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1 Introduction
This is an exposittory note about the titled subject. As is well known, for a
topological space $X$ (not necessarily compact) and an appropriate algebras
of continuous functions such as $C(X),$ $C_{0}(X)$ or $C_{b}(X)$ notions of hulls and
kernels play an important role in functional analysis. Having this situation
in mind weregard a topological dynamical system $\Sigma=(X, \sigma)$ where $X$ is an
arbitrary compact space with a homeomorphism a as the subject $X$ with an
action of the integer group $Z$ on $X$ by $\sigma$ . We then consider, as a noncommu-
tative counterpart of usual hull-kernels, the pair $\{\Sigma, A(\Sigma)\}$ where $A(\Sigma)$ is a
homeomorpism $\mathrm{C}^{*}$-algebra, namely the $\mathrm{C}^{*}$-crossed product of $C(X)$ by the
automorphism a on it induced by $\sigma$ . We write this as $A(\Sigma)=C^{*}(C(X), \delta)$

where 6 is a generating unitary such that $\delta f\delta^{*}=\alpha(f)$ for all $f\in C(X)$ .
Thus, by using generalized Fourier coefficients $\{a(n)\}$ of an element $a$ of

$A(\Sigma)$ we define Hulls and Kernels (making difference from usual hull-kernel)
in the following way. Let $S$ be a subset of $X$ and $I$ a closed ideal of of $A(\Sigma)$ .
Then

$Ker(S)=\{a\in A(\Sigma) | a(n)(x)=0 \forall x\in S, n\in Z\}$

and

Hull(I) $=$ $\{x\in X | a(n)(x)=0 a\in I, n\in Z\}$

$=$ $\{x\in X | E(a)(x)=0 a\in I\}$

, where $E$ is the canonical expectation from $A(\Sigma)$ to $C(X)$ . In this article
we shall mainly discuss the following problems.

Problem A. What are the $\mathrm{C}^{*}$-algebraic meanings of the Kernels of those
elementary sets as well as their gaps for the dynamical system $\Sigma$?

Problem B.What are the dynamical meanings of the Hulls of those struc-
tural ideals of the $\mathrm{C}^{*}$-algebra $A(\Sigma)$?
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2Notations and preliminary results
We write the elementary sets of $\Sigma$ as follows;

Per $(\sigma)$ : the set of periodic points.
Aper $(a)$ : the set of aperiodic points.
$c(a)$ : the set of recurrent points.
A point $x$ is called a recurrent point if there exists a subnet $\{\sigma^{n_{\alpha}}(x)\}$

converging to $x$ .
$\Omega(\sigma)$ : the set of nonwandering points.
A point $x$ is said to be nonwandering if for any neighbprhood $U$ of $x$ there

exists an $n$ such that $\sigma^{n}(U)\cap U\neq\phi$ .
$R(\sigma)$ : the set of chain recurrent points.
A point $x$ is here said to be chain recurrent if for any positive $\epsilon$ there

exists a cyclic $\epsilon$-shadowing orbit for $x$ .
We say that $\Sigma$ is topologically hee if the set Aper $(\sigma)$ is dense in $X$ . This

terminology is not found in usual literature of topological dynamics, perhaps
because most topological dynamical systems in manifolds become topologi-
cally free (as the set Per $(a)$ is usually at most countable). We emphasize
however this wide class is well suited to $\mathrm{C}^{*}$-theory as we see notably from
the result [5, theorem 5.4]. Now recall that $\Sigma$ is topologically transitive if
for any pair of open sets $\{U, V\}$ there exists an $n$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\sigma^{n}(U)\cap V\neq\phi$ .
When $X$ is metrizable the property is known to be equivalent to have a
point $x$ with dense orbit. This equivalency is however not valid when $X$ is
not metrizable. In fact, every topological dynamical system arised from an
ergodic transformation gives a counter example for this fact. We note that
a topologically transitive dynamical system for an infinite set is known to
become necessarily topologically free.

