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1. INTRODUCTION

~ The purpose of this résumé is to describe (strong) transitivity prop-

erties for graph self-maps in my recent works. W. Parry [7] pointed
out a sufficient condition for the existence of a special measure on a
symbolic dynamics, which has a close relation to a linearization of the
dynamics on intervals. Then, as an application, he introduced the con-
cept of strong transitivity that is one of conditions under which an
interval map is conjugate to a uniformly piecewise linear map [7, §5,
§6]. E. Coven and I. Mulvey [6, Theorem B and C] stated the relation
between transitivity and strong transitivity properties for interval (or
circle) self-maps.

We extend the above relation to graph self-maps (see §3). A motiva-
tion for studying graph maps is that higher-dimensional dynamics can

-often be reduced to one-dimensional dynamics.

Throughout this paper, by a graph, we mean a connected compact
one-dimensional polyhedron, and a tree is a graph which contains no
loops. We also assume that any graph G is endowed with a metric d; we
define B(z; ), z € G, € > 0 to be the set of points of G whose distance
from z is less than e. B(G) and E(G) denote the sets of branch points
and of endpoints of G, respectively. A map f is a continuous function
from a space X to itself; fO is the identity map, and for every n > 0,
frtl = fro f. We denote by Fix(f) and Per(f) the sets of fixed points
and of periodic points of f, respectively. For a subset K of X, Int K
and Cl K denote the interior and closure of K in X.

2. STRONG TRANSITIVITY

An onto map f: X — X is called (topologically) transitive if any of
the following equivalent conditions holds.
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(1) There exists a point with dense orbit.
(2) Whenever U, V are non-empty open sets, there exists an n > 1
such that f~™(U) NV # 0.
(3) The only closed invariant set K with Int K # 0 is K = X.

Remark. We note that, in the case of a graph map f : G — G, f is
transitive if and only if for every pair of non-empty open sets U and V
in G, there exists a k > 1 such that U N Int f5(V) # 0.

In the study of transitive maps, the subclass of those maps having all
iterates transitive plays a significant role. A map f is totally transitive
~if f™ is transitive for all n > 1 (see [1]); note that a transitive map is
not always totally transitive.

A map f: X — X is called strongly transitive if for every non-empty
open set J of X, there exists an n such that U7_, f*(J) = X.

We first call a useful proposition which shows a backward structure
of a strongly transitive map for each point.

Proposition 2.1. Let f : X — X be a map of X to itself. Then the
following are equivalent.

(1) For each z € X, Cl Une, f(z) = X.

(2) For every non-empty open set U of X, Uy fM(U) = X.
Furthermore, if f is open, then (1) and (2) are equivalent to

(8) If EC X is a closed set with f~1(E) C E, then E =0 or X.

The examples below clarify the difference between transitivity and
strong transitivity properties.

Example 1. There exists a transitive map of the interval which is
not strongly transitive. This example appears in [3, Example 3] to
illustrate another property. For completeness, we give a construction

of the map here.
Let {p, | n € Z} be a two-sided sequence of real numbers in [0, 1]

such that

< P2<pa<p<p<pr<-,
and p, — 1 and p_, — 0 when n — oo. For n € Z put I, = [pn, Pn41].
Define the map fo : I — In_1 U I U L1 by fa(Dn) = By fa(Bos1) =
Pn+1, fn(gzh—?ﬂﬁ) = Pn+2, fn(&%) = Pn-1, and [y is linear on the
intervals complementary to these points. f : [0,1] — [0,1] is given by
f(0) =0, f(1) =1, and f(z) = fu(z) if z € I,, (see Figure 2 in [3]).
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By Example 1 taken mod 1, we also have

Example 2. There exists a transitive map of the circle which is not
strongly transitive.

Let B, be the bouquet with n-petals generated by n copies of the

unit circle, where n > 1. Using Example 1 taken mod 1 and a rotation
among petals with respect to the origin, we can easily have an example
on B,.

