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1. INTRODUCTION

The purpose of this r\’esum6 is to describe (strong) transitivity prop-
erties for graph self-maps in my recent works. W. Parry [7] pointed
out a sufficient condition for the existence of a special measure on a
symbolic dynamics, which has a close relation to a linearization of the
dynamics on intervals. Then, as an application, he introduced the con-
cept of strong transitivity that is one of conditions under which an
interval map is conjugate to a uniformly piecewise linear map [7, \S 5,
\S 6]. E. Coven and I. Mulvey [6, Theorem $\mathrm{B}$ and $\mathrm{C}$ ] stated the relation
between transitivity and strong transitivity properties for interval (or
circle) self-maps.

We extend the above relation to graph self-maps (see \S 3). A motiva-
tion for studying graph maps is that higher-dimensional dynamics can
often be reduced to one-dimensional dynamics.

Throughout this paper, by a graph, we mean a connected compact
one-dimensional polyhedron, and a tree is a graph which contains no
loops. We also assume that any graph $G$ is endowed with a metric $d$ ; we
define $\mathrm{B}(x;\epsilon),$ $x\in G,$ $\epsilon>0$ to be the set of points of $G$ whose distance
$\mathrm{b}\mathrm{o}\mathrm{m}x$ is less than $\epsilon$ . $\mathrm{B}(G)$ and $\mathrm{E}(G)$ denote the sets of branch points
and of endpoints of $G$ , respectively. A map $f$ is a continuous function
from a space $X$ to itself; $f^{0}$ is the identity map, and for every $n\geq 0$ ,
$f^{n+1}=f^{n}\mathrm{o}f$ . We denote by Fix$(f)$ and Per$(f)$ the sets of fixed points
and of periodic points of $f$ , respectively. For a subset $K$ of $X$ , Int $K$

and Cl $K$ denote the interior and closure of $K$ in $X$ .

2. STRONG TRANSITIVITY

An onto map $f$ : $Xarrow X$ is called (topologically) transitive if any of
the following equivalent conditions holds.
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(1) There exists a point with dense orbit.
(2) Whenever $U,$ $V$ are non-empty open sets, there exists an $n\geq 1$

such that $f^{-n}(U)\cap V\neq\emptyset$ .
(3) The only closed invariant set $K$ with Int $K\neq\emptyset$ is $K=X$ .

Remark. We note that, in the case of a graph map $f$ : $Garrow G,$ $f$ is
transitive if and only if for every pair of non-empty open sets $U$ and $V$

in $G$ , there exists a $k\geq 1$ such that $U\cap$ Int $f^{k}(V)\neq\emptyset$ .
In the study of transitive maps, the subclass of those maps having all

iterates transitive plays a significant role. A map $f$ is totally transitive
if $f^{n}$ is transitive for all $n\geq 1$ (see [1]); note that a transitive map is
not always totally transitive.

A map $f$ : $Xarrow X$ is called strongly transitive if for every non-empty
open set $J$ of $X$ , there exists an $n$ such that $\bigcup_{k=0}^{n}f^{k}(J)=X$ .

We first call a useful proposition which shows a backward structure
of a strongly transitive map for each point.

Proposition 2.1. Let $f$ : $Xarrow X$ be a map $ofX$ to itself. Then the
following are equivalent.

(1) For each $x \in X_{f}\mathrm{C}1\bigcup_{n=0}^{\infty}f^{-n}(x)=X$ .
(2) For every non-empty open set $U$ of $X,$ $\bigcup_{n=0}^{\infty}f^{n}(U)=X$ .

$R_{4}rthermore$, if $f$ is open, then (1) and (2) are equivalent to
(3) If $E\subseteq X$ is a closed set with $f^{-1}(E)\subseteq E$, then $E=\emptyset$ or $X$ .

The examples below clarify the difference between transitivity and
strong transitivity properties.

Example 1. There exists a transitive map of the interval which is
not strongly transitive. This example appears in [3, Example 3] to
illustrate another property. For completeness, we give a construction
of the map here.

Let $\{p_{n}|n\in \mathbb{Z}\}$ be a two-sided sequence of real numbers in $[0,1]$

such that
$<p-2<p_{-1}<p_{0}<p_{1}<p_{2}<\cdots$ ,

and $p_{n}arrow 1$ and $p_{-n}arrow 0$ when $narrow\infty$ . For $n\in \mathbb{Z}$ put $I_{n}=\lceil p_{n},p_{n+1}$ ].
Define the map $f_{n}$ : $I_{n}arrow I_{n-1}\cup I_{n}\cup I_{n+1}$ by $f_{n}(p_{n})=p_{n},$ $f_{n}(p_{n+1})=$

$p_{n+1},$ $f_{n}( \frac{2p_{n}+p_{n+1}}{3})=p_{n+2},$ $f_{n}( \frac{p_{n}+2p_{n+1}}{3})=p_{n-1}$ , and $f_{n}$ is linear on the
intervals complementary to these points. $f$ : $[0,1]$ — $[0,1]$ is given by
$f(0)=0,$ $f(1)=1$ , and $f(x)=f_{n}(x)$ if $x\in$ $I_{n}$ (see Figure 2 in [3]).
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By Example 1 taken mod 1, we also have

Example 2. There exists a transitive map of the circle which is not
strongly transitive.

Let $B_{n}$ be the bouquet with $n$-petals generated by $n$ copies of the
unit circle, where $n\geq 1$ . Using Example 1 taken mod 1 and a rotation
among petals with respect to the origin, we can easily have an example
on $B_{n}$ .

