島根大学総合理工学部 横井勝弥(KATSUYA YOKOI)

1. INTRODUCTION

The purpose of this announcement is to establish my recent results for graph self-maps for which the set of periodic points is dense. M. Barge and J. Martin [2] showed a structure theorem for maps on the interval with dense periodic points; that is, the twice iterate of such a map is topologically mixing on some countable subintervals and is identical on the other. A similar theorem was proved for tree maps in [7].

We extend the above to graph self-maps (see §3). A motivation for studying graph maps is that higher-dimensional dynamics can often be reduced to one-dimensional dynamics: this is the case in the study of the structure of attractors of a diffeomorphism, the quotient maps generated by maps on manifolds with an invariant foliation of codimension one and the dynamics of pseudo-Anosov homeomorphisms on a surface.

Throughout this paper, by a graph, we mean a connected compact one-dimensional polyhedron, and a tree is a graph which contains no loops. For a graph G, we denote the sets of endpoints and of branch points of G by E(G) and B(G), respectively. A map f is a continuous function; f^0 is the identity map, and for every $n \ge 0$, $f^{n+1} = f^n \circ f$. We denote by Fix(f) and Per(f) the sets of fixed points and of periodic points of f, respectively. A subset K of X is invariant under $f : X \to X$ if $f(K) \subseteq K$, Int K and Cl K denote the interior and closure of K in X, and the orbit of $x \in X$ under f is $Orb_f(x) = \{f^n(x) \mid n \ge 0\}$.

For a natural number S, N_S denotes the least common multiple of the positive integers less than or equal to S.

²⁰⁰⁰ Mathematics Subject Classification. 37E25, 37B20.

Key words and phrases. transitive, totally transitive, topologically mixing, graph.

The author was partially supported by the Grant-in-Aid for Scientific Research (C) (No. 16540067), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

2. Preliminaries

An onto map $f: X \to X$ is called (topologically) transitive if any of the following equivalent conditions holds.

- (i) There exists a point with dense orbit.
- (ii) Whenever U, V are non-empty open sets, there exists an $n \ge 1$ such that $f^{-n}(U) \cap V \neq \emptyset$.
- (iii) The only closed invariant set K with $\operatorname{Int} K \neq \emptyset$ is K = X.

We note that if f^n is transitive for some n, then so is f.

A map f is totally transitive if f^n is transitive for all $n \ge 1$. A transitive map is not always totally transitive. On the other hands, it is well known that for a transitive graph map with periodic points, the set of periodic points is dense. Therefore for such a map f, the *n*th power f^n has dense periodic points for $n \ge 1$.

A map $f: X \to X$ is called topologically mixing if for every pair of non-empty open sets U and V, there exists an $N \ge 1$ such that $f^{-n}(U) \cap V \neq \emptyset$ for $n \geq N$. A topological mixing map on a compactum is in general totally transitive. It is also known that a totally transitive graph map with periodic points is topologically mixing.

R. Roe [7] showed a decomposition theorem for tree maps for which the set of periodic points is dense. It is slightly re-worded here. The case of interval maps was proved earlier by Marge-Martin [2].

Theorem 2.1 ([7, Theorem 5]). Let $f: T \to T$ be a tree map for which the set of periodic points is dense. Let $N_{E(T)} = LCM\{2, 3, \dots, \#E(T)\}$. Then there exists a collection (perhaps finite or empty) $\{J_1, J_2, \dots\}$ of subtrees of T with disjoint interiors such that

- (i) $f^{N_{E(T)}}(J_i) = J_i \text{ for } i \ge 1$,
- (ii) $f^{N_{\mathbf{E}(T)}}|_{J_i} : J_i \to J_i$ is totally transitive for $i \ge 1$, and (iii) $f^{N_{\mathbf{E}(T)}}(x) = x$ for $x \in T \setminus \bigcup_i J_i$.

Remark. His proof of Theorem 5 and Lemma 1 in [7] show totally transitivity of $f^{N_{\mathbf{E}(T)}}|_{J_i}: J_i \to J_i$ above.

