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1 Introduction

In this paper, we consider the stochastic nonlinear complementarity problem

$x\geq 0,$ $F(x,\omega)\geq 0,$ $x^{T}F(x,\omega)=0$ , $\omega\in\Omega$ , (1.1)

where $\omega\in\Omega\subseteq R^{m}$ is a random vector with given probability distribution $\mathcal{P}$ , and $F$ :
$R^{n}\mathrm{x}\Omegaarrow R^{n}$ is a given vector-valued function. We denote (1.1) by SNCP$(F(x,\omega))$ .

When $F$ is an affine function of $x$ for any $\omega\in\Omega$ ,

$F(x,\omega)=M(\omega)x+q(\omega)$ , $\omega\in\Omega$ , (1.2)

where $M(\omega)\in R^{n\mathrm{x}n}$ and $q(\omega)\in R^{n}$ , the SNCP$(F(x,\omega))$ reduces to the stochastic linear
complementarity prv blem (SLCP), denoted by SLCP $(M(\omega),q(\omega))$ , which has been studied
recently in [2, 3, 5].

The $e\varphi ectedvalue(\mathrm{E}\mathrm{V})$ formulation introduced in [7] and the eapected residual mini-
mization (ERM) introduced in [2] are two deterministic formulations for SNCP. The EV
formulation is to solve a single nonlinear complementarity problem $\mathrm{N}\mathrm{C}\mathrm{P}(E[F(x,\omega)])$ . The
ERM formulation is to minimize the expected residual of the $\mathrm{N}\mathrm{C}\mathrm{P}(F(x,\omega))$ for all $\omega\in$ St.
A version of the ERM formulation using NCP functions is to find an optimal solution of

$\min_{x\in R_{+}^{n}}f(x):=E[||\Phi(x,\omega)||^{2}]$ (1.3)

where
$\Phi(x,\omega)=(\phi(F_{1}(x,\omega),x_{1}),$

$\ldots,$
$\phi(F_{n}(x,\omega),x_{n}))$ ,

and $\phi:R^{2}arrow R$ is an NCP function, which satisfies

$\phi(a,b)=0\Leftrightarrow a\geq 0,$ $b\geq 0$ , $ab=0$ .

Many NCP functions have been studied for solving nonlinear complementarity problems
[4]. In this paper, we study the ERM formulation (1.3) for SNCP with the “$\min$” function
$\phi_{1}(a,b)=\min(a,b)$ . Let $f_{1}$ be the objective function in (1.3) which is defined by NCP
function $\phi_{1}$ .
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We define a stochastic $R_{0}$ function and show that $F(\cdot, \cdot)$ is a stochastic $R_{0}$ function if
and only if the objective function $f1$ in the ERM formulation (1.3) for the SNCP$(F(x,\omega))$

is coercive. Moreover, we model the traffic equilibrium problem (TEP) under uncertainty
as SNCP and show that the involved function $F$ is a stochastic $R_{0}$ function.

We will use the following notations. $\langle l,u\rangle$ represents the set $\{l, l+1, \ldots, u\}$ for natural
numbers $l$ and $u$ with $l<u,$ $a_{+}= \max(a, 0)$ for any given vector $a,$ $n_{S}$ represents the
number of elements in a given finite set $S$ , and $||\cdot||$ refers to the Euclidean norm. Throughout
the paper, we suppose the following assumption holds:

Assumption I. $f$ is finite, continuous, and $E[||F(x,\omega)||^{2}]<\infty$ at any $x\in R_{+}^{n}$ .

2 Solution set of ERM for SNCP

Lemma 2.2 in [3] guarantees that the ERM formulation for the SLCP $(M(\omega),q(\omega))$ de-
fined by the “$\min$” function always has a solution when $\Omega$ is composed of finite elements.
However, the following example tells us that we do not have the same result for the
SNCP $(F(x,\omega))$ .
Example 2.1 Let $F(x, \omega)=(_{f}^{1} - \frac{3}{2}\omega)e^{-\not\in x}-\omega$ where $\omega\in\Omega=\{\omega^{1},\omega^{2}\}$ . Here $\omega^{1}=0$ ,
$\omega^{2}=1$ , and $P \{\omega^{1}\}=P\{\omega^{2}\}=\frac{1}{2}$ .

