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Abstract

This note is a refinement of our former note [KSY05] “Logarithmic truth-
table reductions and minimum sizes of forcing conditions (preliminary draft)”
Sturikaiseki-kenkyusho Kokyuroku 1442 (2005), 42-47. The current note ex-
tends and corrects [KSYO05]. In our former works, for a given concept of reduc-
tion, we study the following hypothesis: “For a random oracle A, with proba-
bility one, the degree of the one-query tautologies with respect to A is strictly
higher than the degree of A.” In our former works, the following three results
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are shown: (1) the hypothesis for polynomial-time Turing reduction is equiv-
alent to the assertion that the probabilistic complexity class R is not equal
to NP, (2) the hypothesis for polynomial-time truth-table reduction implies
that P is not NP, (3) [KSY05] the hypothesis holds for (logn)?(M)-question
truth-table-reduction (without polynomial-time bound). In this note, we show
that if € is an enough small positive number, then we can substitute £ for
(logn)°®) in the statement of (3), where £ denotes the total number of oc-
currences of symbols in a relativized formula. We also show the hypothesis
holds for monotone truth-table reduction.

1 Preface

In our former works [Su98, Su99, Su00, Su01, Su02, Su05, KSY05], by extending
the work of Ambos-Spies [Am86] and related works, we consider the relationships
with the canonical product measure of Cantor space and complexity of one-query
tautologies. A formula F' of the relativized propositional calculus is called a one-
query forumla if F' has exactly one occurrence of a query symbol. For example,

(20 & E(q1, 92, 0)) = (@ = )

is a one-query formula, where gy, ¢;,¢2,¢s are usual propositional variables. We
assume that each propositional variable takes the value 0 or 1 (0 denotes false and
1 denotes true). And, £ in the above formula is a query symbol. For a given oracle
A, a function A% is defined as follows, where ) is the empty string, and the query
symbol €3 is interpreted as the function A2.

A3(000) = A(X), A3(001) = A(0), A%(010) = A(1), A3(011) = A(00),
A%(100) = A(01), A%(101) = A(10), A3(110) = A(11), A3(111) = A(00O).

Thus, more informally, the following holds for each j = 0,1,---,2% — 1, where the
order of strings is defined as the canonical length-lexicographic order.

A®( the (j + 1)st 3-bit string ) = A( the (j + 1)st string ).

For each n, an n-ary Boolean function A" is defined in the same way, and an inter-
pretation of the query symbol £” is defined in the same way. For an oracle A, the
concept of a tautology with respect to A is defined in a natural way. If a one-query
formula F is a tautology with respect to A, then we say F is a one-query tautology
with respect to A. The set of all one-query tautologies with respect to A is denoted
by 1TAUTA.

In [Su02}, for a given concept <, of reduction, we study the following hypothesis,
where 1TAUTX denotes the set of all one-query tautologies with respect to an oracle
X.



One-query-jump hypothesis for <,: The class {X : 1ITAUTX <, X} has
measure zero.

For a given reduction <,, we denote the corresponding one-query-jump hypoth-
esis by [<a].

In [Su98], it is shown that the one query-jump hypothesis for p-T reduction is
equivalent to “R # NP.”

And, in [Su02], it is shown that the one query-jump hypothesis for p-tt reduction
implies “P # NP.”

In [Su05], we show that the one query-jump hypothesis for p-btt reduction
holds, where p-btt denotes polynomial-time bounded-truth-table reduction. The
anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for
bounded-truth-table reduction without polynomial-time bound, and Kumabe inde-
pendently noticed the same result. The referee’s proof, which may be found in [Su05],
uses some concepts of resource-bounded generic oracles in [AM97]. Kumabe’s proof
is more simple.

In [KSY05] we show that the one query-jump hypothesis holds for (logn)°®)-
question tt-reduction (without polynomial-time bound).

A Boolean formula is called monotone if every propositonal conncetive in it is
either disjunction or conjunction, and it does not have an occurrences of negation
symbol. A tt-reduction is called a monotone tt-reduction if its truth table is mono-
tone for every input. In §3, we show that the one query-jump hypothesis holds
for monotone tt-reduction (without polynomial-time bound). In §4, we show the
following. If € is an enough small positive number then the one query-jump hy-
pothesis holds for ef-question tt-reduction (without polynomial-time bound), where
£ denotes the total number of occurrences of symbols in a relativized formula. In
§5, we apply the result of §4 to minimum sizes of forcing conditions.

Corrigendum to our former note Theorem 4 in our former note [KSY05,
p.45] has an error in its proof. -

2 Notation

Most of our notation is the same as that of [Su02], [Su05] and [KSY05]. Almost all
undefined notions may be found in these papers. '

w stands for {0,1,2,3---}, while N stands for {1,2,3---}. In some textbooks,
the complexity class R is denoted by RP. For the detail of the class R, see for
example [BDG8S].

The definition of polynomial-time truth-table reduction and its variant may be
found in [LLS75].

monotone tt-reduction

If A is tt-reducible to B via f and, if for any input z, propositional connectives
used in the truth table (i.e., the ¢, of f(z) = (¢z,82,1,"** ,8s,k)) is conjunction and
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disjunction only, and negation is not used, then we say “A is monotone tt-reducible
to B via f”. If A is monotone tt-reducible to B via some function, then we say “A
is monotone tt-reducible to B”.

{(F), length of a formula

In this note, a given relativised formula F, the symbol 4(F) denotes the total
number of occurrences of propositional variables (qo, g1, g2, * -+ ), propositonal con-
nectives (A, V, =, =, <), query symbols (¢', €2, £, ---) and punctuation marks
(commas, parentheses). In the case of a given string z is not (the binary code of) a
relativized formula, the symbol £(z) denotes the binary length of z.

el-question tt-reduction

Suppose that € is a positive real number. If A is tt-reducible to B via f and, if
for any input z it holds that

k < el(z),

where k is the norm of f at z, then we say “A is ef-question tt-reducible to B
via 7. If A is ef-question tt-reducible to B via some function, then we say “A is
el-question tt-reducible to B”.

3 Monotone truth table redcution

Theorem 1 The Lebesgue measure of the set
{X : ITAUT? is monotone tt-reducible to X}

is zero. In other words, one-query jump hypothesis holds for monotone tt-reduction
(without polynomial-time bound).

4 The case where norm is linear of length of a
formula

" Theorem 2 (Main Theorem) Let € be a positive real number and suppose that € is
enough small. Then the Lebesgue measure of the following class is zero.

{X : 1TAUT* <ps X}

In other words, the one-query-jump hypothesis holds for el- questzon tt-reduction
(without polynomial-time bound).

5 Lower bounds for forcing complexity

Theorem 3 Let ¢ be a positive real number and suppose that € is enough small. Let
D, be the class of all oracles D such that there ezists a positive integer ¢ (¢ may
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depend on D) of the following property. For any F € 1TAUT? such that £(F) > c,

there ezists a forcing condition S such that S is a subfunction of D, S forces F to

be a tautology and such that |dom S| < ef(F), where the left-hand side denotes the
cardinality of dom S. Then D,, has measure zero.
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