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Abstract
Following a brief survey of the main aspects of generalized universal covering space
theory, as developed in [11], and of some spaces to which it applies, we discuss a
particular application: the selection of continuously varying shortest representatives
for the path homotopy classes of a subset $\mathrm{Y}$ of a CAT(O)-nonpositively curved metric
space $Z$ , given a map $f$ : $\mathrm{Y}arrow X$ to a 1-dimensional space $X$ with convex null fibers.

\S 1. Generalized universal covering spaces
The classical concept of a (simply-connected) universal covering of a (locally path-con-
nected) space is a useful tool in geometric topology, as it decouples the geometry of a
space from its fundamental group, while encoding the interplay between the two in the
group of covering transformations. A significant drawback of this procedure, tbough, is
the fact that it does not apply to spaces with high local complexity: the space at hand
must be semilocally simply-connected and, in the separable metric case, its fundamental
group must be countable.

In [11], the concept of a universal covering is generalized to include many non-semi-
locally simply-connected spaces with uncountable fundamental group. This is achieved
by abandoning the requirement of local homeomorphism, while maintaining virtually all
other features of the classical theory. Specifically, we recall the following definition.

Definition. A continuous function $p$ : $\tilde{X}arrow X$ , from a path-connected, locally path-
connected and simply-connected topological space $\tilde{X}$ onto a topological space $X$ , is
called a generalized universal covering of $X$ if for every path-connected and locally path-
connected topological space $\mathrm{Y}$ , for every continuous function $f$ : $(\mathrm{Y}, y)arrow(X, x)$ with
$f_{\#}(\pi_{1}(\mathrm{Y},y))=1$ , and for every $\tilde{x}$ in $\tilde{X}$ with $p(\tilde{x})=x$ , there exists a unique continuous
function $g:(Y,y)arrow(\tilde{X},\tilde{x})$ with $p\circ g=f$ .

$(\tilde{X},\tilde{x})$

$g$

$\tau\downarrow p$

$(\mathrm{Y},y)arrow(X, x)f$

It follows immediately from this definition that if a generalized universal covering
$p$ : $\overline{X}arrow X$ exists, then it is uniquely determined. lfurthermore, it has the following
properties:

(a) The group Aut $(\tilde{X}\mathrm{p}arrow X)$ of covering transformations is isomorphic to $\pi_{1}(X)$ and it
acts freely and transitively on the (not necessarily homeomorphic) fibers;
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(b) $p:\tilde{X}arrow X$ is a Serre fibration with unique path lifting;

(c) $\pi_{k}(\tilde{X})\cong\pi_{k}(X)$ for all $k\geq 2$ ;

(d) if $X$ is locally path-connected and metrizable (first-countable is enough), then the
map $p:\tilde{X}arrow X$ is open, so that the quotient $\tilde{X}/\pi_{1}(X)$ is homeomorphic to $X$ ;

(e) if $X$ is locally path-connected and semilocally simply-connected then $p:\tilde{X}arrow X$

agrees with the classical universal covering.

If one attempts to build a generalized universal covering $p:\tilde{X}arrow X$ of an arbitrary
path-connected topological space $X$ by means of the standard construction ( $\mathrm{u}\mathrm{I}\mathrm{i}\mathrm{n}\mathrm{g}$ ho-
motopy classes of paths, which start at a fixed base point, endowed with the staridard
topology described in [15] $)$ , then the following condition of $X$ being “homotopically Haus-
dorff“ is quickly observed to be necessary: we call $X$ homotopically Hausdorff if for every
$x\in X$ , the only element of $\pi_{1}(X, x)$ , which can be represented by arbitrarily small loops,
is the trivial element.

In general, the property of being homotopically Hausdorff is considerably weaker than
semilocal simple-connectivity, as can be seen with the example of the Hawaiian Earring
(whose definition is reviewed in Section 4 below). In combination with a countable funda-
mental group, however, it does imply the existence of the generalized universal covering
by means of the standard construction. This is not too surprising, since for metric spaces
(first-countable is enough) with countable fundamental group, being homotopically Haus-
dorff is equivUent to semilocal simple-connectivity. In $\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}_{j}$ separable metric spaces which
allow for a classical universal covering have countable fundamental groups.

