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§0 Backgrounds

Before stating the main results, we shall review some backgrounds from
various viewpoints. .

We begin with physics of quantization of the classical Chern-Simons the-
ory for a (2+1)-dimensional quantum field theory. Certainly, E. Witten made
new trends for theories of knots, links and 3-manifolds. He constructed a
Chern-Simons quantum field theory, which does not depend on the metric
of three manifolds. This kind of quantum field theories is called topolog-
ical quantum field theory(TQFT). However, the above connstructxon uses
mathematically undefined path integration. ,

And it is M. Atiyah who axiomatized topological quantum field theory in
the mathematical language [1].

To make the quantized Chern-Simons theory mathematma.lly rigorous,
basically the following two mathods had been developped by making use
of the tensor category of the representations of the quantum group SU,(2),
where q is a root of unity.

e Turaev-Viro TQFT (using a triangulation of a 3-manifold.) [22]

" o Reshetikhin-Turaev TQFT (using a Dehn surgery description of a 3-
manifold.) [19]



Here come in subfactors. The first method was extended to the tensor
categories obtained from subfactors by A. Ocneanu and nowadays, it is called
Turaev-Viro-Ocneanu TQFT.

A. Ocneanu has claimed that a Turaev-Viro-Ocneanu invariant of closed
3-manifolds is equal to a Reshetikhin-Turaev invariant constructed out of the
categorical quantum double of an original data(bimodules and intertwiners
obtained from a subfactor) was proved by Kawahigashi-Sato-Wakui [11]. (See
~ [10] for the definition of the categorical quantum double, in that book, which

is called the center construction.)

~ Moreover, Ocneanu has claimed (without a proof) a formula for the
Turaev-Viro-Ocneanu invariant of closed 3-manifolds constructed out of a
degenerate braided system of bimodules arising from a subfactor.

There are type II; subfactors which give rise to the same tensor cateogry
as SU(N ), Wess-Zumino-Witten model [7]. In the case of N = 2,3, Evans
and Kawahigashi succeeded to describe the categorical quantum double of an
original braided (but not non-degenerate in general) system A of bimodules
arising from subfactors in terms of the full system of A [8].

By using sector theory arising from infinte subfactors, M. Izumi obtained
the categorical quantum double of A [9] and this construction was nothing

but the center construction of V. Drinfel’d [10], which was pointed out by

‘M. Miiger. Izumi further investigated some examples of his construction in
particular in the case of SU(N ), WZW model for general N. For the author,
the categorical quantum double of this tensor category looks quite close to
Miiger’s crossed product in category theory , namely dividing out the double
category A ® AP by the group symmetry Zy.

Miiger’s theory was inspired by a problem in algebraic quantum field the-
ory. K.-H. Rehren conjectured that the extending endomorphisms on the
observable algebra to the ones on the field algebra removes the degeneracy
of the braiding [17, 18]. Miiger solved this conjecture [13] and he noticed
that it could be possible to formulate the whole theory in terms of tensor

category. His formulation crucially depends on Doplicher-Roberts duality

theory. (Almost at the same time, A. Bruguiéres had a similar result in a
more algebraic way by using duality theorem of Deligne[5].)

This note is an exposition of the published paper [21] and we will overview
what is written in this paper.
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Main results

e In the case that we have Longo-Rehren inclusions A D Bp D By for

a minimal non—degenerate extension A D A, we have a simple explicit
description of the quantum double of A (Theorem 1).

° As an application of an orbifold aspect of the inclusions A D Ba D By,
we have an explicit description of the Reshetikhin-Turaev invariant of

- closed 3-manifolds constructed from the quantum double of A by using
the framed link invariants of A (Theorem 2).

§1 Prehmmarles
‘We explain the terms mentioned in the previoius section.
1.1 Braided system of endomorphisms

Braided system bf endomorphisms.
Let M be an infinite factor, and Ay be the set of irreducible normal *-

- endomorphisms of M closed under the following sector operations:

(i) Different elements in Ag are unitarily inequivalent.

(1 ) idpy € Do.

(iii) For every & € A there exists £ € Ao such that €= (8.

(iv) There exists a non-negative mteger N, ¢ such that [¢][n] =

@CEAON §17[C] |

We denote by A the subset of End(M)o whose element is decomposed mto

finite direct sums of the elements in A as sectors. :
A system of endomorphisms A, is called braided if for any A, u € Ao

there exists a unitary intertwiner e(\, u) € Hom(A - p, pu - A) with g(id, u) =

e()\,id) = 1 satisfying the following (the Braiding-Fusion equations):

pause For any A, u, v € A, t € Hom(A, p - v),

o(t)e(N, o) = e(p, o)u(e(v, o)
te(o,\) = p(e(o, v))e(o, p)o(
o(t)*e(u, o)ule(v, o)) = e(A, o)t
t*u(e(o, V))E(a w) = e(o, M)t )",

N
)



We call above ¢ a braiding on Ao. For a given braiding e(\, 1) on Ao,
unitary intertwiners e(u, A)* also satisfies the above conditions of the braid-
ing. We will use the notations e*(\, u) = (A, u) and e~ (A, p) = (i, A)* to
emphasize the difference.

