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Abstract

In this note we discuss the weak spectra of operators via weak*-continuous characters
on a given singly generated dual algebra of operators on Hilbert space. In particular, the
reeults $\mathrm{u}\mathrm{n}\mathrm{i}\theta$ some known examples, and is shown that for a certain class of such algebras,
the set of such characters is empty.

1. Introduction. This is based on the joint work with B. Chevreau, E. Ko, and C.
Pearcy ([7]) and was talked at the 2006 RIMS conference: Recent developments in theory of
linear operators and its applications, which was held at Kyoto University on October 11-13
in 2006.

Let $\mathcal{H}$ be a separable, infinite dimensional, complex Hilbert space, and let L(lt) denote
the algebra of all bounded $1_{\dot{\mathrm{i}}}\mathrm{e}\mathrm{a}x$ operators on $\mathcal{H}$ . If $T\in \mathcal{L}(\mathcal{H})$ we write, as usual, $\sigma(T),$ $\sigma_{p}(T)$ ,
and $\sigma_{\epsilon}(T)$ for the spectrum, point spectrum, and essential spectrum of $T$ , respectively, $r(T)$

for the spectral radius of $T$ , and $W(T)$ for the numerical range of $T$. We denote the kernel
and range of $T$, as usual, by $\mathrm{k}\mathrm{e}\mathrm{r}(T)$ and ran$(T)$ . We also denote by $\mathrm{D}$ the open unit disc
$\{\zeta:|\zeta|<1\}$ in the complex plane $\mathbb{C}$ , set $\mathrm{T}:=\partial \mathrm{D}$, and write $H^{\infty}(\mathrm{D})$ , as usual, for the Banach
algebra of bounded holomorphic functions on D. If $K\neq\emptyset$ is a compact set in $\mathbb{C}$ then the
(closed) convex hull of $K$ will be denoted by conh$(K)$ and the outer boundary of $K$ (i.e.,
$\partial(\mathbb{C}\backslash K))$ , by $\partial^{\infty}K$. The unbounded component of $\mathbb{C}\backslash K$ will be written as unbd$(\mathbb{C}\backslash K)$ . A
subalgebra $A$ of $L(\mathcal{H})$ that contai $\mathrm{s}1_{\mathcal{H}}$ and is closed in the weak* topology on $\mathcal{L}(\mathcal{H})$ is called
a dual algebra, and the dual algebra generated by a single operator $T$ in $\mathcal{L}(\mathcal{H})$ is denoted by
$A_{T}$ . It follows from general principles (cf., e.g., [3]) that if $A$ is a dual dgebra, then $A$ can
be identiEed with the dual space of the quotient space $Q_{A}=C_{1}(\mathcal{H})/\perp_{A},$ where $\perp A$ is the
preaamihilaator of $A$ in $C_{1}(\mathcal{H})$ , under the pairing ($T,$ $[L]\rangle=\mathrm{t}\mathrm{r}(TL),$ $T\in A,$ $[L]\in Q_{A}$ , where,
of course, $[L]$ is the coset in $Q_{A}$ containing the operator $L\in C_{1}(\mathcal{H})$ . In particular, if $x$ and $y$

are nonrero vectors in $\mathcal{H}$ , then the rank-one operator $x\otimes y$ , defined by $(x\otimes y)(u)=(u,y)x$ ,
$\mathrm{u}\in \mathcal{H}$ , belongs to $C_{1}(\mathcal{H})$ , so $[x\otimes y]$ denotes the image of $x\otimes y$ in the quotient space $Q_{A}$ .
For brevity we write $Q_{T}$ for the predual $Q_{A_{T}}$ . Recall that a weak*-continuous character on
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a dual algebra $A\subset \mathcal{L}(\mathcal{H})$ is by definition, a multiplicative linear functional $\varphi\in A^{*}$ that is
weak* continuous and satisfies $\varphi(1_{\mathcal{H}})=1$ .