2.1 Stochastic $R$ function

Deflnition 2.1 [$\mathit{4}JR\mathit{4}nctionG:R^{n}arrow R^{n}$ is called an $R_{0}$ jfunction on a set $D$ if for every
infinite sequence $\{x^{k}\}\subseteq D$ satisfying

$\lim_{karrow\infty}$ Il $x^{k}||=\infty,$
$\lim_{karrow}\sup_{\infty}||(-x^{k})_{+}||<\infty,$ $\lim_{\mathrm{k}arrow}\sup_{\infty}$ II $(-G(x^{k}))_{+}||<\infty$ , (2.1)

there exists $i\in(1,n)$ such that $\lim\sup\min(x_{1}^{k}., G_{i}(x^{k}))karrow\infty=\infty$ .

Now we define a stochastic $R_{0}$ function.

Definition 2.2 $F(\cdot, \cdot)$ : $R^{n}\mathrm{x}\Omegaarrow R^{n}$ is called a stochastic $R_{0}$ function on a set $D$ if for
every infinite sequence $\{x^{k}\}\subseteq D$ satisfying

$\lim_{karrow\infty}||x^{k}||=\infty,$ $\lim_{karrow}\sup_{\infty}||(-x^{k})_{+}||<\infty,$ $\lim_{\mathrm{k}arrow}\sup_{\infty}||(-F(x^{k},\omega))_{+}||<\infty a.e$ . (2.2)

there nists $i\in\{1,n$) such that $\mathcal{P}\{\omega : \lim\sup\min(x_{1}^{k}.,F_{i}(x^{k},\omega))karrow\infty=\infty\}>0$.

The following example shows that for a stochastic $R_{0}$ function $F$ , it is not necessary
to have that $F(\cdot,\tilde{\omega})$ is an $R_{0}$ function for some di $\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\Omega$ . Moreover, $E[F(\cdot,\omega)]$ is not
necessary to be an $R_{0}$ function.
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Example 2.2 Given a function $F:R^{\theta}\mathrm{x}\Omegaarrow R^{3}$ as

$F(x,\omega)=((-\omega)_{+}e^{x_{1}},$ $\omega_{+}e^{x_{2}},$ sign$(\omega)x_{3})^{T}$ ,

where $\omega$ is uniformly distributed in $\Omega=[-1,1]$ .
Proposition 2.1 Let $F$ be an affine function of $x$ for any $\omega\in\Omega$ defined by (1.2). Then
$F(\cdot, \cdot)$ is a stochastic $R_{0}$ fimction on $R_{+}^{n}$ if and only if $M(\cdot)$ is a stochastic $R_{0}$ matri.

Theorem 2.1 $f_{1}$ is coercive on a set $D\subseteq R^{n}$ if and only if $F(\cdot, \cdot)$ is a stochastic $R_{0}$

function on $D$ .

3 ERM-SNCP model for TEP under uncertainty

Let $[N, A]$ represent a given transportation network , where $N$ is the set of nodes, and
$A$ is the set of links. We use $\Omega\subseteq R^{m}$ to represent a set of random vectors. Each vector
$\omega\in\Omega$ , corresponding one realization of stochastic factors such as weather, accidents, etc.,
is of given probability P. For any realization cv $\in\Omega$ , let us denote

$\mathcal{I}$ the set of origin-destination $(\mathrm{O}\mathrm{D})$ pairs
$\mathcal{R}_{i}$ the set of “available” routes, connecting OD pair $i$ (which might, but

not necessarily be all paths joining the OD pair)
$h,(\omega)$ the flow on route $r$

$\Delta$ the link-route incidence matrix of the network
$\Gamma$ the OD pair-route incidence matrix of the network
$u:(\omega)$ the shortest travel cost function for OD pair $i$ ,
$d_{1}(\omega)$ the demand functon for OD pair $i$

$C,.(h,\omega)$ the travel cost function for route r

Moreover, we use $\mathcal{R}$ to represent the set $\{R_{i}, i\in \mathcal{I}\}$ , and $u(\omega),$ $d(\omega),$ $h(\omega),$ $C(h,\omega)$ to
represent the vector composed of $u:(\omega),$ $d:(\omega),$ $h_{r}(\omega),$ $C_{t}(h,\omega)$ for $i\in \mathcal{I},$ $r\in \mathcal{R}$ , respectively.
It is clear that

$u$ and $d:\Omegaarrow R_{+}^{n_{\mathcal{I}}}$ ; $h:\Omegaarrow R_{+}^{n_{\mathcal{R}}}$ ; $C:R_{+}^{n_{\mathcal{R}}}\mathrm{x}\Omegaarrow R_{+}^{n_{\mathcal{R}}}$ .
Here, we suppose the uncertain demand $d(\omega)$ is bounded for almost all $\omega\in\Omega$ . We say that
the network $[N, A]$ is strvngly connected if for any OD pair $i\in \mathcal{I}$ there is at least one route
joining the origin to the destination. Then each row of $\Gamma$ is nonzero vector. Moreover,
since one route connects only one OD pair, $\Gamma$ has full row-rank.

