
辺の容量が–定のネットワークにおける動的なフローを
用いた避難計画問題に対する効率的なアルゴリズム

An EMcient Algorithm for the Evacuation Problem
in Dynamic Network Flows with Uniform Arc Capacity and its Extension

神山直之, 加藤直樹, 瀧澤重志
Naoyuki Kamiyama, Naoki Katoh, Atsushi Takizawa

京都大学大学院工学研究科建築学専攻
Department of Architecture and Architectural $\mathrm{E}\mathrm{n}\mathrm{g}_{\dot{\mathrm{i}}}$eering, Kyoto University

Abstract

In our previous paper [9], we proposed an $O(n\log n)$ time algorithm for the
evacuation problem for a $\sqrt{n}\mathrm{x}\sqrt{n}$ grid network with uniform arc capacity. In this
paper, we extend the classes of networks to which we can apply the algorithm of [9].

1 Introduction
Recently, diverse disasters occurred and caused serious damages in many countries. There-
fore it is very important to establish crisis management systems against $1\mathrm{a}r\mathrm{g}\triangleright$-scale dis&
ters such as big earthquakes, conflagrations and tsunamis to secure evacuation pathways
and to effectively guide residents to a safe place. In our work, we adopt dynamic nctwork
flowsi as a model for evacuation. A dynamic network flow is defined on a network which
consists of a directed graph $D=(V, A)$ with capacity $c(e)$ and transit time $\tau(e)$ on every
arc $e\in A$. For example, if we consider urban evacuation, vertices model buildings, rooms,
exits and so on, and an arc models a pathway or a road connocting vertices. For an arc e ,
capacity $c(e)$ represents the number of people which can traverse the arc e per unit time,
and transit time $\tau(e)$ denotes the time required to traverse e . Since Ford and Fulkerson
[3], dynamic network flows have been studied extensively (see the survey by Kotnyek [10]).

Given a network with a single sink and initial supplies at vertices, the evacuation
problem which we consider in this paper asks to find the minimum time horizon such that
we can send all the initial supplies to a sink. This problem can be solved by the algorithm
of Hoppe and Tardos [7] in polynomial time. However their running time is high-order
polynomial, and hence is not practical in general. Therefore it is necessary to devise a
faster algorithm for a tractable and practicaJly useful subclass of this problem. In our
previous paper [9], we proposed an $O(n\log n)$ time algorithm for the evacuation problem
for a $\sqrt{n}\mathrm{x}\sqrt{n}$ grid network with uniform arc capacity where n is number of vertices in
given network. In this paper, we extend the classes of networks to which we can apply
the algorithm of [9].

$\overline{1\mathrm{A}}$few authors(e.g., Fleister in[2])argue that the word “dynamic” is more consistently used for a
problem with input that changes over time. Therefore these authors prefer to use the terms flow over
time or time dependent flow.

数理解析研究所講究録
1526巻 2006年 232-240 232

1.1 Problem Formulation and notation
Let \mathbb{R}_{+} and \mathbb{Z}_{+} denote the set of nonnegative reals and nonnegative integers, respectively.
We may represent a set $\{x\}$ of a single element by x . For any finite set X , we define $|X|$

as the number of elcments belong to X .
We denote by $D=(V, A)$ a directed graph D which consists of a vertex set V and an

arc set A . Moreover we denote by $e=(u, v)$ an arc e whose tail is u and head is v . In
the case where an arc $e=(u, v)$ has no parallel arc, we may represent e by (u, v) . A path
$p=(e_{1}, e_{2}, \ldots, e_{1})$ from a vertex $u\in V$ to a vertex $v\in V$ in D is a sequencc of arcs belong
to an arc set A which satisfies the following two conditions: (1) the head of e: and the tail
of $e:+1$ are the same vertex for any $i\in\{1,2, \ldots, l-1\},$ (2) the tail of e_{1} is u and the head of
e_{ι} is v . For any pair of subsets $X,$ $\mathrm{Y}\subseteq V$, we define 6(X, Y) $=\{e=(x,y):x\in X, y\in \mathrm{Y}\}$,
and we write $\delta^{+}(W)$ and $\delta^{-}(W)$ instead of $\delta(W, V-W)$ and $\delta(V-W, W)$, respectively.
For any vertex $v\in V$, we define $P_{v}=\{w\in V:e=(w, v)\in A\}$. Moreover, for any pair
of vertices $u,$ $v\in V$, we denote by $\lambda(u,v)$ the local arc connectivity from u to v in D , i.e.,
the maximum number of the arc-disjoint paths from u to v in D .