Let G be a graph, $x \in G$, and U an open connected neighborhood of x in G whose closure is a tree. The number of components of $U \setminus \{x\}$ is called the valence of x and is denoted by v(x) and we set v(G) = $\max\{\mathbf{v}(x) \mid x \in G\}$. A point of valence ≥ 3 is a branch point and of valence 1 is an endpoint.

The following theorem is a direct generalization of [1, Lemma 2] or [6, Corollary 3.2].

Theorem 2.2 (cf. [6, Corollary 3.2]). Let $f : G \to G$ be a graph map satisfying $\operatorname{Fix}(f) \neq \emptyset$ and $\operatorname{ClOrb}_f(x) = G$ for some $x \in X$. Let $N_{\mathbf{v}(G)} = \operatorname{LCM}\{2, 3, \ldots, \mathbf{v}(G)\}$. Then one of the following occurs:

- (i) $\operatorname{Cl}\operatorname{Orb}_{f^{N_{\mathbf{v}(G)}}}(x) = G$, in which case $\operatorname{Cl}\operatorname{Orb}_{f^{s}}(f^{k}(x)) = G$ for $s \ge 1$ and $k \ge 0$, i.e., f is totally transitive.
- (ii) $\operatorname{ClOrb}_{f^{N_{\mathbf{v}(G)}}}(x) \neq G$, in which case there exists a number p, $2 \leq p \leq \mathbf{v}(G)$ such that
 - (a) $G = \bigcup_{i=0}^{p-1} \operatorname{Cl}\operatorname{Orb}_{f^p}(f^i(x)),$
 - (b) Cl Orb_f $(f^i(x))$ is a subgraph of G for $0 \le i \le p-1$,
 - (c) Int $\operatorname{Cl}\operatorname{Orb}_{f^p}(f^i(x)) \cap \operatorname{Int}\operatorname{Cl}\operatorname{Orb}_{f^p}(f^j(x)) = \emptyset \text{ for } 0 \le i < j \le p-1,$
 - (d) $f(\operatorname{Cl}\operatorname{Orb}_{f^p}(f^i(x))) = \operatorname{Cl}\operatorname{Orb}_{f^p}(f^{i+1}(x)) \pmod{p}$, and
 - (e) $\operatorname{ClOrb}_{f^{pk}}(f^i(x)) = \operatorname{ClOrb}_{f^p}(f^i(x))$ for $k \ge 1$ and $0 \le i \le p-1$, *i.e.*, $f|_{\operatorname{ClOrb}_{f^p}(f^i(x))}$ is totally transitive for $0 \le i \le p-1$.

3. Results

Here is our main theorem.

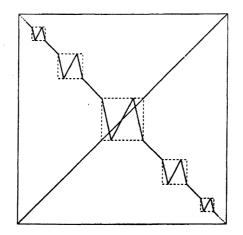
Theorem 3.1. Let $f : G \to G$ be a graph map for which the set of periodic points is dense. Then there exist a natural number N and a collection (perhaps finite or empty) $\{G_1, G_2, \dots\}$ of subgraphs of G with disjoint interiors such that

- (i) $f^N(G_i) = G_i \text{ for } i \ge 1$,
- (ii) $f^N|_{G_i}: G_i \to G_i$ is totally transitive (i.e., topologically mixing) for $i \ge 1$, and
- (iii) $f^N(x) = x$ for $x \in G \setminus \bigcup_i G_i$.

Remark. For simplicity, we used the Roe decomposition theorem for tree maps (Theorem 2.1) in our proof. We are able to prove Theorem 3.1 by use of the Barge-Martin decomposition theorem for interval maps [2], [4].

4. EXAMPLES

Example 1. Let $f: [0,1] \to [0,1]$ be the map whose graph appears below, where copies of the small square converge to $\{(0,1)\}$ or $\{(1,0)\}$, f(0) = 1, and f(1) = 0. Then the closed intervals J_i which are the projective images of those squares to the first coordinate have that $f^2(J_i) = J_i, f^2|_{J_i}$ is totally transitive, and $f^2(x) = x$ for $x \in [0,1] \setminus \bigcup_i J_i$.



