current*

for \(P = P' = 0\)

\[
\langle P | j_\mu(x) | P \rangle = \frac{Q}{v} \quad Q: \text{charge} \\
\]

この行列要素は BS 値幅で表現されるので、“これが” 時間を整列条件となる。
例題

\[3 \Phi_a \Phi_b \Phi_c \quad \Phi_c: \text{massless} \]

\[A + b \rightarrow \text{bound state } B \]

1. Bに対するB^*振幅の規格化
2. C + B \rightarrow A + b の規格化
3. Bの形状因子

Conserved current において WT identity が成立することから、規格化条件をもっと一般的に設定できる。

素粒子

\[D(p) S_F(p) = 1 \]

\[T_\mu(p, p) = -i \frac{2}{m^2} \cdot \delta_{\mu \nu} D(p) \]

\[-i \frac{2}{m^2} S_F(p) = -S_F(p) T_\mu(p, p) S_F(p) \]

ポーレの近傍では

\[S_F(p) \sim C \frac{\gamma^\mu + m}{p^2 + m^2 - i\varepsilon} \]

\[\gamma^\mu \approx \gamma^\mu \]

\[2i p_\nu = -i \gamma_\nu \gamma^\mu T_\mu(p, p) C \]

\[\sim 2p_\nu \bar{u}(p) T_\mu(p, p) u(p) C \]

\[\sim 2p_\nu \bar{u}(p) T_\mu(p, p) u(p) C \approx 2p_\mu \]
複合粒子に対する Reduction Formula

\[
\sum a_\pi a_\rho \overline{\chi}(p, P) \frac{2D(p, q, P)}{2P} \chi(q, P) = -2i P \mu.
\]

22には \(D K = 1 \)。

3. 複合粒子に対する Reduction Formula

HeisenbergのPhilosophy
Green関係のpoleのresidue

\[\Psi(x) \]

(1) 变換性
(2) 非特異性
(3) 未定格化

\[
\langle 0| \Phi(x)| a \rangle = \frac{1}{\sqrt{2P}} e^{iP\mu x}
\]

仮りに \(a \) と \(b \) から \(c \) という複合粒子が \(\Phi \) で \(\Phi \) に付して

\[
c_P(x) = \lim_{\delta \to 0} \frac{c_{P_a}(x+\delta) c_{P_b}(x-\delta)}{\sqrt{2P} \sqrt{2P} \langle 0| c_{P_a}(\delta) c_{P_b}(-\delta)| c \rangle}
\]

とすれば

\[
\langle 0| c_P(x)| \Psi \rangle = \frac{T}{\sqrt{2P}} e^{iP\mu x}
\]

Fields and Particles, P.332
\[
\begin{align*}
\int d^4 x \langle 0 | \Phi^+ (x) | a \rangle & \langle -\lambda \rangle K_x \langle 0 | T \{ \Phi (x) A (x) - Z (x) \} | 0 \rangle \\
& = \langle 0 | T \{ A (x) - Z (x) \} | a \rangle \\
\int d^4 x \langle a | \Phi^+ (x) | 10 \rangle & \langle -\lambda \rangle K_x \langle 0 | T \{ \Phi (x) A (x) - Z (x) \} | 0 \rangle \\
& = \langle a | T \{ A (x) - Z (x) \} | 1 \rangle 10
\end{align*}
\]
もっと一般的なことは「場の理論」参照。
REFERENCES

Introduction of the Bethe-Salpeter Equation
Y.Nambu, P.T.P. 5 (1950) 614
M.Gell-Mann and F.E.Low, P.R.84 (1951) 350
E.E.Salpeter and H.A.Bethe, P.R.84 (1951) 1232

Wick-Cutkosky-Solution
G.C.Wick, P.R. 96 (1954) 1124
H.E.Cutkosky, P.R. 96 (1954) 1135

S Matrix for Composite Particles and Normalization Problem
A.Klein and C.Zemach, P.R. 140 (1965) 126
normalization without conserved quantity
G.R.Allcock, P.R. 104 (1956) 1799
G.R.Allcock and D.J.Hooton, N.C. 8 (1958) 590
R.E.Cutkosky and M.Leon, P.R. 135 (1964) B1445
D.Lurie , A.J.Macfarlane and Y.Takahashi, P.R. 140 (1965) B1091
relation between the two methods
K.Nishijima and A,H,Singh, P.R. 162 (1967) B1740

HNZ Construction
R.Haag, P.R. 112 (1958) 669
S.Nishijima, P.R. 111 (1958) 995
T. Zimmermann, N.C. 10 (1958) 597

Cf. LSZ Asymptotic Condition