We denote as usual a representation of $A(\Sigma)$ , fi on a Hilbert space $H$

as $\tilde{\pi}=\pi\cross u$ , where $\pi$ is the restriction of fr to $C(X)$ and $u$ is the uni-
tary on $H$ as the image of $\tilde{\pi}(\delta)$ . We can then define the dynamical system
$\Sigma_{\pi}=(X_{\pi}, \sigma_{\pi})$ induced by $\tilde{\pi}$ as follows. Put $X_{\pi}=k(\pi^{-1}(0))$ , which turns
out to be an invariant closed subset of $X$ and write $\sigma_{\pi}=\sigma|X_{\pi}$ . Note that
the quotient algebra of $C(X)$ by the kernel of $\pi$ is identified as $C(X_{\pi})$ . On
the other hand, consider the compact space $X_{\pi}’$ defined by the Gelfand rep-
resentation of $\pi(C(X))$ with the homeomorphism $a_{\pi}’$ of $X_{\pi}’$ induced by the
automorphism $Adu$ on $C(X_{\pi}’)$ . It follows that the latter dynamical system
is topologically conjugate to the system $\Sigma_{\pi}=\{X_{\pi}, a_{\pi}\}$ . Hence we naturally
identify these two dynamical systems as the induced dynamical systrem by
the representation $\tilde{\pi}$ . A notable fact about this dynamical system is the
following
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Proposition 2.1 If $\tilde{\pi}$ is a factor repesentation (in particular, iweducible
representation), the system $\Sigma_{\pi}$ becomes topologically transitive. Hence if $\tilde{\pi}$ is
infinite dimensional the system becomes topologically free.
Therefore by Theorem 5.1 of [5] the image $\tilde{\pi}(A(\Sigma))$ has the crossed product
structure as $A(\Sigma_{\pi})$ . Another preparation we need here is the irreducible rep-
resentation of $A(\Sigma)$ induced by a point $x$ of $X$ . Namely the point evaluation
$\mu_{x}$ at $x$ gives a pure state on $C(X)$ , and it extends to a pure state $\varphi$ on $A(\Sigma)$ .
Here when $x$ is aperiodic the extension is unique and the unitary equivalence
of its GNS-representation is determined by the orbit $O(x)$ . On the other
hand if $x$ is periodic the family of pure state extensions is parametrized by
the torus T.Moreover their unitary equivalences are determined by the orbit
and those parameters. Thus we denote their kernels by $P(\overline{x})$ if $x$ is aperiodic
and by $P(\overline{x}, \lambda)$ if $x$ is periodic. Put the intersection of $P(\overline{x}, \lambda)$ through all
parameters by $Q(\overline{x})[7]$ . We have then

Proposition 2.2 (cf.Proposition 2 in $[7J$) Every closed ideal of $A(\Sigma)$ is ex-
pressed as the intersection of those families $\{P(\overline{x}_{\alpha})\}$ for aperiodic points and
$\{P(\overline{y}_{\beta}, \lambda_{\gamma})\}$ for periodic points.

Notice that we impose no countability condition for $X$ .

3 Results and discussions
Henceforth we mean an ideal a closed ideal of $A(\Sigma)$ . We must mention first
basic differences between our noncommutative $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$-Kernels from usual hull-
kernels. In the present situation, for a given subset $S$ of $X$ , we only see at first
that $Ker(S)$ is just a closed linear subspace of $A(\Sigma)$ . By using C\‘esaro general
polynomials $\sigma_{n}(a)$ with respect to an element $a$ of $A(\Sigma)$ which converges to
$a$ in norm we however obtain

Proposition 3.1 (1) If $S$ is inva$7^{\cdot}iant,$ $Ker(S)$ becomes an ideal of $A(\Sigma)$ ,
(2) For an ideal I of $A(\Sigma),$ $Hull(I)$ is always an invariant closed subset

of $X$ .

Thus we first meet the usual situation;

Hull $(Ker(S))=S$ for a closed invariant set $S$ .

