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1. INTRODUCTION

In [2], Dowker proved that if a topological space X is Hausdorff and normal, ¥
is countably paracompact iff X x [0, 1] is normal. Moreover, he asked if a Hausdorff
normal space is countably paracompact.

The first discovery of its counterexample is due to Rudin in [2]. She proved
that if Suslin Hypothesis fails, then there exists a Hausdorff normal space which
is not countably paracompact. A Hausdorff normal space which is not countably
paracompact is called a Dowker space. Her Dowker space is first countable and of
size R;. In [6], she asked questions as follows. (All of these questions are asked
“from only ZFC?”)

(1) Does there exist a Dowker space of size R;?

(2) Does there exist a first countable Dowker space?

(3) Does there exist a first countable Dowker space of size R;?
Three of them has been still unknown. The best known ZFC-example of a Dowker
space is of size min {2%,R, 1} by combining of results due to Balogh [1] and
Kojiman-Shelah [3]. (It should be note here that the first discovery of a ZFC-
example of a Dowker space is also due to Rudin in [6].)

In this note, we summarize two constructions of a Dowker space: Rudin’s one and
Balogh’s one. The following is the key theorem to introduce that our constructions
are Dowker.

Theorem 1.1 (Dowker [2]). Suppose that X is a Hausdorff normal space. The
following are equivalent.
(DO): X is not countably paracompact.
(D1): There exists a sequence (Cn;n € w) of closed subsets of X such that
o Crt1 € C,, for everyn € w, ‘
¢ nnew Cn= @
o for every sequence (Un;n € w) of open subsets of X such that C, C U,
for alln € w, |, e, Un # 0.
(D2): There exists a sequence (Up;n € w) of open subsets of X such that
e U1 2U, for every n € w,
[ ] Unew = ,
e for every sequence (Crn;n € w) of closed subsets of X such that C, C U,
foralln € w, U, g, Cn # X.
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2. RUDIN’S DOWKER SPACE

In this section, we summarize a construction of Rudin’s Dowker space in [5]. It
have to note that Suslin Hypothesis is independent from ZFC. v

She constructed a Dowker space as follows. Suppose that a Suslin line exists.
At first, a Suslin tree is constructed from its Suslin line by the standard method.
Next, a topological space is defined using its Suslin tree and it is proved that it
is Dowker. Here we will see her construction by using modern terminologies: the
density of forcing notions and maximal antichains. :

Theorem 2.1 (Rudin [5)). If Suslin’s Hypothesis fails, then there ezists a first
countable Dowker space of size N;.

Proof. Suppose that T is a Suslin tree. For a countable ordinal a, let T, be the set
of nodes in T with level o, and for such an o and t € T with level larger than a,
let t[a be the nodes with a-th level below ¢ in T'. For each t € T', we write Iv(t) as
the level of t. _ ,

To define our topological space, for each a € w; N Lim, we fix a function 7, :
Ty — [To)%° such that '

e for any t € T, and f € a, the set {s € m4(t);t8 <r s} is infinite,
e for any distinct nodes t and t’ in Ty, To(t) N 7a(t’) = 0.

Let X := T x w. We define a neighborhood of the point (¢,n) of X by induction
on n and lv(t) as follows.
(I): If v(t) & Lim, then a neighborhood of (t,n) is {(t,n)}.
(II): If Iv(t) € Lim and n = 0, then the neighborhood of (¢, n) is the set

({seT;s<rt& B <Iv(s)} x {0}) U{(t,0)},

for some S € Iv(t). :
(III): If Iv(T) € Lim and n > 0, then a neighborhood of (t,n) is a union of
e neighborhood of points in the set (4 (t) \ o) x {n —1},
e neighborhoods of points in the set {s € T;s <1 t & B < Iv(s)} x {n},
and ’ .
o {{t;m},
for some o € [ma(t)]<"° and B € V().
By the definition, X is first countable and of size X;.
The next proposition lists types of open and closed subsets of X we will use in
the proof below. We omit the proof here.

Proposition 2.2. (1) XisTh.
(2) The set T x n is open for each n € w.
(3) The set |JycsTa X w 18 clopen for each é € w;.
(4) The set {s€T;s<pt& B<Iv(s)} x {n} is closed for each t € T with
Iv(t) € Lim, B € Iv(t) and n € w. :
(5) The set (T (t) \ o) x {n} is close for each t € T with v(t) € Lim, o €

[Tt (t)]<R° andn € w. 2.2

The next proposition can be shown from the definition of the topology. We omit
the proof again. :
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Proposition 2.3. For every t € T with a limit level, B € Iv(t), n € w \ {0} and
m € n, every neighborhood of the point (t,n) has a point (s,m) such that t|8 <r s.
—2.3

Lemma 2.4. X satisfies (D1).

Proof of Lemma 2.4. Let Cp, :=T x (w\ n) for each n € w. Then Cpr11 C C, for
any n € w and (¢, Cn = 0. We show that the sequence (Cn;n € w) is a witness
for (D1). '

Let (Un;n € w) be a sequence of open subsets of X such that C,, C U,.
Claim 2.5. For every n € w, the set
| D, = {t € T;{s € Tt <1 s} x {0} C Un}
is dense in T'.