Here we define a dynamic network. We denote by $N=(D=(V, A),$ $c,\tau,$ $b,$ $s)$ a dy-
namic network Al which consists of the underlying directed graph $D=(V, A)$, a capacity
function $c:Aarrow \mathrm{R}_{+}$ whii represents the upper bound for the rate of flow that enters an
arc per unit time, a transit time function $\tau:Aarrow \mathbb{Z}_{+}$ which represents the time required
to traverse an arc, a supply function $b:Varrow \mathbb{R}_{+}$ which represents the supply of each
vertex, and a sink $s\in V$. Notice that for any arc e the transit time $\tau(e)$ is a nonnegative
integer. Since we consider evacuation to a sink s , we assume that a sink s has no leaving
arcs and no supply, and any vertex $v\in V$ is reachable to a sink s . For any vertex $v\in V$,
we define $R_{v}=$ {$w\in P_{\delta}$: w is reachable from v in D}. Finally we define a length of a
path p in the underlying directed graph D of N as the sum of transit times of arcs on p ,
i.e., $\sum_{\epsilon\in \mathrm{p}}\tau(e)$.

Here we define a dynamic network flow $f:A\cross \mathbb{Z}_{+}arrow \mathbb{R}_{+}$ in a dynamic network
$N=(D=(V, A),$ $c,$ $\tau,$ $b,$ $s)$. For any arc $e\in A$ and time step $\theta\in \mathbb{Z}_{+}$, we denote by
$f(e, \theta)$ the flow rate entering the arc e at the time step θ which aarrives at the head of e

at the time step $\theta+\tau(e)$. Notice that any time step is a nonnegative integer. We call
f a feasible dynamic network flow in N if it satisfies thc following three conditions, i.e.,
capacity constraint, flow conservation, and demand constraint [11].
Capacity constraint: $\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{y}\mathrm{a}\mathrm{r}\mathrm{c}e\in A\mathrm{t}\mathrm{d}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}\theta\in \mathbb{Z}_{+}$,

$0\leq f(e, \theta)\leq c(e)$. (1)

Flow conservation: For any vertex $v\in V$ and time step $\Theta\in \mathrm{Z}_{+}$,

$\sum_{\epsilon\in\delta(v)}\sum_{\theta+=0}^{\Theta}f(e, \theta)-\sum_{\epsilon\in\delta-(v)}\sum_{\theta=0}^{\Theta-\tau(\epsilon)}f(e, \theta)\leq b(v)$. (2)

Demand constraint: There exists a time step $\Theta\in \mathbb{Z}_{+}$ such that

$\sum_{\epsilon\in\delta^{-}(\iota)}\sum_{\theta=0}^{\Theta-\tau(\epsilon)}f(e, \theta)=\sum_{v\in V}b(v)$. (3)

233

Here we give the intuitive understanding of the above three conditions. Capacity con-
straint ensures that the flow rate entering into any arc e at any time step θ is bounded
by the capacity of e . Flow conservation ensures that the flow rate entering into any arc e

at any time step θ is bounded by the sum of the flow rate arriving at the tail of e and the
storage of the tail of e at the time step θ . Demand constraint ensures that all of supply
flow into a sink s .

For a feasible dynamic network flow f in N, let $\Theta(f)$ denote the completion time for
f , i.e., the minimum time step Θ satisfying (3). The evacuation problem asks to find the
minimum value of $\Theta(f)$ among all feasible dynamic network flows in N. Given a dynamic
network N, the evacuation problem $\mathrm{E}\mathrm{P}(N)$ is formally defined as follows:

$\mathrm{E}\mathrm{P}(N):\ovalbox{\tt\small REJECT} \mathrm{e}$ { $\Theta(f):f$ is a feasible dynamic network flow in N}.