The other relation is however not valid, namely starting from an ideal $I$ we
have in general that $Ker(Hull(I))$ contains $I$ strictly. Moreover, sometimes
we meet the worst fact such as

$Ker(Hull(I))=A(\Sigma)$ .
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In fact, when $I=P(\overline{y}, \lambda)$ for a periodic point $y$ we see that

$E(P(\overline{y}, \lambda))=C(X)$ and $Ker(Hull(P(\overline{y}, \lambda)))=A(\Sigma)$ .

Therefore, the first important thing is to characterize an ideal $I$ such that
$Ker(Hull(I))=I$, for which we get the following result.

Theorem 3.2 The following assertions are equivalent;
(1) $I=Ker(S)$ for an inva$7\dot{?}ant$ subset $S$ ,
(2) $I=Ker(Hull(I))$ , (3) $E(I)\subset I_{f}$

(4) I is invariant by the dual action $\{\hat{\alpha}_{t}| t\in T\}$ ,
(5) There exist families $\{x_{\alpha}\}$ in Aper $(\sigma)$ and $\{y_{\beta}\}$ in Per $(\sigma)$ such that

$I= \bigcap_{\alpha}P(\overline{x}_{\alpha})\bigcap_{\beta}Q(\overline{y}_{\beta})$ .

An immediate consequence of this theorem is that when $\Sigma$ is free, i.e. no
periodic points, every ideal of $A(\Sigma)$ has this good property. This kind of
situation would be quite favarite for operator algebraists. We however remind
that appearence of periodic points is the most common assumption for those
people working on dynamical systems at present.

In the above case, the quotient algebra $A(\Sigma)/I$ is shown to have the
crossed product structure and the map $E_{I}$ defined as $E_{I}([a])=[E(a)]$ turns
out to be the canonical expectation from $A(\Sigma)/I$ to $C(X)/I$ . In fact, putting

$X_{I}=h(E(I))=h(C(X)\cap I)$ and $\sigma_{I}=a|X_{I}$ ,

one may realize that the quotient algebra is the homeomorphism $\mathrm{C}^{*}$-algebra
with respect to this dynamical system $\sigma_{I}$ . This is nothing but the $\mathrm{d}\mathrm{y},\mathrm{n}$amical
system $\Sigma_{\pi}$ induced by the representation $\tilde{\pi}=\pi\cross u$ such that $\tilde{\pi}^{-1}(0)=I$ .

In tbe theorem the assertion (5) clarifies the particularity of this kind
of ideal among other ideals of $A(\Sigma)$ , and the assertion (4) provides a good
criterion to distinguish this ideal from others in $\mathrm{C}^{*}$-theory.

Let $I_{F}$ be the intersection of all kernels of finite dimensional irreducible
representations and let $I_{\infty}$ be that of all infinite dimensional irreducible rep-
resentations. We have then the following results as the first step of our
discussions about $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$-Kernels for those elementary sets attached to the dy-
namical system.

Theorem 3.3 (1) $I_{F}=Ker(Per(\sigma))$ ,
(2) $I_{\infty}=Ker(Aper(\sigma))$ .

The assertion (1) looks rather reasonable because every finite dimensional
irreducible representation arises from the one induced by a periodic point $\mathrm{y}$
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so that the kernel has the form of $P(\overline{y}, \lambda)$ . We emphasize however that since
we impose no countability condition for the space $X$ the second assertion
(that depends on Proposition 2.2) is not so trivial.

An advantage of this type of formulation together with forthcoming re-
sults of $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$-Kernels is at the point that we can see by this theorem the
(approximate) sizes of Per $(\sigma)$ and Aper $(a)$ as algebraic invariants (for in-
stance density of them). As of now, we are far from final conclusion of general
isomorphism theorem. In fact, except for the torus $T$ , we know only a little
thing about the relation of two homeomorphisms $\sigma$ and $\tau$ even in the case $T^{2}$

when their corresponding homeomorphism $\mathrm{C}^{*}$-algebras are isomorphic each
other. Thus it is important to know what items of dynamical systems are
algebraic invariants.