The purpose of this note is to study the properties of the collection of weak* continuous
characters on a dual algebra $A_{T}$ . This enables $\mathrm{U}8$ to generalize some results of Cassier
(Theorem 2.1 e), g) and i) below), who has made a penetrating study of this topic [4], [5], [6]
in his study of uniform dual algebras, and to unify what, until now, have seemed to be some
disparate examples.

2. Some known results. If we denote the maximal ideal space of such a dual algebra
by ${\rm Max}(A_{T})$ , then obviously the set $C_{w}(A_{T})$ of weak* continuous characters on $A_{T}$ can be
identified with ${\rm Max}(A_{T})\cap Q\tau$ , which we call the weak* character space of $A\tau$ . As noted
above, $C_{w}(A\tau)$ may be empty, but it is easy to see that in any case, $C_{w}(A_{T})$ is a weakly
closed subset of $Q_{T}$ . Note that if $\varphi\in C_{w}(A\tau)$ , then $\varphi$ is completely determined by its
value $\varphi(T)=\lambda_{\varphi}$ . Thus there is a 1-1 mapping $\varphiarrow\varphi(T)=\lambda_{\varphi}$ of $C_{w}(A\tau)$ onto the set
$\sigma^{*}(T):=\{\lambda_{\varphi}\in \mathbb{C} : \varphi\in C_{w}(A\tau)\}$ , which was introduced by Cassier [4] and called the
weak spectrum of $T$ . Clearly turns $\sigma^{*}(T)$ into a complete metric space, even though, as is
seen below, $\sigma^{*}(T)$ need not be closed as a subvet of C. There are various relations known
between $\sigma^{*}(T)$ and $\sigma(T)$ , and to review some of these, we need a bit more notation. We
write $\mathcal{L}(A_{T})[\mathcal{L}(Q_{T})]$ for the algebra of all bounded linear operators on the Banach space $A_{T}$

$[Q_{T}],$ $M_{T}[m_{T}]$ for the operator in $\mathcal{L}(A_{T})[\mathcal{L}(Q_{T})]$ defined by $M_{T}(A)=AT(=TA),$ $A\in A\tau$ ,
[$m_{T}([L])=[L\eta(=[TL]), [L]\in Q\tau]$ , and $\sigma_{A_{T}}(T)=\{\varphi(T) : \varphi\in{\rm Max}(A_{T})\}\supset\sigma(T)$ for
the spectrum of $T$ as an element of the unital Banach algebra $A_{T}$ . Recall from general
principles that $\partial\sigma_{A_{T}}(T)\subset\partial\sigma(T)$ , and thus that $\sigma_{A_{T}}(T)$ consists of $\sigma(T)$ together with some
of its holes (i.e., bounded components of $\mathbb{C}\backslash \sigma(T)$ ). Note also that for every $0\neq$ A $\in \mathbb{C}$ ,
$A\tau=A_{T-\lambda}=A_{\lambda T}$ , so $C_{w}(A\tau)=C_{w}(A_{T-\lambda})=C_{w}(A_{\lambda T})$ . In other words, $C_{w}(A_{T})$ does not
depend on which particular generator for $A_{T}$ is singled out, but $\sigma^{*}(T)$ is related to $\sigma^{\mathrm{r}}(T-\lambda)$

and $\sigma^{*}(\lambda T)$ as in d) below.
Parts $\mathrm{a}$) $- \mathrm{d}$) of the following theorem are essentially elementary and parts $\mathrm{e}$) $- \mathrm{i}$) were proved

by Cassier in the articles cited above.