In summary, we note that generalized universal covering space theory is mainly con-
cerned with spaces that have uncountable fundamental group.

Before stating a sutlicient condition for the existence of generalized universal coverings
of spaces with uncountable fundamental group, we recall from [11] that if $X$ is a metric
space (paracompact Hausdorff is enough) for which the classical universal covering exists,
then its fundamental group $\pi_{1}(X, x_{0})$ is naturally isomorphic to the first \v{C}ech homotopy
group $\check{\pi}_{1}(X, x_{0})$ . The main result of [11] then features a partial converse to this fact:

Theorem 1 (F.-Zastrow [11]). Let $X$ be a path-connected topological space and let
$x_{0}\in X.$ Suppose the natural homomorphism $\pi_{1}(X, x_{0})arrow\check{\pi}_{1}(X, x_{0})$ is injective. Then
the generalized universal covering $p$ : $\tilde{X}arrow X$ exiks$ts$ and can be built by the standarvl
construction via homotopy classes of paths starting at $x_{0}$ , when given the topology of [15].
If $X$ is metrizable, then so is $\tilde{X}$ , unth $\pi_{1}(X, x_{0})\cong Aut(\tilde{X}arrow X\mathrm{p})$ acting by isometry.

\S 2. Examples of spaces with generalized universal coverings
We list three important classes of spaces to which Theorem 1 can be applied.

Theorem 2 (Eda-Kawamura [6]). If $X$ is either $a$ 1-dimensional compact Hausdorff
space or if $X$ is $a$ 1-dimensional separable metric space, then the natural homomorphism
$\pi_{1}(X, x_{0})arrow\check{\pi}_{1}(X, x_{0})$ is injective for all $x_{0}\in X$ .

As shown in [11], if $X$ is a 1-dimensional path-connected separable metrizable space,
then its generalized universal covering space $\tilde{X}$ is an $\mathrm{R}$-tree (i.e. a uniquely arcwise con-
nected geodesic metric space) with “exotic” action by $\pi_{1}(X)$ ; in general not by isometry.

Theorem 3 (F.-Zastrow [12]). If $M^{2}$ is a closed surface and if $X\subseteq M^{2}$ is any subset,
then the natural homomorphism $\pi_{1}(X, x_{0})arrow\check{\pi}_{1}(X, x_{0})$ is injective for all $x_{0}\in X$ .
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Theorem 4 (F.-Guilbault [10]). If $X$ is a tree of $n$ -manifolds (well-balanced if $n=2$),
then the natural homomorphism $\pi_{1}(X, x_{0})arrow\check{\pi}_{1}(X, x_{0})$ is injective for all $x_{0}\in X$ .

We recall that an inverse limit

$X=\varliminf(N_{1}arrow N_{1}\neq_{D_{1}}N_{2}arrow f_{1}f2(N_{1}\neq N_{2})\neq_{D_{2}}N_{3}L^{3}(N_{1}\neq N_{2}\neq N_{3})\neq_{D_{3}}N_{4}L^{4}\ldots)$

of connected sums of closed PL $n$-manifolds $N_{i}$ , formed along corresponding attaching
disks $D_{i}\subseteq N_{1}\# N_{2}\neq\cdots\neq N_{i}$ and $D.’$. $\subseteq N_{i+1}$ , is called a tree of manifolds if

(i) every $f_{1}$ is the identity on $N_{1}\neq N_{2}\neq\cdots\neq N_{1}\backslash \mathrm{i}\mathrm{n}\mathrm{t}(D:)$ ;

(ii) $f_{1}(N_{1+1}\backslash D_{i}’)\subseteq \mathrm{i}\mathrm{n}\mathrm{t}(D:)$ for all $i$ ;

(iii) the image $D_{1,j}=f_{1}\mathrm{o}f_{1+1}\mathrm{o}\cdots \mathrm{o}f_{j-1}(D_{j})$ does not intersect $\partial D_{i}$ for any $i<j$ ;

(iv) for each fixed $i,$ $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(D:,j)arrow 0$ as $jarrow\infty$ .