Now recall here that the case $I_{F}=0$ is known to be as $A(\Sigma)$ being a
residually finite dimensional $\mathrm{C}^{*}$-algebra (a nice class within quasidiagonal
$\mathrm{C}^{*}$-algebras), whereas topological freeness of the system $\Sigma$ reflects in an
algebraic way as the case $I_{\infty}=0$ . Hence we see that topological freeness is
an algebraic invariance. Note that the Bernoulli shifts provide both examples
that $I_{F}=0$ and $I_{\infty}=0$ as topologically transitive dynamical systems.

A $\mathrm{C}^{*}$-algebra A is called a CCR or liminal algebra if the image of every
irreducible representation consists of compact operators. A piling $\mathrm{C}^{*}$-algebra
A of CCR algebras is called a GCR or postliminal algebra, which is charac-
terized as a $\mathrm{C}^{*}$-algebra of type 1. Equivalently, $A$ is of type 1 if the image of
every irreducible representation contains the algebra of compact operators.
We recall here that any $\mathrm{C}^{*}$-algebra $A$ contains the largest ideal $K$ of type
1 such that the quotient algebra by $K$ does not have no nonzero ideal of
type 1. It is also known that $A$ contains the largest CCR ideal L. Denote
the largest ideal of type 1 and the largest CCR ideal of $A(\Sigma)$ by $K(\sigma)$ and
$L(\sigma)$ respectively. In the following we shall determine the structure of these
ideals in terms of dynamical systems. We emphasize here that since the work
by Effros and Hahn there are many liteletures to discuss when those trans-
formation group $\mathrm{C}^{*}$-algebras become GCR or CCR algebras in the broad
contexts, and most people have assumed now tthat this is an already solved
old problem, but there are no work except for the author’s joint work [3] and
the result here for the estimation of the size of $K(\sigma)$ and $L(\sigma)$ to describe
the topological backgrounds.

The following is a refined version of the result in [3]. We regret to have
to state the result with the separability assumption as in the comming char-
acterization of the ideal $L(a)$ . Note first both ideals $K(\sigma)$ and $L(\sigma)$ satisfy
the condition (4) of Theorem 3.2, so that Kernels of their Hulls come back
to the original ideals.
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Theorem 3.4 Hull $(K(\sigma))$ contains the difference $c(\sigma)\backslash Per(a)$ .
When $X$ is metrizable we have

Hull $(K(a))=\overline{c(\sigma)\backslash Per(\sigma)}$.

Hence,
$K(\sigma)=Ker(\overline{c(\sigma)\backslash Per(\sigma)})$

Thus, when $X$ is metrizable we can immediately tell how is the structure
of $A(\Sigma)$ , that is, how it is near to the algebra of type 1 or with no type 1
portion (antiliminal) once a dynamical system is given. In fact ,it is of type
1 if and only if there are no proper recurrent points and so on.

A key fact for this result is the following

Proposition 3.5 Let $\tilde{\pi}=\pi\cross u$ be an iweducible representation of $A(\Sigma)$

on $H$ , then $\tilde{\pi}(A(\Sigma))$ contains the algebra of compact operators if and only if
$X_{\pi}=\overline{O(x_{0})}$ for an isolated point $x_{0}$ not belonging to the set $c(\sigma)\backslash Per(\sigma)$ .

Here when $\tilde{\pi}$ is irreducible the induced dynamical system $\Sigma_{\pi}$ becomes
topologically transitive, hence if the space is metrizable there exists a point
in $X_{\pi}$ with dense orbit. Thus we can find a candidate point in the above
proposition, but as we have mentioned before we can not make use of this
advantage for nonseparable topologically transitive dynamical systems In
contrast with this situation, we notice that in the above proposition the
representing space $H$ becomes always separable.

Next, we consider the following property $(^{*})$ of orbits with respect to a
closed invariant set $S$ in $X$ .

