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Here, we introduce the results obtained in the paper [11] and related problems. We
consider metric spaces and their hyperspaces endowed with the Hausdorff metric.
Specifically, given a metric space $X=\langle X, d\rangle$ , we shall denote by Cld(X) and Bd(X)
the hyperspaces consisting of all nonempty closed sets and of all nonempty bounded
closed sets in $X$ respectively and we denote by $d_{H}$ the Hausdorff metric, which
is infinite-valued on Cld(X) if $X$ is unbounded. When $X$ is compact, the space
Cld(X) $(=\mathrm{B}\mathrm{d}(X))$ is equal to the hyperspace $\exp(X)$ of all nonempty compact
sets with the Vietoris topology. Even if $X$ is noncompact, on the space $\exp(X)$ , the
Hausdorff metric topology coincides with the Vietoris topology. However, in case $X$

is noncompact, these topologies are very different on the spaces Cld(X) and Bd(X).
Vietoris hyperspaces $\exp(X)$ have been studied extensively for many years. Among

the known results, let us mention the theorem of Curtis and Schori [8] (cf. [13,
Chapter 8]), saying that $\exp(X)$ is homeomorphic to $(\cong)$ the Hilbert cube $\mathrm{Q}=$

$[$ -1, $1]^{\omega}$ if and only if $X$ is a Peano continuum, that is, it is compact, connected and
locally connected. Later, Curtis [7] characterized non-compact metric spaces $X$ for
which $\exp(X)$ is homeomorphic to the Hilbert cube minus a point $\mathrm{Q}\backslash \mathrm{O}(=\mathrm{Q}\backslash \{0\})$

or the pseudo-interior $\mathrm{s}=(-1,1)^{\omega}$ of $\mathrm{Q}^{1}$. In particular, $\mathrm{B}\mathrm{d}(\mathbb{R}^{m})=\exp(\mathbb{R}^{m})$ is
homeomorphic to $\mathrm{Q}\backslash \mathrm{O}$ . For more information concerning Vietoris hyperspaces, we
refer to the book of Ilanes and Nadler [10].

It is well known that the hyperspace $\exp(X)$ is an ANR $(\mathrm{A}\mathrm{R})$ if and only if $X$ is
locally connected (and connected). On the other hand, it is proved in [6] that the
space Bd(X) is $\cdot$ an ANR $(\mathrm{A}\mathrm{R})$ whenever the metric on $X$ is almost convex, that is,

1It is well known that $\mathrm{s}$ is homeomorphic to the separable Hilbert space $\ell_{2}$ .
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for every $\alpha>0,$ $\beta>0$ and for every $x,$ $y\in X$ such that $d(x, y)<\alpha+\beta$ , there exists
$z\in X$ with $d(x, z)<\alpha$ and $d(z, y)<\beta$ . This condition was further weakened in
[12], which has turned out to be actually a necessary and sufficient one by Banakh

and Voytsitskyy [3]. In the last paper, several equivalent conditions are given, which
are too technical to mention them here. We refer to [3] for the details. On the other
hand, Cld(X) is not connected whenever $X$ is a metric space which is not totally

bounded. For example, Cld(R) has $2^{\aleph_{0}}$ many components.
The completion of a metric space $X=\langle X, d\rangle$ is denoted by $\tilde{X}=\langle\tilde{X}, d\rangle$ . Then

Bd(X) can be identified with the subspace of $\mathrm{B}\mathrm{d}(\tilde{X})$ , via the isometric embedding
$A\vdash\neq \mathrm{c}1_{\overline{X}}A$ . Thus we shall often write $\mathrm{B}\mathrm{d}(X)\subseteq \mathrm{B}\mathrm{d}(\tilde{X})$ , having in mind this identi-
fication. In this case, $\mathrm{B}\mathrm{d}(\tilde{X})$ is the completion of Bd(X). By such a reason, we also
consider a dense subspace $D$ of a metric space $X=\langle X, d\rangle$ . For each $0\leq k<m$ , let

$\nu_{k}^{m}=$ { $x=(x_{i})_{i=1}^{m}\in \mathbb{R}^{m}$ : $x_{i}\in \mathbb{R}\backslash \mathbb{Q}$ except for at most $k$ many $i$ },

which is the universal space for completely metrizable subspaces in $\mathbb{R}^{m}$ of $\dim\leq k$ .
In case $2k+1<m,$ $\nu_{k}^{m}$ is homeomorphic to the $k$-dimensional N\"obeling space $\nu_{k}^{2k+1}$ ,
which is the universal space for all separable completely metrizable spaces. Note
that $\nu_{0}^{m}=(\mathbb{R}\backslash \mathbb{Q})^{m}\cong \mathbb{R}\backslash \mathbb{Q}$ .

Theorem 1. Suppose $\langle m, k\rangle=\langle 1,0\rangle$ or $0\leq k<m-1$ . Then,

$\langle \mathrm{B}\mathrm{d}(\mathbb{R}^{m}), \mathrm{B}\mathrm{d}(\nu_{k}^{m})\rangle\cong\langle \mathrm{Q}\backslash 0, \mathrm{s}\backslash 0\rangle$ .