See Figure 1. The tree of manifolds is said to be well-balanced if, for each $i$ , the set
$N_{i}\cap(D_{i}\cup\cup\{D_{jj},|i<j\})$ is either dense in $N_{j}\backslash D_{i-1}’$ or has finitely many components.

$\otimes\approx_{N_{\mathit{5}}}^{D_{\mathit{4}}’}$

Figure 1: A finite stage of a tree of manifolds $N_{1}$

\S 3. More on trees of manifolds
Trees of manifolds arise naturally in the study of boundaries of Coxeter groups. A right-
angled Coxeter group $\Gamma$ is a group with finite presentation

$\Gamma=\langle$ $V|v^{2}=1,$ $(uv)^{m(u,v)}=1$ Vu, $v\in V\rangle$ ,

where $m(u, v)=m(v,u)\in\{2, \infty\}$ for $u\neq v$ . Every right-angled Coxeter group $\Gamma$ has a
well-defined nerve, which is the abstract simplicial complex

$N(\Gamma)=$ { $\Delta|\emptyset\neq\Delta\subseteq V$ and $\Delta$ generates a finite subgroup of $\Gamma$ }.

The nerve of every right-angled Coxeter group is a flag complex, that is, it contains
every simplex whose edges it contains. Conversely, every finite flag complex (for example,
the barycentric subdivision of any finite simplicial complex) is the nerve of a unique right-
angled Coxeter group: identify $V$ with the vertex set, declare $v^{2}=1$ for all $v\in V$ and
put $m(u, v)=2$ if $\{u, v\}$ spans an edge.

There is a canonical CAT(0) cubical complex X $(\Gamma)$ , the so-called Davis-Vinberg com-
plex, on which $\Gamma$ acts properly discontinuously and cocompactly by isomtery. The space of
geodesic rays of $X(\Gamma)$ , emanating from a fixed $\mathrm{b}\mathrm{a}s\mathrm{e}$ point. in the compact-open topology,
is called the boundary of $\Gamma$ . and is denoted by $\mathrm{b}\mathrm{d}\mathrm{y}(\Gamma)$ . See [5] and [1].

Trees of manifolds arise in this context as follows:
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Theorem 5 (F. [9]). If $\Gamma$ is a right-angled Coxeter group, whose nerve $N(\Gamma)$ is a closed
$PL$-manifold, then $bdy(\Gamma)$ is a (well-balanced) tree of manifolds $N_{i}=N(\Gamma)$ .

Combining Theorem 4 with Theorem 5 and the fact that $\check{\pi}_{1}(\mathrm{b}\mathrm{d}\mathrm{y}(\Gamma))=\pi_{1}^{\infty}(X(\Gamma))=$

$\pi_{1}^{\infty}(\Gamma)$ is an invariant of $\Gamma$ , one obtains the following corollary.

Corollary 6 (F.-Guilbault [10]). Let $\Gamma$ be a right-angled Coxeter group whose nerve
$N(\Gamma)$ is a closed $PL$-manifold. Then the homomorphism $\pi_{1}(bdy\Gamma)arrow\pi_{1}^{\infty}(\Gamma)$ is injective.

In [4] M.W. Davis constructs exotic open contractible manifolds $M(\Gamma)$ , in all dimen-
sions 4 and higher, $\mathrm{b}\mathrm{a}s$ed on any given right-angled Coxeter group $\Gamma$ , whose nerve $N(\Gamma)$

is a nonsimply-connected $\mathrm{P}\mathrm{L}$-homology sphere, in such a way that $\Gamma$ acts on $M(\Gamma)$ prop-
erly discontinuously and cocompactly (generated by reflections). These open contractible
manifolds $M(\Gamma)$ are exotic in that they cover closed manifolds. although they are not
homeomorphic to Euclidean space–they were the first such examples.