Degenerate sectors.

A sector £ € A is said to be degenerate if €t(&,n) = e~ (&,n) for every
n € Ag. A is said to be non-degenerate if idys is the only degenerate sector.
We denote the set of all of degenerate sectors in A by A? and the set of all
of irreducible sectors in A? by Ag. Note that A? is a symmetric C*-tensor
subcategory of A with direct sums, subobjects and conjugates. .

For £ € A, ¢e(e(€,£)) = Ae € C, where ¢ is the standard left inverse
of . The polar decomposition of )¢ is given by d%;. It is easy to show that
we = £1 for £ € A? (more generally, for an object in a symmetric C*-tensor
category). A is said to be even if w; = 1 for every irreducible £ € A%. We
assume A? is even in the sequel. Then, by Doplicher-Roberts duality theory

[6], there exists a finite group G up to isomorphism such that A? 2 U(G),

where U(G) is a category of finite dimensional unitary representations of G.

a-induction.

Let M D N be an inclusion of ‘infinite factors with finite index and 7y
be its canonical endomorphism. Let Ag C End(NN)o be a braided system of
endomorphisms with a braiding €. We define the a-induced endomorphism
of A € Ap ay € End(M) by

ax=7""- Ad(e(),0)) - X+,

where 6 = 7|y. This definition of the a-induction may look awful, but not
much as we will see in the case of inclusions of crossed product types.

The systematic use of a-induction was first made by Feng Xu [23], and
further studied in a series of papers by Bockenhauer and Evans [2, 3, 4]. We
list some properties of the a-induction:

() d(ax) =d(})

(i) ax-a,=oy, forany A\, ue Ay

(ili) o, ay= Ad(e(A,p)) ar-a, forany A, pu € A

(IV) If [/\] = [Al] &) [)\2], /\, )\1, )\2 S A, then [a,\] = [a)‘l] ® [a,\z] and
() los] = [E3,A € Ao,
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1.2 Premodular categories

Assumption
We assume that C is a C*-tensor category with conjugate, direct sums,
subobjects, irreducible unit object ¢ and a unitary braiding «.

We use the following notations which are popular in the context of the
algebraic quantum field theory:
We use small Greek letters p, o etc for objects of C and the tensor product
is denoted by po instead of p® 0. :

For operations of arrows, we denote the composition of arrows S €
Hom(p,0), T € Hom(o,T) by T oS € Hom(p,7), the tensor product of
S € Hom(py,01), T € Hom(ps,02) by S x T € Hom(p1p2,0102). We denote
by Co the set of isomorphism classes of irreducible objects.

We remark that under Assumption C is a ribbon category and we denote
a twist for each irreducible object p € C by w,.

Since we assume that C has a conjugate p for each obJect p, there are
R, € Hom(t, pp) and R, € Hom(¢, pp) satisfying

(R} x id,) o (id, x R,) =id,, (id, x R,*) o (R, x id,) = id,.

Then, the dimension of an irreducible object p is defined by d(p) = R,* o R,,,
which takes its value in [1, co). |

If the set Cy is finite, the category is called rational. Then, its dimension
is defined by dimC = 3 ... d(§ )%.. In subfactor context, this is called the
global indez.

When C is rational, then we set the complex number

§'(&m)id, = (Re* x Ry) o (idg x (e(n, €) 0 (€, 7)) x idy) o (Re x Ry)

for§,neCo.
If S’ is invertible, C is called modular. When C is modular, the matrices

1
S =dimC %S, T (licl) Diag(we)
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are unitaries and satisfy the relations
$* = (ST)* = C, TC = CT,
where Ac =Y .o, d(€)’w(€)™! and C = &,z

Definition. If C satisfies Assumption and is rational, we say C is C*-
premodular. : '

. For a C*-premodﬁlar category C and its full subcategory S, we define
CNS', a full subcategory of C, by

Obj CNS' = {p € Cle(a, p) o e(p, o) = idy, for all o € S}.

We remark that if C is modular we have

, dim C
dimCNS = m
due to a Theorem of Miiger.