Example 2. Let S^1 be the unit circle on the complex plane. Using the map $f : [0,1] \to [0,1]$ in Example 1, we define the continuous map $g : S^1 \to S^1$ by $g(e^{2\pi i\theta}) = e^{2\pi i f(\theta)}$, where $0 \le \theta \le 1$. Put $H_i = \{e^{2\pi i\theta} \mid \theta \in J_i\}$. Then we have that $g^2(H_i) = H_i, g^2|_{H_i}$ is totally transitive, and $g^2(x) = x$ for $x \in S^1 \setminus \bigcup_i H_i$.

Example 3. Let B_3 be the bouquet defined by the one-point union on the origins of the three copies S_0 , S_1 and S_2 of the unit circle S^1 . Here we may write any element of B_3 by the productive coordinate $(e^{2\pi i\theta}, j), 0 \le \theta \le 1, j = 0, 1, 2$. Using $g : S^1 \to S^1$ in Example 2, define $h : B_3 \to B_3$ by $h((e^{2\pi i\theta}, j)) = (g(e^{2\pi i\theta}), j + 1 \pmod{3}))$, where j = 0, 1, 2. Put $K_i^j = H_i \times \{j\}$, where H_i as in Example 2, $i \ge 1$, and j = 0, 1, 2. Then we see that $h^6(K_i^j) = K_i^j, h^6|_{K_i^j}$ is totally transitive, and $h^6(x) = x$ for $x \in B_3 \setminus \bigcup_{j=0,1,2} \bigcup_i K_i^j$.

Decomposition theorem does not always hold for general spaces.

Example 4. Let B_n be the bouquet with *n*-petals generated by the unit circle for $n \ge 1$. Define $h_n : B_n \to B_n$ like *h* in Example 3. Attach, for each $n \ge 1$, the origin of B_n to the point $\{n\}$ of the half real line $\mathbb{R}^{\ge 0}$, and the one-dimensional locally finite (non-compact) polyhedron is denoted by *B*. The map $\hat{h} : B \to B$ is defined by $\hat{h}|_{B_n} = h_n$ for $n \ge 1$ and $\hat{h}(x) = x$ for $x \in B \setminus \bigcup_{n \ge 1} B_n$. Then the map has no decomposition in the conclusion of our theorem.

Example 5. Let $h_n : B_n \to B_n$, $n \ge 1$, be as in Example 3. Attach, for each $n \ge 1$, the origin of B_n to the point $\{1/n\}$ of the unit interval [0, 1] on condition that the diameter of B_n is less than or equal to 1/n, and the one-dimensional Peano continuum is denoted by C. The map

 $\check{h}: C \to C$ is defined by $\check{h}|_{B_n} = h_n$ for $n \ge 1$ and $\check{h}(x) = x$ for $x \in C \setminus \bigcup_{n \ge 1} B_n$. Then the map also has no decomposition in the conclusion of our theorem.

REFERENCES

- [1] M. Barge and J. Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc., 289(1), (1985), 355-365.
- [2] M. Barge and J. Martin, Dense periodicity on the interval, Proc. Amer. Math. Soc., 94 (4), (1985), 731-735.
- [3] E. M. Coven and I. Mulvey, Transitivity and the centre for maps of the circle, Ergodic Theory Dynam. Systems, 6(1), (1986), 1-8.
- [4] E. M. Coven and I. Mulvey, The Barge-Martin decomposition theorem for pointwise nonwandering maps of the interval, Lecture Notes in Math., Springer, Berlin 1342, (1988), 100-104.
- [5] K. Kuratowski, Topology Vol. I., Academic Press, PWN, Warsaw.
- [6] R. P. Roe, Dynamics and indecomposable inverse limit spaces of maps on finite graphs, Topology Appl., 50(2), (1993), 117-128.
- [7] R. P. Roe, Dense periodicity on finite trees, Topology Proc., 19, (1994), 237-248.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN

E-mail address: yokoi@riko.shimane-u.ac.jp