In fact, no $M(\Gamma)$ can be the interior of any compact manifold with boundary, because
its $\pi_{1}$-system is not stable at infinity. In contrast, trees of manifolds provide a natural
”near-manifold compactification”:

Theorem 7 (F. [9]). The Davis-manifolds $M(\Gamma)$ can be equivariantly $Z$ -compactified by
homogeneous cohomology manifolds, namely by the trees of manifolds $bdy(\Gamma)$ .

We refer the reader to [9] for additional features of this compactification and to [13] for
another kind of analysis of Davis’ examples. Finally, we mention that it is shown in [10]
how to realize trees of manifolds, which are based on homology spheres $N_{i}$ of dimension
greater than three, as boundaries of CAT(rc) spaces with $\kappa<0$ .

\S 4. The generalized pullback construction
In preparation for the application in the next section, we now have a look at the pullback
construction for generalized universal coverings.

Suppose $X$ is a path-connected topological space such that $p:\tilde{X}arrow X$ is a generalized
universal covering, built by the standard construction. Let $f$ : $\mathrm{Y}arrow X$ be a continuous
map from a path-connected topological space $Y$ . Consider the pullback diagram

$f^{\mathrm{r}}pf^{*}\tilde{X}arrow\tilde{X}\downarrow\downarrow p\overline{f}f$

$Yrightarrow X$

where $f^{l}\tilde{X}=\{(y,\tilde{x})\in Y\mathrm{x}\tilde{X}|f(y)=p(\tilde{x})\}\subseteq Y\cross\tilde{X}$ with projections $f$? : $f^{*}\tilde{X}arrow \mathrm{Y}$

given by $f\phi(y,\tilde{x})=y$ and $\tilde{f}:f\tilde{X}arrow\tilde{X}$ given by $\tilde{f}(y,\tilde{x})=\tilde{x}$ .
It is reasonable to expect that for a path-component $\overline{\mathrm{Y}}$ of $f^{r}\tilde{X}$ , the restriction

$f\psi$ : $\overline{Y}arrow \mathrm{Y}$ should be the generalized universal covering of $Y$ , provided the homo-
morphism $f_{\#}$ : $\pi_{1}(Y)arrow\pi_{1}(X)$ is injective, because the corresponding statement would
be true in the classical theory. The fact that this is not the case in the generalized setting,
not even for Peano continua $Y$ and $X$ , is illustrated in [7] by the following example.

Example. Consider the Hawaiian Earring $\mathbb{H}$ , that is, consider the planar continuum
$\mathbb{H}=\bigcup_{n\in \mathrm{N}}L_{n}$ , where $L_{n}= \{(x, y)\in \mathrm{R}^{\mathit{2}}|x^{2}+(y-\frac{1}{n})^{2}=(\frac{1}{n})^{2}\}$. Define $X=\mathbb{H}\mathrm{x}[0,1]$ ,
with base point $x_{0}=((0,0),$ $\frac{1}{2})$ . Put $A=\{(0,0)\}\mathrm{x}[0,1]$ and define the subset $\mathrm{Y}\subseteq X$ by

$\mathrm{Y}=([\bigcup_{k,>0}L_{2k+1}]\mathrm{x}\{0\})\cup A\cup([\bigcup_{k>1\prime}L_{2k}]\cross\{1\})$ .

44



Figure 2: The map $f$ : $Yarrow X$

Let $f$ : $\mathrm{Y}arrow X$ be inclusion. See Figure 2. Then $f_{\#}$ : $\pi_{1}(\mathrm{Y})arrow\pi_{1}(X)$ is injective,
because, from a homotopy point of view, $f$ : $\mathrm{Y}arrow X$ is equivalent to the quotient map
$q$ : $Yarrow Y/A$ , which identifies the vertical arc $A$ to a point. The effect of this on
the topology of $\overline{\mathrm{Y}}$ is that it folds on itself along the preimages of $A$ , very much like the
path-components of the Knaster continuum, rendering $\overline{Y}$ non-locally path-connected and,
ultimately, non-contractible. On the other hand, the generalized universal covering space
$\tilde{Y}$ of the 1-dimensional continuum $\mathrm{Y}$ is contractible, since it is an R-tree.