$(*)$ For every point $x$ in $X\backslash S$ the boundary set $\partial O(x)=\overline{O(x)}\backslash O(x)$

is contained in $S$ .
Note that the above definition allows some periodic points outside of $S$

with the property $(^{*})$ . We can characterize this kind of a subset $S$ . Namely,

Proposition 3.6 If $Ker(S)$ is a $CCR$ ideal, then $S$ satisfies (’). The $conarrow$

verse holds if $X$ is metrizable.

A typical closed invariant set with this property is the nonwandering set
$\Omega(\sigma)$ . Hence $Ker(\Omega(\sigma))$ is a CCR ideal if $X$ is metrizable. This fact as
well as the fact for $K(\sigma)$ shows that in spite of the present stage of the the-
ory of $\mathrm{C}^{*}$-algebras centering around (purely) infinite $\mathrm{C}^{*}$-algebras so far the
interplay between topological dynamics and $\mathrm{C}^{*}$-theory is concerned Kernel
ideals corresponding to important elementary sets of dynamical systems be-
long necessarily to those old classes of type 1 and CCR algebras.Moreover,
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we further recall the remark after Theorem 3.2 that besides the above situ-
ation we often meet the cases where their quotient algebras have again the
structure of homeomorphism algebras.

Now with these things in mind we shall determine the structure of the
ideal $L(\sigma)$ . Put

$S_{0}=\overline{\bigcup_{x\not\in c(\sigma)}\partial O(x)}\cup\overline{c(\sigma)\backslash Per(\sigma)}$
.

We have then

Theorem 3.7 Hull $(L(\sigma))$ contains the set $S_{0}$ .
When $X$ is metrizable, the equality holds, that is,

Hull
$(L(a))= \bigcup_{x\not\in \mathrm{c}(\sigma)}\partial O(x)\cup\overline{c(\sigma)\backslash Per(\sigma)}$

.

Hence,

$L(a)= \bigcup_{x\not\in c(\sigma)}\partial O(x)\cap K(a)$
.

As in the case of the ideal $K(\sigma)$ , we meet here the same difficulty of countabil-
ity assumption, which is concerned with the equivalency between topological
transitivity and the dense orbit property in metrizable case.

As we have noticed above, Hull $(L(\sigma))$ may contain some periodic points
besides the set of proper recurrent points. On the other hand.the difference
between $\Omega(a)$ and Hull $(L(\sigma))$ becomes more clear if we consider the extreme
case where $X$ only consists of periodic points (such as the case of rational ro-
tations). In fact, in this case $\Omega(\sigma)=X$ whereas Hull $(L(\sigma))$ becomes empty.
It should be further noticed here that in spite of the countability restriction
in the above theorem the topological condition when $A(\Sigma)$ becomes CCR
algebra holds without such restriction.

Theorem 3.8 The algebra $A(\Sigma)$ becomes $CCR$ if and only if $X$ consists of
only periodic points.

Now we come again to the nonwandering set $\Omega(a)$ . We note first that con-
trary to other elementary sets if we consider the nonwandering set for the
retricted dynamical system to $\Omega(\sigma)$ it usually shrinks. Moreover, this steps
will continue and when $X$ is metrizable it is known that these shrinking steps
end at the Birkhoff center $\overline{c(a)}$ . Right now we do not know whether this is
also true in general.
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Thus, through the following discussions we assume on that $X$ is metriz-
able. To be precise then, write $\Omega_{0}=X$ and $\Omega_{1}=\Omega(a)$ . In this way we obtain
a decreasing series of closed invariant sets $\{\Omega_{\alpha}\}$ indexed by ordinal numbers
$\alpha(0\leq\alpha\leq\gamma)$ for a countable ordinal number $\gamma$ having the properties that

$\Omega_{\alpha+1}=\Omega(\sigma|\Omega_{\alpha})$

and if $\alpha$ is a limit ordinal number

$\Omega_{\alpha}=\bigcap_{\lambda<\alpha}\Omega_{\lambda}$
.