Proof of Lemma 2.5. Assume not, i.e. there exists ¢ € T such that for any s > t,
we can find u >7 s such that (u,0) € U,. Then there is a sequence (d;, 4;;1 € w)
such that

e J; is a countable ordinal and §; < ;41 for every i € w,

e A; is a maximal antichain above ¢ for every i € w, and

e for any member s in A;, §; < Iv(s) < &;+1 and (s,0) &€ U,,.
Let 6 := sup;c, d;. Since C, C U, there exists u € T such that Iv(u) = § and
(4,0) € Up by Proposition 2.3. However then we can show that (u,0) is in the
closure of X \ U,, which is just X\ U,. This is a contradiction.

For the proof that the point (u,0) belongs to the closure of X\ U,, let N be a

neighborhood of (u, 0), say

N:={seT;s<pt & B <Iv(s)} x {0}) U {{t,0)}

for some B € Iv(u) = 4. Let ¢ € w be such that 8 < §;. Then there is s € A; which
is compatible with u in T', that is, s <7 u. Then the point (s, 0) is a common point
of both N and X\ Uy, i.e. NN (X\U,) #0. 2.5

For each n € w, let B, C D, be a maximal antichain in 7. Take v € w; N Lim
such that for any t € |, ¢, Bn, V(t) < 7. Then for each n € w, Ty, x {0} C U,,.
Therefore (., Un # 0. 2.4

Lemma 2.6. X is normal.

Proof of Lemma 2.6. Suppose that H and K be disjoint closed subsets of X. For
each n € w, let _

H,:={teT;(t,n) e H}
and .
Ky, :={teT;(t,n) € K}.
Claim 2.7. Let m and n be in w. Then the set
Emni={t €T;{s € T;t <r s} is digjoint from H,, or K,}

is dense in T.



Proof of Claim 2.7. Assume not, i.e. there exists ¢t € T such that for any s > t,
we can find u > s such that u € H,, N K,,. Then there is a sequence (4;, A;; % € w)
such that

e §; is a countable ordinal and ¢; < §;+1 for every i € w,

e A; is a maximal antichain above ¢t for every ¢ € w, and

o for any member s in A;, §; < Iv(s) < §;+1 and s € Hp, N K,,.
Let & := sup;¢,, 0;- Then we observe that {s € Ts;t <7 s} C H,,N K, because both
H and K are closed. Since H and K are disjoint, m # n.

Without loss of generality, we may assume that m < n. Let s € Ts such that

t <7 s. Then (s,n) € K. By Proposition 2.3 and the above observation, (s,n) € H
which is a contradiction. 2.7

Therefore for each n € w, the set
El = {teT;{s e T;t <r s} x (n+1) is disjoint from H or K}

is also dense in T'. There exists § € w; such that for every n € w, £, has a maximal
antichain contained in the set |J,<s 7. Let

H :=HnN (U Taxw)

a<é

and
K:=Kn||JTaxw].
a<é
Let {p;; i € w} enumerate the set | J, <5 Ta X w, and say p; := (t;, ni).
Recursively choose closed subsets M; and N; of X, for each i € w as follows.

Case 1: Suppose that p; ¢ K U ;¢ N;-
(a): If Iv(t;) & Lim, then let M; := {p;} and N; = 0.
(b): If v(t;) € Lim and n; = 0, then since K U |J;; N; is closed, we can
find B; € Iv(t;) such that

(({S eT;s<rt; & B; < |V<S)} X {0}) U {p,,}) N (KU UNJ) = 0.

jei
Then let
M; = ({seT;s<rt; & Bi < Iv(s)} x {0}) U {pi}
and N; = 0.

(c): If Iv(t;) € Lim and n; > 0, then since K U J;¢; N is closed, we
can find B; € Iv(t;) and o5 € [7r|v(t,.)(t,-)]<k° such that there exists a
neighborhood of p; disjoint from K U (J;¢; N, which is a union of

e neighborhoods of points in the set (my(s,)(t:) \ o) x {n; — 1},

¢ neighborhoods of points in the set {s € T; s <7 t; & B; < Iv(s)}x
{n;} and-

[ 4 {pi}'
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Then let

M; = ((le(ti)(ti) \ O'i) X {ni - 1})
U({seT;s<rt; & B <Wv(s)} x {n})U{p:}
and Ni = 0
Case 2: Otherwise. Then since H and K are disjoint, p; ¢ H UUJ.G,- M;. Then
we perform as in the case 1 above replacing K U Ujei N;to HU Ujei M;.

Let
U':=HU U M;
i€w
and
Vi=KulJN.
tEw

We note that H' CU’, K' C V', U'NnV' =@, and both U’and V' are open.
Let ' ‘
U:=U’UU{{3€T;t<T s} x (n+1);
| teT;nE & ({seTit<rs}x (n+1))NH #0}
and
V:=V'UU{{3€T;t<Ts}><(n+1);
teTsNE, & ({s€Tit<r s} x (n+1)NK #0)
Then HCU, KCV,UNV =0, and both U and V are open. 2.6

Since X is T7 and normal, X is Hausdorff, therefore X is a Dowker space. O

Paul B. Larson asks whether we need the Suslinness of T to introduce it to be
Dowker [4].