Throughout this paper, n and m denote respectively the number of the vertices and the
arcs in given network N for the evacuation problem $\mathrm{E}\mathrm{P}(N)$.

1.2 Related works
Burkard, Dlaska, and Klinz [1] presented a strongly polynomial time algorithm for the
evacuation problem in the case where only one vertex has a supply in given network.
Unlike in the static network flow2 problem, the evacuation problem can not be reduced
to the case where only one vertex has a supply by using super-source which is connected
with all vertex in given network. This is because the capacity of the arc connecting the
super-source to a vertex v can not be set so that the total amount of flow that pass
through this arc during the time horizon equal to the supply of v . The capacities of arcs
in a dynamic network limit the flow rate at each time step. Hoppe and Tardos [7] gave
the only known polynomial time algorithm for the evacuation problem. The algorithm
of [7] solves the evacuation problem $\mathrm{E}\mathrm{P}(N)$ by using $O(S^{2}\log^{2}(nCM\mathcal{T}))$ minimum cost
static network flow computations where $S,$ $C,$ M , and \mathcal{T} respectively denote the number
of vertices with positive supplies, the maximum capacity of arcs, the sum of all supplies of
vertices and the maximum transit time in N. Their running time can be made strongly
polynomial by using the parametric search technique of Megiddo [12].

As a special case, Hall, Hippler, and Skutella [6] consider the evacuation problem for
a dynamic network such that for each vertex v a length of any path from v to a sink is the
same value. Mamada, Uno, Makino, and Fujishige [11] consider the evacuation problem
$\mathrm{E}\mathrm{P}(N)$ for a dynamic network N with tree structure and presented an $O(n\log^{2}n)$ time
algorithm. For other special class, the algorithm of [9] solves the evacuation problem
$\mathrm{E}\mathrm{P}(N7$ for a dynamic network N with a $\sqrt{n}\mathrm{x}\sqrt{n}$ gird structure and uniform arc capacity
in time $O(n\log n)$.

2 The Evacuation Problem for Grid Networks
First we define a grid graph. For simplicity, we assume a grid graph is on N^{2} grid points
$\underline{\{1,2,\ldots,N\}\mathrm{x}\{1,2,\ldots,N\}}$in the plane, and let $n=N^{2}$. Here a vertex is identified with

$2\mathrm{i}$ order to distinguish $\mathrm{C}\mathrm{l}\mathfrak{B}8\mathrm{i}\mathrm{C}\mathrm{u}$ network flows from dynamic network flows, we call classic network
flow static network flow.

234

(i,j) with $i\in\{1,2, \ldots , N\}$ and $j\in\{1,2, \ldots, N\}$. The distance between two vertices
(i,j) and $(i’,j’)$ is defined as $|i-i’|+|j-j’|$. Two vertices (i,j) and $(i’,j’)$ are connected
by an edge if and only if $|i-i’|+|j-j’|=1$ holds (Fig. 1 (a)). The edge which connects
v and $v’$ is directed $\mathrm{h}\mathrm{o}\mathrm{m}v$ to $v’$ if and only if the distance from $v’$ to s is smaller than
that from v to s (Fig. $1(\mathrm{b})$). A dynamic network defined on a grid graph is called a grid
network. We assume throughout this paper that, in dynamic networks we are concerned
with, the capacities of all arcs take the same value $c\in \mathrm{R}_{+}$ and the transit times of all
arcs take the same value $\tau\in \mathbb{Z}_{+}$. Notice that we define c and τ as not a function but
an integer here. From this assumption, we use the notation $N=(D=(V, A),$ $b,$ $s)$ for
simplicity by omitting the capacity function and the transit time function. Moreover we
assume a sink is an inner vertex, i.e. the in-degree of a sink is four (the other case can be
similarly treated).