What goes wrong in the above example is that, although $f$ : $\mathrm{Y}arrow X$ is $\pi_{1}$ -injective,
loops in the domain $Y$ cannot be shrunk to a size which is in accordance with how small
they can be made in the range $X$ . This prompts the following definition.

Definition. We call the map $f$ : $\mathrm{Y}arrow X$ gradually $\pi_{1}$ -injective if for every $y\in \mathrm{Y}$

and every open subset $W$ of $Y$ with $y\in W$ there exist open subsets $V\subseteq Y$ and
$U\subseteq X$ with $y\in V\subseteq W$ and $f(V)\subseteq U$ , such that the kernel of the homomorphism
$f_{\#}$ : $\pi_{1}(Y, V, y)arrow\pi_{1}(X, U, x)$ is contained in the kernel of the inclusion induced homo-
morphism $i_{\#}$ : $\pi_{1}(\mathrm{Y}, V,y)arrow\pi_{1}(\mathrm{Y}, W, y)$ .

$Y$ $X$

Figure 3: Gradual $\pi_{1}$-injectivity

Put differently, if $\beta$ : $[0,1]arrow Y$ is a path with $\beta(0)=y$ and $\beta(1)\in V$ such that
$f\circ\beta$ can be homotoped into U. while fixing the endpoints. we require that $\beta$ can be
homotoped into $W$ , while fixing its endpoints. This gradual contractive relationship is
depicted in Figure 3. For a space which is homotopically Hausdorff, it is the appropriate
strengthening of $\pi_{1}$-injectivity, since we have the following criterion.
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Theorem 8 (F. [7]). Let $f$ : $Yarrow X$ be a map between path-connected topological spaces.
Suppose that $p:\tilde{X}arrow X$ is a standardly constructed generalized universal covering and
let $\overline{Y}$ be a path-component of the pullback $f^{*}\tilde{X}$ . Then $f\psi|_{\overline{Y}}$ : $\overline{Y}arrow Y$ is a generalized
universal covering if and only if $Y$ is homotopically Hausdorff and $f$ : $\mathrm{Y}arrow X$ is gradually
$\pi_{1}$ -injective.

\S 5. An asphericity proof technique: pulling back shortest paths
A topological space is called aspherical if its homotopy groups are trivial in all dimensions
greater than one. Aspherical spaces are important, for their topology is intimately tied
to the algebra of their fundamental group. Deciding whether a given space is aspherical
can be surprisingly difficult, though, especially if it exhibits high local complexity. If
we happen to know that the space is homotopy equivalent to a 1-dimensional separable
metric space, then it is aspherical because of the following classical result.

Theorem 9 (Curtis-Fort [3]). 1-dimensional separable metric spaces are aspherical.

However, even planar Peano continua need not be homotopy equivalent to any l-dimen-
sional spaces [14]. Still, all planar sets are known to be aspherical. Proofs of this nontrivial
fact can be found in [16] and [2]. For subsets of higher-dimensional Euclidean spaces or,
more generally, of CAT(0) spaces, we have the following theorem, which actually estab-
lishes a slightly stronger result than asphericity. (See [1] for a comprehensive discussion
of CAT(0) spaces.)

Theorem 10 (F. [8]). Let $\mathrm{Y}$ be a path-connected subset of a CAT(0) space Z. Suppose
there is a map $f$ : $Yarrow X$ to $a$ 1-dimensional separable metric space $X$ , such that the
nontrivial point preimages of $f$ form a null sequence of convex subsets of Z. Then $Y$ has
an arc-smooth generalized universal covering space. In $pa\hslash icular,$ $Y$ is aspherical.