Theorem 2.1. For every operator $T$ in $L(\mathcal{H})$ , the following are valid:
a) $\sigma_{p}(T)\cup(\sigma_{p}(T^{*}))^{*}\subset\sigma^{*}(T)$ ,
b) $\lambda\in\sigma^{*}(T)\Leftrightarrow\{(T-\lambda 1_{\mathcal{H}})A_{T}\}^{-\mathrm{W}^{*}}(=\{(M\tau-\lambda 1_{A_{T}})A_{T}\}^{-\mathrm{W}^{*}})\neq A_{T}$

$\Leftrightarrow \mathrm{k}\mathrm{e}\mathrm{r}(m_{T}-\lambda 1_{Q_{\mathrm{I}}},)\neq 0$ ,
c) for every invertible $S$ in $\mathcal{L}(\mathcal{H}),$ $\sigma^{*}(T)=\sigma^{*}(STS^{-1})$ ,
d) for every $0\neq\lambda\in \mathbb{C},$ $\sigma^{*}(T-\lambda)=\sigma^{*}(T)-\lambda$ and $\sigma^{*}(\lambda T)=\lambda\sigma^{*}(T)$ ,
e) $\sigma^{l}(T)\cap\{\zeta\in \mathbb{C}:|\zeta|=||T||\}\subset\sigma_{p}(T)$ ,
f) $\partial\sigma^{\mathrm{r}}(T)\subset\sigma(T)$, which implies that $\sigma^{*}(T)$ is a subset of the union of $\sigma(T)$ with its

holes ( $i.e.$ , the polynomial hull of $\sigma(T)$ ).
g) if $\lambda\in \mathbb{C}\backslash \sigma^{*}(T)$ , then either $T-\lambda$ is not a $semiI$} $edholm$ operator or A $\not\in\sigma_{A_{T}}(T)$ ,
h) if $J$ is a simple closed Jordan curve in $\mathbb{C}$ and Int$(J)$ denotes the interior domain of

C7 given by the Jordan curve theorem, then $J\subset\sigma^{*}(T)^{\mathrm{o}}\Rightarrow Int(J)\subset\sigma^{*}(T)^{\mathrm{o}}$, and
i) if $A_{T}$ is a uniform dual algebra ( $i.e.$ , the Gelfand map of $A\tau$ into the space $C({\rm Max}(A_{T}))$

of continuous junctions on ${\rm Max}(A_{T})$ is an isometry), then $\sigma(T)\cup\sigma^{*}(T)=\sigma_{A_{T}}(T)$ .
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3. Some new results. Recall that a subspace $\mathcal{M}\subset \mathcal{H}$ is called a semi-invariant
subspace for $T\in \mathcal{L}(\mathcal{H})$ if there exist invariant subspaces $N_{1}$ and $N_{2}$ for $T$ with $N_{2}\subset N_{1}$

such that $\mathcal{M}=N_{1}\mathrm{e}N_{2}$ . Relative to the decomposition $\mathcal{H}=N_{2}\oplus \mathcal{M}\oplus N_{1}^{\perp},$ $T_{A4}\in \mathcal{L}(\mathcal{M})$ is
defined by $T_{\Lambda 4^{X}}=P_{\mathcal{M}}Tx,$ $x\in \mathcal{M}$ ,(with $P_{\mathcal{M}}$ the orthogonal projection of $\mathcal{H}$ onto $\mathcal{M}$). The
map $Aarrow A_{\mathcal{M}}$ defined on $A_{T}$ is clearly a weak* continuous algebra homomorphism of $A\tau$

into $A\tau_{\mathcal{M}}$ . Thus we obtain, by composing the appropriate maps, the fouoning.

Proposition 3.1. If $T\in \mathcal{L}(\mathcal{H})$ and $T_{\mathcal{M}}$ is the compression of $T$ to a semi-invariant
subspace $\mathcal{M}$ , then $\sigma^{*}(T_{\mathcal{M}})\subset\sigma^{*}(T)$ .

Corollary 3.2. If $T_{1}\oplus T_{2}\in \mathcal{L}(\mathcal{H}\oplus \mathcal{H})$ , then $\sigma^{*}(T_{1})\cup\sigma^{*}(T_{2})\subset\sigma^{*}(T_{1}\oplus T_{2})$ , but equality
need not hold. However, if $A_{T_{1}\oplus T_{2}}=A\tau_{1}\oplus A_{T_{2}}$ which happens (at least) whenever $\sigma(T_{2})\subset$

$\mathrm{u}\mathrm{n}\mathrm{b}\mathrm{d}(\mathbb{C}\backslash \sigma(T_{1}))$ (or, equivalently, $\sigma(T_{1})\subset \mathrm{u}\mathrm{n}\mathrm{b}\mathrm{d}(\mathbb{C}\backslash \sigma(T_{2}))$ , then $\sigma^{*}(T_{1}\oplus T_{2})=\sigma^{*}(T_{1})\cup\sigma^{*}(T_{2})$.
The following coroUary of Proposition 3.1 has been known for some time.