In a grid network $N=(D=(V, A),$ $b,$ $s)$, for any vertex $v\in V$, we define l_{v} as the
length of a path from v to a sink s . Notice that for any $v\in Vl_{v}$ is unique in a $g\mathrm{i}\mathrm{d}$

network N. Vertex set V is partitioned into layers according to the distance from s .
Thus, a directed graph D can be viewed as a layered graph. A layered graph $D=(V,A)$
with a sink $s\in V$ is a directed graph consisting of several layers which partition V into
subsets $V^{0}(=\{s\}),$ $V^{1},$ $V^{2},$

\ldots such that vertices $v\in V^{:}$ and $w\in V^{\mathrm{j}}$ are connected by a
directed arc $e=(v,w)$ only if $i-j=1$, and V^{p} denotes the set of all of vertices satisfying
$l_{v}=p\tau$ (Fig. $1(\mathrm{c})$). A dynamic network defined on a layered graph is called a layered
network. Moreover we define $L \tau=\max\{l_{v} : b(v)>0, v\in V\}$ for a grid network.

$(\mathrm{a}]$ $(0]$ $(\mathrm{C}l$

Figure 1: (a)Grid network (b)Direction of arcs (c)Layers of grid network

2.1 The Algorithm for Grid Networks
In this $8\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$, we consider the evacuation problem $\mathrm{E}\mathrm{P}(N)$ for a grid network $N=$

$(D=(V, A),$ $b,$ $s)$. Our algorithm benefits from the structure of a grid graph. Let $P_{\epsilon}=$

$\{u_{1}, u_{2}, u_{3}, u_{4}\}$. By the way of directing arcs of a grid graph, we can decompose V into
eight subsets, $U_{1},$ $U_{2},$ $U_{3},$ U_{4} and $W_{1},$ $W_{2},$ $W_{3},$ W_{4} as in Fig. 2 where U_{*} denotes the set
of verticcs on horizontal or vertical axis whose supplies are all sent to a sink s through
arc (u_{i}, s) and W_{1} denotes the set of vertices whose supplies are sent to a sink s through
either (u_{1}, s) or $(u:+1, s)$ (we assume throughout this section that the index i is given as
(i mod 4) $+1)$. Here let $H_{i},i=1,2,3,4$ be a subgraph induced by $W_{i-1}\cup U_{1}\cup W_{i}\cup\{s\}$.
For an optimal dynamic flow f for problem $\mathrm{E}\mathrm{P}(N)$, it can be decomposed into four flows
$f_{1},$ $i=1,2,3,4$ such that each f_{1} represents the flow of supplies which reaches s through
arc (u_{i}, s) . The proposed algorithm is based on the following four ingredients.

235

Theorem 2.1 There exists a subgraph $H_{1}’$. of H_{1} which spans $W_{i-1}\mathrm{U}U_{1}\cup W_{i}\cup\{s\}$ for
$i=1,2,3,4$ such that $H_{\dot{\iota}}’$ are arc disjoint for $i\neq j$.

It is easy to see that the above theorem holds from Fig 3. Notice that that arc-disjoint
subgraph $H_{i}’$ are not uniquely determined.

Figure 2: Decomposition of N Figure 3: $H_{1}’,$ $H_{2}’,$ $H_{3}’,$ $H_{4}’$

Now suppose that for every $v\in W_{1}$ with $i=1,2,3,4$, the amounts of supply (denoted
by $b_{:}(v)$ and $b_{i+1}(v)$ respectively) which reach r via arcs (k, s) and $(\mathrm{k}+1, s)$ respectively
are fixed. Moreover we define $N_{1}=(H_{*}, b:, s)$ where for every $v\in U_{1}$ we define $b_{:}(v)=b(v)$.

Theorem 2.2 The optimal objective value for $\mathrm{E}\mathrm{P}(N_{i})$ for every $i\in\{1,2,3,4\}$ does not
depend on the choice of arc-disjoint subgraphs $H_{i}’$, but remains the same.