3. BALOGH’S DOWKER SPACE
In this section, we summarize Balogh’s construction of a Dowker space in [1].
Theorem 3.1 (Balogh [1]). There exists a Dowker space of size continuum.
Summary of proof. For an infinite cardinal x, let B(x) be the statement that there

exists a sequence (Fq;a € k) of subsets of P(x) such that

(i): each F, is closed under finite intersections,
(ii): NFo =0 for all o € &,

- (iii): for any disjoint subsets Jand J of «, there exists a sequence (Fp;a € T U J)
~ such that F, € F, for each o € TU J and

(‘SEJI Fa) N (ﬁ[éij,,) = @;

(iv): & is not o-decomposable, where I € P(k) is called o-decomposable if
there exists f : I — w such that for any sequence (F,; o € I) with F, € F,
and o # B in I, if f(a) = f(B), then o & Fz and § € F,.



Balogh proves in his paper that
(1) B(2%) holds, and
(2) If B(x) holds, then there exists a Dowker space of size  (in fact, his Dowker
space is o-relatively discrete and hereditarily normal).

His construction is as follows. Suppose that B(x) holds and we take a witness
(Fa; a € k) for B(k). X:= K x w, and for (o, n) € X, we define an open neighbor-
hood of {e, n) by induction on n as follows. If n = 0, then a neighborhood of (o, n)
is {(a,n)}, and if n > 0, then a neighborhood of {a,n) is a union of neighborhoods
of points in the set F' x {n —1} and the singleton {(a, n)} for some F € F,. We can
prove that it is a Dowker space. (The property (i) guarantees that X is a topology
(and hence it is o-relatively discrete by the definition), (ii) guarantees that X is T3,
(iii) guarantees the hereditary normality of X, and (iv) guarantees that X satisfies
(D2).

Show only that X satisfies (D2).
At first, we show that for each n € w and I € P(«) which is not o-decomposable,
the set

It = {aeI;(a,n+1) em}

is not o-decomposable. For such n and I, let J := I\ I'*. Then for each a € J,
there exists F, € F, such that F, NI = @. Then (Fy;a € J) is a witness that
J is o-decomposable (in fact, 1-decomposable). So if I+ is o-decomposable, then
I=ItUJisalso a—decomposable, which is a contradiction.

For n € w, let U, := & x (n + 1), which is open in our topology. Show that the
sequence (Un;n € w) is a witness for (D2). Let (Cp;n € w) be a sequence of closed
subsets of ¥ such that C,, C U, for all n € w and |J = X. Then we can find
m € w such that the set

new

{a € k;{a,0) € Crn}
is not o-decomposable by the property (iv). Then we can conclude that C, € Uy,
by the above observation. O
The author would like to ask if B(X;) holds under ZFC and what about a general
B(x).

In the last of the note, the author give one construction of a topological space
of size N;, which is moreover first countable, under ZFC by modifying Balogh’s
Dowker space. Unfortunately, it will be observed that it is not a Dowker space.

Theorem 3.2. There exists a first countable, o-relatively discrete, Hausdorff space
of size Ry such that for any closed subsets H and K, if H and K are disjoint, then
either H or K 1is countable.

Proof. Let (Sp;n € w) be a sequence of disjoint stationary subsets of countable

ordinals. Let
X:= U Sn % {n},

new
. and define that a subset U of X is open iff for every point (o, n) in U, if n > 0,
then there exists 8 € a such that the set

(SnN (B, ) x {n -1}
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is contained in U. We will prove that this X satisfies the statement of the theorem.

From the definition, X is first countable, o-relatively discrete, Tj. To show the
rest, we see the property of the closed subset of X.

Claim. Assume that H s a closed subset of X and n € w satisfies that the set
IH .= {a € Su;{a,n) € H}
is uncountable. Then the set I, | contains a club.

Proof of Claim. Suppose that the set Spyi \ IZ, is stationary. Then for each
o € Sny1 \ I, there exists 8, € a such that ‘

((82 N (Bay@)) x {n}) N H = . \
By Fodor’s Theorem, there are a stationary subset S of Sp41 \ I, and 8 € w,

such that 8, = B holds for every @ € S. Since IZ is uncountable, there exists
v € IF\ (B+1) and then we take o € S\ (y+ 1). We note that

(1) € ((Sn N (Bas @) x {n}) N H, |
which is a contradiction. -

From this claim and the argument in the proof of the previous theorem, we notice
that X satisfies (D2). Moreover we note that if H and K are uncountable closed
subsets of X, then H have to meet K. O

We have to note that the above X is not regular, hence not normal. In our
situation, we can find an o € Sp and (Bn;n € w \ {0}) such that
@ Bp € Sy Nafor every n € w\ {0},
® Bn < Pn41 for every n € w\ {0}.
'Then let H := {{a,0)} and K := {{B,,n);n € w\ {0}}. We notice that H and K
- are disjoint closed subsets and cannot be separated by disjoint open subsets.
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