In a congestion network, drivers have the incentive to compete with each other to
select the route of minimal travel cost, at a certain level of travel demand. The Wardrop
equilibrium principle [9] states that in the equilibrium state, for any OD pair the travel
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cost on every used routes equals and any route needs higher travel cost will have no traffic
flow. Application of the Wardrop equilibrium for the realization $\omega\in\Omega$ gives

$C_{r}(h(\omega),\omega)-u:(\omega)\geq 0,$ $h_{r}(\omega)\geq 0$ ,
$(C_{t}(h(\omega),\omega)-u_{i}(\omega))^{T}h_{r}(\omega)=0$ , $i\in \mathcal{I},$ $r\in R$ . (3.1)

Moreover, according to the demand conservation, we have $\sum_{f\in \mathcal{R}_{i}}h,(\omega)-d_{i}(\omega)=0$ , which
is equivalent to

$\sum_{t\epsilon \mathcal{R}_{i}}h_{f}(\omega)-d_{i}(\omega)\geq 0,$

$\mathrm{u}_{i}(\omega)\geq 0$ ,

$( \sum_{\gamma\in h}h_{f}(\omega)-d_{t}(\omega))^{T}\mathrm{u}_{i}(\omega)=0$
, $i\in \mathcal{I},r\in \mathcal{R}\iota$ , (3.2)

under some mild assumptions that would be expected to meet always in practice[l]. $(3.1)-$

(3.2) is the NCP formulation of static TEP $[1, 6]$ for each fixed $\omega\in\Omega$ . Combining $(3.1)-(3.2)$

with random factors $\omega\in\Omega$ , we can reformulate TEP under uncertainty as SNCP

$x\geq 0,$ $F(x,\omega)\geq 0,$ $x^{T}F(x,\omega)=0$ , $\omega\in\Omega$ , (3.3)

where

$x=$ , $F(x,\omega)=$ . (3.4)

In general, we can not find a vector $x=(h, u)$ which is the equilibria for any random vector
$\omega\in\Omega$ . We have to consider a deterministic formulation of (3.3) such as EV or ERM. The
dimension of the vector $x$ is $\mathrm{r}\iota=n_{\mathcal{R}}+n_{A}$ , where $n_{\mathcal{R}}$ is the number of routes in the set
$\mathcal{R}$ and $n_{A}$ is the number of arcs in the set $A$. Note that a solution $x^{\mathrm{r}}=(h^{*},u^{*})$ of a
deterministic formulation of SNCP is in general different from $x_{w}=(h(\omega), u(\omega))$ of (3.2)
for any fixed realization of random variable $\omega\in\Omega$ . In fact, we take subvector $h^{*}$ as the
flow pattern for TEP under uncertainty and $\mathrm{u}^{*}$ as the average minimum travel cost vector
in some sense.

In what follows, we let $v_{a}$ be the travel flow on link $a$ , and $v$ be the link travel flow vector
with components $v_{a},a\in A$. We make use of the function $t_{a}(v,\omega)$ to denote the travel time
on link $a$ , and $t(v,\omega)$ to be the link travel time vector with components $t_{a}(v,\omega),$ $a\in A$.
Clearly, the link travel flow vector $v$ and the route travel flow vector $h$ have the following
relationship,

$v=\Delta h$ . (3.5)

It is pointed out in reference [6] that in many $\mathrm{c}$ases the travel cost function is nonadditive,
which may rise from a variety of transportation polices, nonlinear valuation of travel time,
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etc. In this paper, we add random factors $\omega$ to the general nonadditive travel cost function
suggested in [6] as

$C(h,\omega)=\eta_{1}\Delta^{T}t(\Delta h,\omega)+g(\Delta^{T}t_{a}(\Delta h,\omega))+\Lambda(h,\omega)$ , (3.6)

where $\eta_{1}>0$ is the time-based operating costs factor, $g:R_{+}^{n_{\mathcal{R}}}\mathrm{x}\Omegaarrow R_{+}^{n_{\mathcal{R}}}$ is the perturbed
translation function converting time $t$ to money, and A is the perturbed financial cost
function (e.g., distance-based operating costs such as maintenance). We call (3.6) the
perturbed general nonadditive travel cost function on route $r$ .