Theorem 2.3 There exists an optimal dynamic flow f such that f_{1} and f_{j} does not share
any arc for every $i\neq j$.
From these facts, when b_{1} and b_{i+1} are fixed for every $v\in W_{1}$ and every i with $i=1,2,3,4$,
an optimal flow of $\mathrm{E}\mathrm{P}(N)$ can be found by independently obtaining an optimal flow f_{1}^{*}

for $\mathrm{E}\mathrm{P}(N_{i})$ for each $i\in\{1,2,3,4\}$. Since the subgraph $H_{1}’$. is a rooted tree, the solution
of $\mathrm{E}\mathrm{P}(N_{1})$ can be given by simply specifying the supply at each $v\in W_{i-1}\cup U_{*}$. $\cup W_{1}$.
Thus, the problem $\mathrm{E}\mathrm{P}(N)$ reduces to finding an optimal allocation of $b(v)$ to $b_{j}(v)$ and
$b_{*+1}(v)$ for each $v\in W_{i}$ with $i=1,2,3,4$, and we call this problem the optimal allocation
problem for supplies. Moreover, we prove the following theorem. Consequently, we can
solve the evacuation problem for grid networks with uoiform arc capacity efficiently as
will be shown in Theorem 2.5.

Theorem 2.4 $\mathrm{T}\mathrm{h}\mathrm{e}^{\mathfrak{l}}$ optimal allocation problem for supplies can be transformed into the
min-max resource allocation problem under network constraints [8, 5, 4].

The min-max resource alloeation problem under network eonstraints is a kind of min-
max flow problem with multiple sources and sinks in a static network [8, 5, 4] which
is defined as follows. Suppose we are given a network with multiple sources and sinks
such that a fixed amount of supply is associated with each source, and the cost function
$\gamma_{t}(x_{t})$ which is nondecreasing in x_{t} is associated with each sink t where x_{t} denotes the
amount of flow entering t . Then the problem asks to find a (static) flow that minimizes
the maximum of the cost functions of sinks.

236

Figure 4: nlustration of the entire network constructed in Subsection 2.1

$(\mathrm{a}j$

$(\mathrm{D}]$

(C)

Figure 5: $(\mathrm{a})p$-th component C^{p} $(\mathrm{b})L$-th component $C^{m}(\mathrm{c})\gamma \mathrm{t}\mathrm{h}$ bridges

We will explain how we construct a (static) network (see Fig. 4) for which $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{d}_{\dot{\mathrm{i}}}\mathrm{g}$ an
optimal solution for the min-max resource allocation problem produces an optimal solution
for the evacuation problem. The network to be constructed consists of L components
$C^{1},$ $C^{2},$

$\ldots,$
C^{L} . Each component C^{p} except C^{L} has four layers while C^{L} has three layers.

The first layer of each component α has eight sources. The second and third layers
consists of four vertices denoted by $v_{1,i}^{\mathrm{p}},$ $v_{2,:}^{p},i=1,2,3,4$. The fourth layer consists of a
single vertex v_{3}^{p} . The connection between the layers are as shown in Fig. 5(a). Only the
arcs from the second to third layer have finite capacity $c\tau$ in C^{P} with $1\leq p\leq L-1$ while
the arcs in C^{L} have infinite capacity. The capacity of the other arcs is ∞ . All vertices v_{3}^{p}

with $1\leq p\leq L-1$ are connected to t_{d1} .
The vertices $v_{2,i}^{L},i=1,2,3,4$ of C^{L} as well as t_{d1} are sinks of this network which are

associated with a cost function. The actual cost function for each $v_{2,1}^{L},i=$ 1,2,3,4 is
equal to the amount the flow entering it. The cost function associated with t_{all} takes zero
irrespective of the flow value entering it.

In addition to this, we prepare arcs between consecutive components. More precisely,
as shown in Fig. 5(c), there is an arc from $v_{1,:}^{\mathrm{p}}$ to $v_{1,:}^{\mathrm{p}+1}$ for each p with $1\leq p\leq L-1$ and
i with $1\leq i\leq 4$. The capacity of this arc is defined to be ∞ . This arc is called a bridge.

It is known that the min-max resource allocation problem for the network with $|V|$

vertices, $|A|$ arcs and $|T|$ sinks can be solved in $O(|T|(|V||A| \log|V|+|T|\log\frac{M}{|T|}))$ time
where M denotes the sum of supplies [8, 5, 4]. The second term in the parenthesis, i.e.,
$O(|T| \log\frac{M}{|T|})$, is the time required to solve thc rcsource allocation problem without the

237

network constraints. Since our cost function associated with $v_{2,:}^{L},$ $i=1,2,3,4$ is linear, we
can reduce the time to $O(1)$ (the details are omitted). In our case, $|T|$ is constant and
$|V|=O(\sqrt{n}),$ $|A|=O(\sqrt{n})$, thus the running time becomev $O(n\log n)$. This proves the
following theorem.