Consequently, $\mathrm{B}\mathrm{d}(\nu_{k}^{m})\cong\ell_{2}$ .

This can be derived from the following:

Theorem 2. Let $D$ be a dense $G_{\delta}$ set in $\mathbb{R}^{m}$ such that $\mathbb{R}^{m}\backslash D$ is also dense in $\mathbb{R}^{m}$

and in case $m>1$ it is assumed that $D=p[D]\cross \mathbb{R}$ , where $p:\mathbb{R}^{m}arrow \mathbb{R}^{m-1}$ is the
projection onto the first $m-1$ coordinates. Then, $\langle \mathrm{B}\mathrm{d}(\mathbb{R}^{m}), \mathrm{B}\mathrm{d}(D)\rangle\cong\langle \mathrm{Q}\backslash 0,\mathrm{s}\backslash \mathrm{O}\rangle$.

Question 1. In case $m>1$ , under the only assumption that $D\subseteq \mathbb{R}^{m}$ is a dense
$G_{\delta}$ set and $\mathbb{R}^{m}\backslash D$ is also dense in $\mathbb{R}^{m}$ , is the pair $\langle \mathrm{B}\mathrm{d}(\mathbb{R}^{m}), \mathrm{B}\mathrm{d}(D)\rangle$ homeomor-
phic to $\langle \mathrm{Q}\backslash \mathrm{O}, \mathrm{s}\backslash \mathrm{O}\rangle$ ? In particular, is the pair $\langle \mathrm{B}\mathrm{d}(\mathbb{R}^{m}), \mathrm{B}\mathrm{d}(\nu_{m-1}^{m})\rangle$ homeomorphic to
$\langle \mathrm{Q}\backslash 0, \mathrm{s}\backslash 0\rangle$ ?

We also consider the following dense subspaces of Bd(X):
$\bullet$ Nwd(X) –all nowhere dense closed sets;
$\bullet$ Perf(X) –all perfect sets;2

2I.e., completely metrizable closed sets which are dense in itself.
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$\bullet$ Cantor(X) –all compact sets homeomorphic to the Cantor set.
In case $X=\mathbb{R}^{m}$ , we can also consider the following subspace:

$\bullet$ $\mathfrak{R}(\mathbb{R}^{m})$ –all closed sets of the Lebesgue measure zero.
For these spaces, we have the following:

Theorem 3. Let $F$ be one of the following subspaces of $\mathrm{B}\mathrm{d}(\mathbb{R}^{m})$ :

$\mathrm{N}\mathrm{w}\mathrm{d}(\mathbb{R}^{m}),$ $\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(\mathrm{R}^{m}),$ $\mathrm{C}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{r}(\mathrm{R}^{m})$ and $\mathfrak{R}(\mathbb{R}^{m})$ .
Then, $\langle$ $\mathrm{B}\mathrm{d}(\mathbb{R}^{m}),$ $F)\cong\langle \mathrm{Q}\backslash 0, \mathrm{s}\backslash \mathrm{O}\rangle$ , hence $F\cong P_{2}$ .

To prove Theorems 2 and 3 above, we adopt the characterization of the pseudo-
boundary $\mathrm{Q}\backslash \mathrm{s}$ of the Hilbert cube $\mathrm{Q}$ , see [5].

We also study the space Cld(R). It is very different from the hyperspace exp(R). It
is not hard to see that Cld(R) has $2^{\mathrm{N}_{0}}$ many components, Bd(R) is the only separable
one and any other component has weight $2^{\aleph_{0}}$ . Applying Torutczyk’s Characteriza-
tion of Hilbert space [14] (cf. [15]), we can prove

Theorem 4. Let $\mathcal{H}$ be a nonseparable component of Cld(R) which does not contain
$\mathbb{R}_{f}[0, +\infty),$ $(-\infty, 0]$ . Then $\mathcal{H}\cong\ell_{2}(2^{\aleph_{0}})$ .

Question 2. Does Theorem 4 hold even if $\mathcal{H}$ contains $\mathbb{R},$ $[0, \infty)$ or $(-\infty, 0]$ ?

Question 3. For $m>1$ , is $\mathrm{C}\mathrm{l}\mathrm{d}(\mathbb{R}^{m})\backslash \mathrm{B}\mathrm{d}(\mathbb{R}^{m})$ an $\ell_{2}(2^{\aleph_{0}})$-manifold?