Assumption II. There exists a subset $\hat{\Omega}\subseteq\Omega$ with $\mathcal{P}\{\hat{\Omega}\}>0$, such that for any $\omega\in\hat{\Omega}$ ,
(i) the travel cost function $C_{r}(h,\omega)$ on each route is a nondecreasing function of flow

$h$ , and finite for any fixed $h$ ;
(ii) the travel time function $t_{a}(v,\omega)$ on each link is a nondecreasing function of flow $v$ ,

finite for any fixed $v$ , and coercive with flow on this link $v_{a}$ , i.e., $t_{a}(v,\omega)arrow\infty$ if $v_{a}arrow\infty$ .
Assumption II holds in various perturbed travel cost and travel time functions that

might be used in practice.

Proposition 3.1 Suppose the network [IV, $A$] is strongly connected, and Assumption II
holds, then $F(\cdot, \cdot)$ in (3.4) is a stochastic $R_{O}$ hnction on $R_{+}^{n}$ .

4 Evaluation of ERM-SNCP model for TEP under uncer-
tainty

The reliability concerns the safety of the feasible pattern, that is, its capacity of dealing
with the perturbed traffic demand. Clearly, the reliability of a feasible flow pattern $h$ with
a tolerance $\epsilon\geq 0$ can be measured by

$rel_{\epsilon}(h):=P\{\omega : \Gamma h-d(\omega)\geq-\epsilon\}$ . (4.1)

Notice that $\Gamma h-d(\omega)\geq 0$ manifests that all the demand can be delivered in the traffic
flow pattern $h$ .

Moreover, for any feasible flow pattern $h$ , the average ratio of the possible delivered
demand to the total demand of the system manifests the reliability of a feasible flow pattern,
which is given by

$dr(h):=E[ \frac{1}{n_{\mathcal{I}}}.\sum_{*\in \mathcal{I}}\frac{\min((\Gamma h)_{1},d_{i}(\omega))}{d_{i}(\omega)}]$. (4.2)

Clearly $0\leq dr(h)\leq 1$ and the nearer $dr(h)$ is to 1, the more reliability the solution earns
in practice.

Guaranteed a certain degree of reliability, the fairness each individual user feels is
especially desirable in the state of equilibrium. If serious unfairness occurs, the user who
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spends longer travel cost would change his decision to get rid of such unfairness. For each
fixed $\omega\in\Omega$ , the essence of Wardrop equilibria is the fairness to all users with the same
OD pair. However, in the case involved uncertain factors, the travel cost for any feasible
flow pattern of each route connecting the same OD pair is not necessarily the same. For a
fixed $\omega\in\Omega$ , the unfaimess of a feasible flow pattern for an OD pair $i\in \mathcal{I}[8]$ is measured
by

$o_{i}^{\mathrm{u}\mathrm{n}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{r}_{(h,\omega)=\frac{C^{\max}(h,\omega)}{C^{\min}(h,\omega)}}}:$.
where $C_{i}^{\max}(h,\omega)$ and $C_{1}^{\min}$. $(h,\omega)$ are the largest and smallest travel cost of routes being
used, which connecting OD pair $i$ . Thus, the average unfairness of the decision for the
whole vyvtem under uncertainty can be measured by

$\mathrm{u}\mathrm{n}\mathrm{f}(h):=E[\frac{1}{n_{\mathcal{I}}}.\sum_{1\in \mathcal{I}}C_{1}^{\mathrm{u}\mathrm{n}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{r}}.(h,\omega)]=E[\frac{1}{n_{\mathcal{I}}}\sum_{\dot{*}\in \mathcal{I}}\frac{C_{i}^{\max}(h,\omega)}{C_{i}^{\min}(h,\omega)}]$, (4.3)

which provides an effective measure for robustness.
In the view of administrator who mainly considers oPtimization of the system, the flow

pattern $h$ that leads to the smallest total travel cost

$\mathrm{t}\mathrm{c}(h):=E[h^{T}C(h,\omega)]$ (4.4)

is the best choice.
Example 4.1. The transportation network shown in Figure 1 is adopted from[10], which
has 13 nodes, 19 links and 4 OD pairs $(1arrow 2,1arrow 3,4arrow 2,4arrow 3)$ , with the network
characters $t_{a}^{0}$ and $c_{a}^{0}$ . We suppose the simple case that the perturbed travel cost function
is additive, defined as