Let C be a C*-premodular category and we set D = CNC'. We assume
that D¢ is even, i.e., twist wg = 1 for each irreducible object £. Then, by
Dophcher—Roberts dua.hty theory [6], there is a finite group such that D¢ is
equivalent to U(G) as symmetric tensor *-categories with conjugates, where
U(G) is a category of finite dimensional unitary representations of G. _

Let F be an invertible functor from D¢ to U(G) which gives the equiv-
alence, G be the set of all isomorphism classes of irreducible objects in Dc,
{vlk € G} be a section of objects in 'Dc such that 79 = ¢ and 'Hk = F().

- 'We choose an orthonormal basis {V}; }a of Hom (Y, TeM)-

Muiger’s crossed product.
M. Miiger has defined a new tensor category C xoDc out of C. The objects
and morphisms are defined in the following manner [14].

e Obj C xo D¢ = Obj C with the same tensor product as C
e Homey,p.(p,0) = @ Home (110, 0) @ Hy.

With additional conditions on the morphisms such as the compositions,
tensor products and x-operations.



§2 Miiger’s crossed product versus a-induction for subfactors

Let M, A and A% be as in Subsection 1.1, and we assume that A, is a
finite set. We further assume that A% is even and A% = U(G), where G is a
finite group. Then, by Doplicher-Roberts duality theory [20] there exists a
factor, denoted by M x G, which contains M as a subfactor with index |Gl

We may assume that M x G is generated by M and isometries {'(/)
i=1,---,d(0),0 € Af} satisfying :

1/)50) d’a('a) = 8:,j00,0" (2)
T e =1 3)
s = o(z)”), o€ M )
P d(r k) '
Yy = 2read SV, (gt)(a]) % (5)
w(a) — R'll}-(a) ( )
Zd(al) Zd(a-lg) ¢§02)¢§01)¢§62)* 50‘1)4 _ 5(01’02), ( )

where V(;T:)c()a i) € Hom(r,_p .¢) and R, € Hom(,5 - o).

Remark.

1) It is known that 'l,b-("), i=1,---,d(0),0 € Af}is a left M-module
i 0

basis. ‘

(2) Whenz =3, t(”)z/J(”) € M x G, the conditional expectation E : M x

G — M is given by E(z) = t®. By computations, one has E(wf”)z/JJ(p)*) =
6,,p6,-,,-fa), where A = [M x G : M].

Lemma. ’

Let v = ) tﬁ")zpf") € Hom(id,v). Then, we have the relations t(”) =
d(U)E(vwf")*) € Hom(c,6) and ¢ = d(a)tf") v. Furthermore, t\° ), '
1,---,d(o) satisfy tg")*t;p ) = GO Do d(a)tfa)t(”) =1.

Proposition. The equation (7) is equivalent to the identity (6, 8)v? = v?

for v € Hom(id, 7).
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Remark. The identity (6, 0)v? = v? is called the chiral locality condition.
Chiral locality naturally appears in the context of the algebraic quantum
field theory in the approach using subfactors. But, for general subfactors,
not appearing in algeraic quantum field theory, thls chiral locality does not
hold in general.

Lemma. For A € A, we have
oF (W) = (A, 0)(", (8)

where & € A%,i =1,---,d(c). In particular, of = ay for A€ ANAY =
(o € Ale(6,0)e(0,6) = 1, Vo € Al).

Lemma. For.)\,p € A,

Hom a)\’a# {Z Zt(d)w(a) t(a) € HOIII(O' : )‘7/1‘)a Z= 1) te 7d(0)}
O'EAd i=1

Remark. By the above lemma, we have
Hom (id, ap) = Zt(”)w(") t(”) ) p(z )t(”) Ve M,i=1,---,d(p)}

for p € Ag, which is a Hilbert space with dimension d(p). Since d(a,) = d(p),
we conclude that o, & ea;ﬁ’;) id. This can be read that a-induction trivializes
degenerate sectors. :

Let A € AN A% and we use the notation o instead of af = aj. We
denote by (A N A%)* the subset of End(M x G), consisting of subsectors of
o, when \ varies in A N A%,

Under these preliminaries, we have the following /
Proposition. (AN A%)e is a modular category.

So far, we have discussed the similarities to Miiger’s theory of crossed
product. In fact, we have the following



Proposition.
For the inclusion M xG D M, (AﬂAd )* is naturally identified with Miiger’s

crossed product (AN AY) x Al
‘§3 Longo-Rehren inclusions A O Ba D Bj

Let A be a subset of End(M), with a finite braided system Ay, A D A
its non-degenerate extension. The following definition was first introduced
by Ocneanu [16].

~ Definition. The non-degenerate extension A D A is called minimal if AN
A = A?,

Remark that we have dim A = dim A dim A¢ if the extension is minimal.