Theorem 2.5 The evacuation problem for a grid network with uniform arc capacity can
be solved in $O(n\log n)$ time.

3 Extension of the Algorithm of [9]

It is easy to see that the algorithm of [9] can be extended to a general layered network
N such that (1) the length of any path from a vertex v to a sink s take the same
value, and (2) the underlying layered graph $D=(V, A)$ (we allow D to have multiple
arcs) contains arc-disjoint layered subgraphs $H_{1},$ $H_{2},$

$\ldots,$
H_{k} which spans $U_{1},$ $U_{2},$

$\ldots,$
U_{k}

and includes $e_{1},$ $e_{2},$
$\ldots,$

e_{k} respectively, where we define $\delta^{-}(s)=\{e_{1}, e_{2}, \ldots,e_{k}\}$ and U_{*}.

is the set of vertices from which the tail of e_{1} is reaehable in D . Thus, the result can
also be generahized to the case where the arc capacity is a multiple of c by regarding the
arc as multiple ones as long as the resulting layered graph satisfies the requirement just
mentioned above. In this section we consider the conditions under which layered graphs
contain such arc-disjoint layered subgraphs.

Here we consider a layered graph $D=(V, A)$ with a sink $s\in V$. We denote a layer
whose distance from s is i as $V^{:}$. Notice that $V^{0}=\{s\}$. We define $\delta^{-}(s)=\{e_{1}, e_{2}, \ldots, e_{k}\}$

and U_{1} be the set of vertices form which the tail of e_{1} is reachable in D . We prove the
following lemma.

Lemma 3.1 Given a layered network $D=(V,A)$ with a sink $s\in V$, there exist k

aborescences $T_{i}=(U_{1}, A_{*}.)$ for each $i\in\{1,2, \ldots, k\}$ such that every T_{1} is rooted at s ,
$e_{i}\in A_{:},$ $A_{:}\subseteq A$ and $A_{i}\cap A_{j}=\emptyset(i\neq j)$ hold if and only if for any $v\in V$ we have
$\lambda(v, s)=|\delta(R_{v}, s)|$.
Proof: If there exist k aborescences satisfying the lemma statement, it is easy to see
that for any $v\in V$ we have $\lambda(v, s)=|\delta(R_{v}, s)|$. We then prove the “if-part”.

Assume that for any $v\in V$ we have $\lambda(v, s)=|\delta(R_{v}, s)|$. We prove there exist k

aborescences satisfying the lemma statement by induction on the number of layers i .
In the case for $i=1$, it is easy to see that the lemma holds.
Next we assume for $i=j$ the lemma holds. Notice that since D is a layered graph

the parents of a vertex of V^{j+1} belong to V^{j} from the definition of a layered graph. Since
$\lambda(v, s)=|\delta(R_{v}, s)|$ holds, the number of the arcs whose tail is v is at least $|\delta(R, s)|$. We
have

$R_{v}= \bigcup_{w:\epsilon=(v.w)\in A}R_{w}$
.

For convenience, let the arcs whose tail is v be $\hat{e}_{1},\hat{e}_{2},$
\ldots (Figure 6).

Here we define the bipartite graph $G=((V^{+}, V^{-}),$ $E)$ as follows. An element of V^{+}

corresponds to an element of $R(v)$ and an element of V^{-} corroeponds to an element in
the set of arcs whose tail is v . Then, a vertex $v^{+}\in V^{+}$ and a vertex $v^{-}\in V^{-}$ are joined

238

Figure 6: $j+1$-th layer$\mathrm{P}^{\cdot}\mathrm{l}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{o}:\gamma+\perp-\tau \mathrm{n}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}$ Figure 7: Bipartite graph of v in Fig 6

by an edge in E if and only if the head of the arc which corresponds to v^{-} is reachable
to the tail of the arc which corresponds to v^{+} (Figure 7). By induction hypothesis, there
exists a matching which saturates V^{+} in the bipartite graph $G=((V^{+}, V^{-}),$ $E)$ defined
above.