Example 3. There exists a transitive map of B,, which is not strongly
transitive.

Example 4. Since the map f in Example 1 is actually totally transitive

as stated in [3, Example 3|, we have a totally transitive interval map
which is not strongly transitive. On the other hand, the interval map
g below is strongly transitive, but not totally transitive. g(z) = 2z +
1/2,(0<z<1/4); -2z +3/2,(1/4 <z < 3/4);22 - 3/2,(3/4 <Lz <

1).

3. MAIN RESULTS

Here is our main result.

Theorem 3.1. Let f : G — G be a graph map with # Fix(f*) < oo
for each k > 1. If f is transitive, then it is strongly transitive.

A map f on a graph G is piecewise monotone if there is a finite set
A in G such that f is monotone on each component of G \ A.

Corollary 3.2. Let f : G — G be a piecewise monotone graph map
If f is transitive, then it is strongly transitive.

Remark. The interval case of the corollary above was proved by Coven-

Mulvey [6].

Example 5. Let f : [0,1] — [0,1] be the map whose graph appears

‘below. Then f is transitive and the set of fixed points of f* is finite
for each k > 1. Therefore f is strongly transitive, in fact, for each non-
degenerate subinterval J of [0, 1], there exists an n such that f*(J) =
[0,1].
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Proposition 3.3. Let f : T — T be a totally transitive tree map.
Then f is strongly transitive if and only if for every non-degenerate
connected set J of T, there exists an M such that for any m > M,
™) =T

The following generalizes the result for interval maps of Coven-
Mulvey [6] to one for tree maps.

Theorem 3.4. Let f : T — T be an onto tree map. Let v(T') be the
mazimum order of any branch point in T and Nyr) the least common
multiple of {2,...,v(T)}. Then the following are equivalent.
(1) f is transitive and has a point of period which is prime to
2,...,v(T).
(2) fN) is transitive.
(3) f is totally transitive.
(4) f is topologically mizing.
Furthermore, if # Fix(f¥) is finite for each k > 1, then the following
is equivalent to
(5) for every non-degenerate connected set J of T, there egists an
M such that for anym > M, f™(J)=T.

Remark. The equivalences (1) & (2) ¢ (3) « (4) are well-known [8,
Theorem 4.1], [1]. |

4. REMARKS

(I): It is useful to investigate the relation between the dynamics of
a graph map and the dynamics of the induced self-homeomorphism of

the inverse limit space [2], [3].
Let f : X — X be an onto map. Associated with f is the inverse

 limit space (X, f) = {(z0,21,...) | i € X, and f(zi+1) = z;}, and
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the induced homeomorphism f : (AX ,f) — (X, f) (which is called the
shift homeomorphism), given by f((a;o,azl, ) = (f(zo), o, X1, - - - ).
Proposition 4.1. Let f : X — X be an onto map of a metrizable

compact space X. If the shift homeomorphism f : (X, f) — (X, f) is
strongly transitive, then f is strongly transitive.

Unfortunately, the shift homeomorphism of a strongly transitive
graph map is not always strongly transitive. In fact, we have the fol-

lowing.
Proposition 4.2. Let G be a non-degenerate graph and f : G — G be

an onto map. Then the shift homeomorphism F: (G f) = (G f)is

strongly transitive if and only if G is the circle and f is con]ugate to
an irrational rotation.

~(II): We note that statement (2) in Proposition 2.1, which was in-
‘troduced by Parry [7], implies strong transitivity for tree maps.

Proposition 4.3. Let f : T — T be an onto tree map. Then f is
strongly transitive if and only if for every non-empty open set U of T,

U::-O ) =

~ However, it is not always true for a general graph map.

'Example 6. Let f : [0,1] — [0,1] be the map whose graph appears

below. Using this map f, we define the circle map g : S* — S! by
g(e*™) = ¢?mif(%) where 0 < 6 < 1. Then the map g is transitive and

satisfies statement (2) in Proposition 2.1, but is not strongly transitive.
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