For a detailed proof of Theorem 10, we refer the reader to [8]. Below, we only sketch
the main idea.

Recall that a metric space $W$ is called arc-smooth if there is a continuous function
$A$ : $(W, w_{0})arrow(C(W), \{w_{0}\})$ to the space $C(W)$ of nonempty compact connected subsets
of $W$ , endowed with the Hausdorff metric, such that $A(w)$ is a (possibly degenerate) arc
from $w_{0}$ to $w$ and $A(w’)\subseteq A(w)$ for all $w\in W$ and $w’\in A(w)$ . Arc-smooth spaces have
trivial homotopy groups: given any compact subset $B$ , such as the image of a sphere, $B$

lies in the arc-smooth continuum $D=\cup\{A(b)|b\in B\}$ , and arc-smooth continua are
known to be contractible.

We should note that the map $f$ : $Yarrow X$ in Theorem 10 need not be a homotopy
equivalence. This is best demonstrated by [14, Example 3], where a dense pattern of holes
in the planar Sierpitski carpet is filled, while another dense pattern of holes remains. What
results is an object, which is not homotopy equivalent to any 1-dimensional space. Indeed,
in [14] it is shown that the resulting space is “everywhere homotopically 2-dimensional”.
However, if we consider the quotient $X$ of this space $Y$ , in which all filled squares are
identified to points, then the quotient map $f$ : $Yarrow X$ is as in Theorem 10.

The proof of Theorem 10 hinges on the fact that $X$ has a generalized universal covering
$p:\tilde{X}arrow X$ by an $\mathbb{R}$-tree $\tilde{X}$ . The assumptions ensure that $f$ is $\pi_{1}$-injective, although not
necessarily gradually $\pi_{1}$-injective. Still, combining the following commutative square with
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Theorems 1 and 2 guarantees the existence of a generalized universal covering $q:\tilde{Y}arrow Y$ .

$\pi_{1}(Y, y_{0})arrow\pi_{1}(X, x_{0})f_{\#}$

$\downarrow$ $\downarrow$

$\check{\pi}_{1}(Y, y_{0})arrow\check{\pi}_{1}(X, x_{0})f$
.

This enables one to pull back the canonical arc-structure of the $\mathrm{R}$-tree $\tilde{X}$ to the generalized
universal covering space $\tilde{\mathrm{Y}}$ , through the following commutative diagram, in which the map
$r:\tilde{Y}$

—
$\overline{Y}$ is a continuous bijection, induced by the underlying lifting properties.

More specifically. since $\overline{Y}$ is path-connected and Hausdorff, any two points of $\overline{Y}$ can
be joined with an arc, parametrized by some $g=(\beta,\overline{\alpha})$ : $[0,1]arrow\overline{Y}\subseteq Y\cross\tilde{X}$. It follows
from the assumptions of Theorem 10 and the unique arcwise connectivity of $\tilde{X}$ that the
component di : $[0,1]arrow\tilde{X}$ must be monotone, tracing out the appropriate arc of $\tilde{X}$ . This
allows a tightening of the component $\beta$ : $[0,1]arrow Y$ to a local geodesic of unit speed,
within every convex point preimage of $f$ over which $\tilde{\alpha}$ is constant. While a thus tightened
path $g$ need not be rectifiable, its image is the unique shortest possible arc in $\overline{Y}$ between
its endpoints, and this is equally true for each of itv subarcv. These shortest arcs of $\overline{\mathrm{Y}}$

need not vary continuously with their endpoints, because $\overline{Y}$ is, in general, not locally
path-connected. However, by lifting $\beta$ : $[0,1]arrow Y$ to $\tilde{\beta}$ : $[0,1]arrow\tilde{Y}$ , we can transfer the
entire collection of arcs to $\tilde{Y}$ , where we obtain continuous dependence on the endpoints.
Finally, fixing one endpoint renders $\tilde{Y}$ arc-smooth, as desired.
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