Example 3. There exists a transitive map of $B_{n}$ which is not strongly
transitive.

Example 4. Since the map $f$ in Example 1 is actually totally transitive
as stated in [3, Example 3], we have a totally transitive interval map
which is not strongly transitive. On the other hand, the interval map
$g$ below is strongly transitive, but not totally transitive. $g(x)=2x+$
$1/2,$ $(0\leq x\leq 1/4);-2x+3/2,$ $(1/4\leq x\leq 3/4);2x-3/2,$ $(3/4\leq x\leq$

1).

3. MAIN RESULTS

Here is our main result.

Theorem 3.1. Let $f$ : $Garrow G$ be a graph map with $\#\mathrm{F}\mathrm{i}\mathrm{x}(f^{k})<\infty$

for each $k\geq 1$ . If $f$ is transitive, then it is strongly transitive.

A map $f$ on a graph $G$ is piecewise monotone if there is a finite set
$A$ in $G$ such that $f$ is monotone on each component of $G\backslash A$ .

Corollary 3.2. Let $f$ : $Garrow G$ be a piecewise monotone graph map.
If $f$ is transitive, then it is strongly transitive.

Remark. The interval case of the corollary above was proved by Coven-
Mulvey [6].

Example 5. Let $f$ : $[0,1]arrow[0,1]$ be the map whose graph appears
below. Then $f$ is transitive and the set of fixed points of $f^{k}$ is finite
for each $k\geq 1$ . Therefore $f$ is strongly transitive, in fact, for each non-
degenerate subinterval $J$ of $[0,1]$ , there exists an $n$ such that $f^{n}(J)=$

$[0,1]$ .
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Proposition 3.3. Let $f$ : $Tarrow T$ be a totally transitive tree map.
Then $f$ is strongly transitive if and only if for evew non-degenerate
connected set $J$ of $T$, there exists an $M$ such that for any $m\geq M$ ,
$f^{m}(J)=T$ .

The following generalizes the result for interval maps of Coven-
Mulvey [6] to one for tree maps.

Theorem 3.4. Let $f$ : $Tarrow T$ be an onto tree map. Let $\mathrm{v}(T)$ be the
maximum order of any branch point in $T$ and $N_{\mathrm{v}(T)}$ the least common
multiple of $\{2, \ldots, \mathrm{v}(T)\}$ . Then the following are equivalent.

(1) $f$ is transitive and has a point of period which is $pr\dot{\mathrm{v}}$me to
2, . . . , $\mathrm{v}(T)$ .

(2) $f^{N_{\mathrm{v}(T)}}$ is transitive.
(3) $f$ is totally transitive.
(4) $f$ is topologically mixing.

$\mathbb{R}rthermore$ , if $\#\mathrm{F}\mathrm{i}\mathrm{x}(f^{k})$ is finite for each $k\geq 1$ , then the following
is equivalent to

(5) for every non-degenerate connected set $J$ of $T$ , there exists an
$M\mathit{8}uch$ that for any $m\geq M,$ $f^{m}(J)=T$ .

Remark. The equivalences (1) $\Leftrightarrow(2)\Leftrightarrow(3)\Leftrightarrow(4)$ are well-known [8,
Theorem 4.1], [1].

4. REMARKS

(I): It is useful to investigate the relation between the dynamics of
a graph map and the dynamics of the induced self-homeomorphism of
the inverse limit space [2], [3].

Let $f$ : $Xarrow X$ be an onto map. Associated with $f$ is the inverse
limit space (X, $f$) $=$ { $(x_{0},$ $x_{1},$ $\ldots)|x_{i}\in X$ , and $f(x_{i+1})=x_{i}$}, and
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the induced homeomorphism $\hat{f}$ : (X, $f$ ) $arrow(X, f)$ (which is called the
shift homeomorphism), given by $\hat{f}((x_{0}, x_{1}, \ldots))=(f(x_{0}), x_{0}, x_{1}, \ldots)$ .
Proposition 4.1. Let $f$ : $Xarrow X$ be an onto map of a metrizable
compact space X. If the shift homeomorphism $\hat{f}$ : (X, $f$ ) $arrow(X, f)$ is
strongly transitive; then $f$ is strongly transitive.

Unfortunately, the shift homeomorphism of a strongly transitive
graph map is not always strongly transitive. In fact, we have the fol-
lowing.
Proposition 4.2. Let $G$ be a non-degenerate graph and $f$ : $Garrow G$ be
an onto map. Then the shift $h_{omeomo7}phismf$ : $(G, f)arrow(G, f)$ is
strongly transitive if and only if $G$ is the circle and $f$ is conjugate to
an imational rotation.

(II): We note that statement (2) in Proposition 2.1, which was in-
troduced by Parry [7], implies strong transitivity for tree maps.

Proposition 4.3. Let $f$ : $Tarrow T$ be an onto tree map. Then $f$ is
strongly transitive if and only if for every non-empty open set $U$ of $T$ ,
$\bigcup_{n=0}^{\infty}f^{n}(U)=T$ .

However, it is not always true for a general graph map.
Example 6. Let $f$ : $[0,1]arrow[0,1]$ be the map whose graph appears
below. Using this map $f$ , we define the circle map $g$ : $S^{1}arrow S^{1}$ by
$g(e^{2\pi i\theta})=e^{2\pi if(\theta)}$ , where $0\leq\theta\leq 1$ . Then the map $g$ is transitive and
satisfies statement (2) in Proposition 2.1, but is not strongly transitive.
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