We assume the minimality of the non-degenerate extension A>
A in the sequel.

Longo-Rehren inclusion.

Let {T(€ )i ,_fcl" be an orthonormal basis of Hom(({, € - ), &,1,( € Aq. Let
M® be the opposite algebra of M and j : M — M the anti-linear iso-
‘morphism. Weset A =M @ MP, P =j5-€-7, and € = £ ® €. For the
isometries {V;}eea, C A satisfying 3 _..a, VeV¢* = 1, we define

=D V@)V,
€€Ao
Let Va € Hom(id, ), Wa € Hoin('y, 4?) be isometries defined by
Va = Vidy,
C *
Z d1m Ad(( ng( W TeaVe

E€nC€lD

where TS, = Y00 T, ) ® 5(TE,.)5).
Then, one can construct a subfactor Ba of A such that yo : A — Ba is
the canonical endomorphism of the inclusion A O Ba. We call the inclusion

A D Bj the Longo-Rehren inclusion [12].
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In a similar manner, we can construct the Longo-Rehren inclusion A D
Bj. By their constructions, we have the inclusions A D Ba D Bj.

We define D(A) to be the set of endomorphisms p € End(Ba)e such
that [ta][p] is a finite direct sum of sectors in the decompositions of {[¢ ®
id%)[ta]}eeno, Where ta is the inclusion map ta : Ba — A. We call D(A)
the quantum double of A. Izumi proved that D(A) is equivalent to A ® Ao
as modular categories [9]. (The similar thing in the case of an asymptotic
inclusion had been proved by Evans-Kawahigashi [8].)

Proposition.

* We assume that A? & U(G), where G is an abelian group. Then, there exists
an outer action a of G on B4 and the subfactor Bao D Bj is isomorphic to
B A Mo GOB A-

Theorem 1. [21]

Let D(A) be the quantum double of A. Then, under the assumptlons in

Proposmon in Section 2, D(A) = (A@AopnAd’) x A4, where the embedding
: A <> A ® AP is given by tae(c) = (o, 0%).
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84 Application to the Reshetikhin-Turaev invariants for 3-manifolds

We apply Theorem 1 to the Reshetikhin-Turaev invariant of 3-manifolds
constructed from the quantum double D(A) to get a simpler description of
it in this case. See [21] for the details.

Lemma. Let M be a premodular category, P the non-degenerate extension
of M and D be degenerates of M, i.e., D = M N M'. Then, we have

> Ny d(n¢ )xM(nC), (9)
we€Mo
where xa(€) = 1 if £ € M, 0 otherwise.

Let C be a premodular category. Let L be a framed link with n» compo-
nents in the 3-sphere. We denote the invariant of the colored framed link by
Fe(L, ), where A = (Ay,--- ,A,) € CH. Set

{L}e=Y_ Hd(/\i)Fc(L; 2.

AECH i=1



We may assume that a closed 3-manifold M is obtained from surgery along
the framed link L in the 3-sphere S3. We denote the signature of L by o(L).

Let C be a modular category and we set Ac = ). Wi 'd(€)? and D¢ =
(dim C)!/2. The Reshetikhin-Turaev invariant 7¢ is defined by

re(M) = (Ac)" P D" L.

 Lemma. Let C be a premodular category with CNC’' = D and Lbea
framed link with n components. Then, we have

{L}e = (dim D)™{L}ex.

We now go back in the case of braided C*-tensor categories A and A
associated with subfactors. Recall that we have assumed the minimality of
the non-degenerate extension A S A. For A\, pu € A, we put :

y = ———r Ny-d l/ .

[ M]A dim A UEZAO Al (

Theorem 2. [21]

Let M be a closed 3-manifold obtained from surgery along the framed link
L with n components. Then, the Reshetikhin-Turaev invariant for D(A) is

given by

Tp(a)(M) = z : I I[/\n#z]AF (L; \)FA(L; ).
dlmA sy i=1
o n =

_ Final Remark. According to the main theorem in [11], the Turaev-Viro-
Ocneanu invariant Za (M) obtained from A satisfying the same condition as
in Theorem 2. , we have the following equality

(M) = xS H[/\um]AFA(L NES (T ).

AueAp i=1

This gives a proof of Ocneanu’s claim in the case of a group G is abelian.
So far, we have no idea to extend our theorem in the case of non-abelian
groups. Moreover, There are a few examples of minimal non-degenerate
extension. Ocneanu has claimed that there always exists a unique minimal
non-degenerate extension of A. But, now it is known that uniqueness does
not hold. To construct minimal non-degenrate extensions is still left over.
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