We then prove that there always exists a matching as described above. Here we use
Hall’s theorem.

Theorem 3.1 ([13]) A bipartite graph $G=((V^{+}, V^{-}),$ $E)$ has a matching which satu-
rates all nodes of V^{+} if and only if for any $H\subseteq V^{+},$ $|H|\leq|N(H)|$ holds where $N(H)$ is
the set of vertices adjacent to some elcment of H .
We prove the existence of such matching as described above by contradiction. Assume
that there exists $H\subseteq V^{+}$ with $|H|>|N(H)|$. This contradicts the fact that there are at
least $|\delta(R_{v}, s)|$ arc-disjoint paths. This completes the proof. g

From Lemma 3.1, we can easily prove the following theorem.

Theorem 3.2 The evacuation problem for alayered network $N=(D=(V, A),$ $b,$ $s)$ with
loiform arc capacity which satisfies $\lambda(v, s)=|\delta(R_{v}, s)|$ for any $v\in V$ can be solved in
$O(m+k^{3}n^{2}\log n)$ time where we define $k=|P_{\epsilon}|$.
Proof: To finish the proof of the theorem, we have to prove the correctness of the
time complexity. The first term, i.e., $O(m)$ is the time required to $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}R_{v}$ for any
$v\in V$ by depth-first search. The second term is the time required to solve the min-max
resource allocation problem produces an optimal solution for the evacuation problem.
Since the time complexity depends on the size of the network for which finding an optimal
solution for the min-max resource allocation problem produces an optimal solution for the
evacuation problem. Note that the example of the network for the evacuation problem
for grid networks is shown as in Figure 4. Though we omit the details, the number of
vertices is $O(kn)$, the number of arcs is $O(kn)$, and the number of sinks is $O(k)$. Thus,
the running time of the algorithm is $O(k^{3}n^{2}\log n)$ by Theorem 2.5. g

Acknowledgements
This research is supported by JSPS Grrt-in-Aid for Scientific Research on priority areas
of New Horizons in Computing.

239

References
[1] R.E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. ZOR-Methods

and Models of Operations Research, 37:31-58, 1993.

[2] L. Fleischer. Faster algorithm for the quiekest transshipment problem. SIAM J. on
Optimization, $12(1):18-35$, 2001.

[3] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

[4] S. Fujishige. Lexicographicailly optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, $5(2):186-196$, May 1980.

[5] S. Fujishige. Nonlinear optimization with submodular constraints. In Submodular
Functions and Optimization, volume 58, pages 223-250. Elsevier Science, North-
Holland, 2nd edition, 2005.

[6] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient
algorithms and complexity. In Automata, Languages and Programming, 30th Inter-
national Colloquium (ICALP 2003), volume 2719 of LNCS, pages 397-409. Springer,
2003.

[7] B. Hoppe and \’E. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, $25(1):36-62$, February 2000.

[8] T. Ibaraki and N. Katoh. Resource allocation problems under submodular con-
straints. In Resource Allocation Problems : Algorithmic Approaches, pagoe 144-176.
MIT Press, Cambridge, MA, 1988.

[9] N. Kamiyama, N. Katoh, and A. Takizawa. An effieient algorithm for evacuation
problems in dynamic network flows with uniform arc capacity. IEICE hansaction
on Fundamentals, E8&D(8):2372-2379, August 2006.

[10] B. Kotnyek. An annotated overview of dynamic network flows. Technical Report
RR-4936, Inria Sophia Antipolis, September 2003.

[11] S. Mamada, T. Uno, K. Makino, and S. Fujishige. An $O(n\log^{2}n)$ algorithm for a
sink location problem in dynamic tree networks. Discrete Applied Mathematics, to
appear.

[12] N. Megiddo. Combinatorial optimization with rational objective functions. Mathe-
matics of Operation Research, 4:414-424, 1979.

[13] W.R. Pulleybland. Matchings and extensions. In R.L. Graham, M. Gr\"otschel, and
L. Lov\’asz, editors, Handbook of Combinatorics, volume 1, $\mathrm{p}\mathrm{a}\mathrm{g}\infty$ 179-233. MIT Press,
1995.

240