Now, we consider the subspaces $\mathfrak{R}(\mathbb{R})$ , Nwd(R), Perf(R) and $\mathrm{C}\mathrm{l}\mathrm{d}(\mathbb{R}\backslash \mathbb{Q})$ of Cld(R).
Similarly to Bd(R), it can be shown that those complements are $\mathrm{Z}_{\sigma}$-sets in Cld(R).
Due to Negligibility Theorem ([1], [9]), if $M$ is an $\ell_{2}(2^{\mathrm{N}_{0}})$ -manifold and $A$ is a $\mathrm{Z}_{\sigma}$-set
in $M$ then $M\backslash A\cong M$ . Thus, the following follows from Theorem 4:

Corollary 5. Let $\mathcal{H}$ be a nonseparable component of Cld(R) which does not contain
$\mathbb{R},$ $[0, +\infty),$ $(-\infty, 0]$ . Then, the following spaces are homeomorphic to $\ell_{2}(2^{\aleph_{0}})$ :

$\mathcal{H}\cap \mathfrak{R}(\mathbb{R}),$ $\mathcal{H}\cap \mathrm{N}\mathrm{w}\mathrm{d}(\mathbb{R}),$ $\mathcal{H}\cap \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(\mathbb{R})$ and $\mathcal{H}\cap \mathrm{C}\mathrm{l}\mathrm{d}(\mathbb{R}\backslash \mathbb{Q})$ .

Borel classes. Given a metric space $\langle$X, $d\rangle$ , let $\langle\tilde{X}, d\rangle$ be its completion. Then, the
hyperspace $\mathrm{B}\mathrm{d}(\tilde{X})$ is the completion of the hyperspace Bd(X). Concerning Borel
classes of hyperspaces, the following are also shown in the paper [11]:

(1) Bd(X) is $F_{\sigma\delta}$ in $\mathrm{B}\mathrm{d}(\tilde{X})$ if $X$ is a-compact.
(2) Bd(X) is $G_{\delta}$ in $\mathrm{B}\mathrm{d}(\tilde{X})$ if $X$ is Polish.3
3I.e., separable and completely metrizable
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(3) Bd(X) is Polish for every Polish space $X$ in which bounded sets are totally
bounded.

(4) Nwd(X) is $G_{\delta}$ in Bd(X) for every separable metric space $X$ .

(5) Perf(X) is $G_{\delta}$ in Bd(X) if $X$ is separable and locally compact.
(6) Perf(X) is $F_{\sigma\delta}$ in Bd(X) for every Polish space $X$ .
(7) Bd(X) is analytic for every analytic metric space $X$ in which bounded sets

are totally bounded.
Fix a dense set $X$ in a separable Banach space $E$ which admits the metric $d$

induced from the norm of $E$ . Then $\langle$X, $d\rangle$ is an almost convex metric space and
therefore by a result of [6] the space Bd(X) is an $\mathrm{A}\mathrm{R}$ . In case $X$ is $G_{\delta}$ , the space
Bd(X) is completely metrizable by (2). If additionally $E$ is finite-dimensional then
Bd(X) is Polish by (3). In case $X$ is $\sigma$-compact, by (1), Bd(X) is absolutely $F_{\sigma\delta}$ .

Remarks. Recently, Banakh and Voytsitskyy [4] proved that the space Cld(X)
(resp. Bd(X)) is homeomorphic to $\ell_{2}$ if and only if $X$ is a completely metrizable
nowhere locally compact metric space such that each (resp. bounded) subset of $X$

is totally bounded and the completion $\tilde{X}$ of $X$ is connected and locally connected.

REFERENCES

[1] R.D. Anderson, D.W. Henderson and J.E. West, Negligible subsets of infinite-dimensional
manifolds, Compositio Math. 21 (1969), 143-150.

[2] T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds,
Math. Studies Monograph Ser. 1, VNTL Publishers, Lviv, 1996. 232 pp. ISBN: 5-7773-0061-8.

[3] T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperpsaces are absolute
neighborhood retracts, preprint.

[4] T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperpsaces are homeo-
morphic to $\ell_{2}$ , preprint.

[5] T.A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, ‘Ilrans. Amer.
Math. Soc. 154 (1971), 399-426.

[6] C. Costantini and W. Kubi\’{s}, Paths in hyperspaces, Appl. General Topology 4 (2003), no. 2,
377-390.

[7] D.W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), 139-152.
[8] D.W. Curtis and R.M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math.

101 (1978) 19-38.
[9] W.H. Cutler, Negligible subsets of infinite-dimensional h\’echet manifolds, Proc. Amer. Math.

Soc. 23 (1969), 668-675.
[10] A. Illanes and S.B. Nadler, Jr., Hyperspaces, hndamentals and Recent Advances, Pure and

Applied Math. 216, Marcel Dekker, Inc., Yew York, 1999. $\mathrm{x}\mathrm{x}+512$ pp. ISBN: 0-8247-1282-4.

66



[11] W. Kubi\’{s} and K. Sakai, Hausdorff hyperspaces of $\mathbb{R}^{m}$ and their dense subspaces, preprint.
[12] M. Kurihara, K. Sakai and M. Yaguchi, Hyperspaces with the Hausdorff metric and uniform

ANRs, J. Math. Soc. Japan 57, No. 2, (2005), 523-535.
[13] J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland

Math. Library, 43, Elsevier Science Publisher B.V., Amsterdam, 1989. $\mathrm{x}\mathrm{i}\mathrm{i}+401$ pp. ISBN:
0-444-87133-0.

[14] H. Torutczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
[15] H. Torutczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125

(1985), 89-93.

67