The steps end at $\gamma$ as $\Omega_{\gamma+1}=\Omega_{\gamma}=\overline{c(\sigma)}$ , and such $\gamma$ is called the depth of
the center written as $d(\sigma)=\gamma$ .

Now consider the ideal

$J(a)=Ker(\overline{c(\sigma)})=K(\sigma)\cap I_{F}$ .

It is the largest ideal of type 1 with no finite dimensional irreducible repre-
sentations. Write $Ker(\Omega_{\alpha})$ as $Ker_{\alpha}(\sigma)$ . We see then the net $\{Ker_{\alpha}(\sigma)|$ $0\leq$

a $\leq\gamma$} is just a composition series of the type 1 ideal $J(a)$ . Namely, they
are increasing net of the ideals of $J(\sigma)$ such that

$Ker_{\alpha}( \sigma)=\bigcup_{\lambda<\alpha}Ker_{\lambda}(a)$

if a is a limit ordinal. These are in fact refined versions of the author’s pre-
vious results in [8], and we have a characterization of this composition series
(cf. [8, Theorem 1]). A standard composition series $\{\mathrm{Z}_{\alpha}\}$ for a $\mathrm{C}^{*}$-algebra
$A$ of type 1 is that the quotient algebra $I_{\alpha+1}/I_{\alpha}$ is the largest CCR ideal of
$A/I_{\alpha}$ . Therefore, in this sense it is interesting to know whether $Ker(\Omega(\sigma))$

coincides with the ideal $L(a)$ (in general $S_{0}\subset\Omega(a)$ and $Ker(\Omega(\sigma))\subset L(\sigma)$

as a CCR ideal). We can see the case that $\Omega(\sigma)$ coincides with $S_{0}$ for the
so-called horse-shoe diffeomorphisms on $S^{2}$ . However, if we consider their
perturbations we meet also the case where $\Omega(\sigma)$ exactly contains $S_{0}$ , so that
the shrinking steps do not generally fit to the standard composition series
for $J(\sigma)$ (cf. Chap.6 of [1], particularly section 6 ibid). The author owes for
these observations to Dr.N.Sumi.

A composition series $\{I_{\alpha}\}$ may be sharpened in general further that
$I_{\alpha+1}/I_{\alpha}$ becomes a $\mathrm{C}^{*}$-algebra with continuous trace, and in our case we
can also give a characterization of such a composition series $\{Ker_{\alpha}(\sigma)\}$ of
$J(\sigma)$ in [8].
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As of now we do not know the $\mathrm{C}^{*}$-algebraic meaning of the gap from $\Omega(a)$

up to $R(a)$ . For the chain recurrent set $R(\sigma)$ and its gap from the space $X$ we
recall first Pimsner’s result [4]. We should notice here the highly nontrivial
fact that the chain recurrent set $R(a|R(\sigma))$ with respect to the restricted
dynamical system coincides with $R(\sigma).\mathrm{N}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{y}R(a)$ does not shrink as in
the case of $\Omega(a)$ .

Theorem (Pimsner) The following assertions are equivalent.
(a) $A(\Sigma)$ can be imbedded into an AF-algebra,
(b) $A(\Sigma)$ is quasidiagonal,
(c) $R(\sigma)=X$ .
Sharpenning this result as well as considering the gap from $R(\sigma)$ to $X$ we

finally obtain the following result.

Theorem 3.9 The ideal $Ker(R(\sigma))$ is the smallest ided among those ideals
for which their quotient algebras become quasidiagonal algebras.

In general for a $\mathrm{C}^{*}$-algebra $A$ and its ideal $I$ the obstruction when the quo-
tient algebra $A/I$ becomes quasidiagonal has been remaining mysterious. In
[10] we have clarified, to some extent, this situation at least for the homeo-
morphism $\mathrm{C}^{*}$-algebra $A(\Sigma)$ .
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