$C(h,\omega)=\Delta^{T}t(\Delta h,\omega)$ , co $\in\Omega$ ,

where the perturbed travel time function, derived from the Bureau of Public Road link
travel time function (1964), can be written as

$t_{a}(v, \omega):=t_{a}^{0}(1+0.15(\frac{v_{a}}{c_{a}(\omega)})^{4})$ , $a\in A$. (4.5)

Here $t_{a}^{0}>0$ is the travel time in the network without congestion, and $c_{a}(\omega)\geq 0$ represents
perturbed link capacity with $\mathcal{P}\{\omega : c_{a}(\omega)>0\}>0$ for all $a$ $\in A$ .

Case 1. Suppose $c(\omega)\equiv c^{0}$ , and $d(\omega)=\omega=(\omega_{1},\omega_{2},\omega_{3},\omega_{4})$ where $\omega_{1},\omega_{2},\omega_{3}$ , w4 follow
the independent truncated normal distributions, respectively:

$\omega_{1}\sim 300\leq N(400,2500)\leq 500$ , w2 $\sim 600\leq N(800,2500)\leq 1000$ ,

w3 $\sim 400\leq N(600,2500)\leq 800$ , w4 $\sim 100\leq N(200,900)\leq 300$ .
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Case 2. Based on Case 1, we suppose some great changes of capacity of the link for
$a=5$ may happen due to the weather and road condition, as

$P \{\omega:c_{5}(\omega)\equiv\frac{1}{4}c_{5}^{0}\}=\frac{1}{2}$ , $P \{\omega:c_{5}(\omega)\equiv c_{5}^{0}\}=\frac{1}{2}’$ .

Case 3. Based on Case 1, we extend the range of $\omega_{1},$ $\omega_{2}$ as

$\omega_{1}\sim 200\leq N(400,2500)\leq 600$, w2 $\sim 400\leq N(800,2500)\leq 1200$ .

We report computation results for the performance of solutions of the EV formulation
and the ERM formulation of the SNCP to the original transportation equilibrium in Table
4.1 with parameter $\epsilon=0$ . Figures 2-4 show the travel flow pattern of the ERM-SNCP
$\mathrm{m}o$del for the three cases, respectively. Here the width of each link in Figures 2-4 is
proportional to the amount of travel flow on that link.

Preliminary numerical results of traffic equilibrium problems under uncertainty indicate
that the flow pattern drawing from a solution XERM of the ERM formulation has high
reliability and delivered rate.

lible 4.1 Reliability, unfairness and total travel time of $x_{EV}$ and XERM

$x_{BV}$ Case 1

Reliability $rel_{\epsilon}(h)$ 0.0626
Delivered rate $\mathrm{d}\mathrm{r}(h)$ 93.24%

Total travel cost $\mathrm{t}\mathrm{c}(h)$ $7.93\mathrm{e}+4$

Case 2 Case 3
0.0626 0.0625
93.24% 91.20%

$8.47\mathrm{e}+4$ $7.93\mathrm{e}+4$

$=\mathrm{U}\mathrm{n}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{e}\epsilon \mathrm{u}\mathrm{n}\mathrm{f}(h)1.251.561.25x_{ERM}\mathrm{C}u\mathrm{e}1\mathrm{C}\mathrm{a}s\mathrm{e}2\mathrm{C}\mathrm{a}\mathrm{e}\mathrm{e}3$

Reliability $rel_{\epsilon}(h)$ 0.5301 0.4602 0.5436
Delivered rate $\mathrm{d}\mathrm{r}(h)$ 99.42% 99.18% 99.28%

Total travel cost $\mathrm{t}\mathrm{c}(h)$ $1.09\mathrm{e}+5$ $1.20\mathrm{e}+5$ $1.35\mathrm{e}+5$

Unfairness $\mathrm{u}\mathrm{n}\mathrm{f}(h)$ 1.38 1.71 1.47
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Figure 1: An example network Figure 2: Travel flow pattern of ERM-SNCP in case 1

Figure 3: Travel flow pattern of ERM-SNCP in case 2 (left) and in case 3 (right)
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