Corollary 3.3. For $eve\eta$ absolutely continuous contraction $T\in \mathcal{L}(\mathcal{H})$ such that the
$Sz.arrow Nagy$-Foiag fimctional calculus $H^{\infty}(\mathrm{D})arrow A_{T}$ is an isometry, $\sigma^{*}(T)=\mathrm{D}$ .

The $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\dot{\mathrm{i}}\mathrm{g}$ also seems to be new.

Theorem 3.4. Suppose $T\in \mathcal{L}(\mathcal{H})$ . Then for every $\lambda\in \mathbb{C}\backslash \sigma_{\iota}(T)$ (the complement of the
left spectrum of $T$), the following are equivalent:

a) $\lambda\in\sigma^{*}(T)$ ,
b) $m_{T}-\lambda(=m_{T}-\lambda 1q_{T})$ is a Fredholm operator in $\mathcal{L}(Q_{T})$ ?vith index 1,

c) $M_{T}-\lambda(=M_{T}-\lambda 1_{A_{\mathrm{T}}})$ is a $f\mathrm{V}edholm$ operator in $\mathcal{L}(A_{T})$ with index $-1$ .
The following corollary generalizes Theorem 2.1 g) and i).

Corollary 3.5. For every $T$ in $\mathcal{L}(\mathcal{H}),$ $\sigma_{A_{T}}(T)=\sigma\iota(T)\cup\sigma^{*}(T)$ .
The following contains another new idea.

Theorem 3.6. Suppose $T\in L(\mathcal{H}),$ $\lambda_{0}\in \mathbb{C}\backslash (\sigma_{p}(T)\cup\sigma_{p}(T")’)$, and there exist a number
$K>0$ and a sequence $\{\lambda_{n}\}_{n\in \mathrm{N}}$ lying in unbd $(\mathbb{C}\backslash \sigma(T))$ such that $\lambda_{n}arrow\lambda_{0}$ and II $(T-\lambda_{n})^{-1}$ II $\leq$

$K/|\lambda_{n}-\lambda_{0}|,$ $n\in \mathrm{N}$ . Then $\lambda_{0}\not\in\sigma^{*}(T)$ .
The $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ is a consequence of Theorem 3.6 and generahzae Theorem 2.1 e).

Theorem 3.7. For every $T$ in $\mathcal{L}(\mathcal{H})$ , the set $\partial(W(T))\backslash (\sigma_{\mathrm{p}}(T)\cup\sigma_{p}(T")’)$ does not
intersect $\sigma^{*}(T)$ .

Corollary 3.8. Suppose $T$ is a quasinilpotent quasiaffinity in $\mathcal{L}(\mathcal{H})$ and some closed
half-plane $H$ determined by a line through the $\mathit{0}$rigin contains the numertical range $W(T)$ of
T. Then $C_{w}(A\tau)=\sigma^{*}(T)=\emptyset$ .

Proposition 3.9. Suppose $T\in \mathcal{L}(\mathcal{H})$ is an absolutely continuous contraction, $\varphi\in$

$C_{w}(A_{T})$ , and $\lambda_{\varphi}=\varphi(T)$ . Then $\lambda_{\varphi}\in \mathrm{D}$ and for every $f\in H^{\infty}(\mathrm{D}),$ $\varphi(f(T))=f(\lambda_{\varphi})$ . (Here
$f(T)$ is given by the $Sz$.-Nagy-Foia5 functional calculus.)

Corollary 3.10. Let $T$ be any $C_{0}$ -contraction in $L(\mathcal{H})$ such that the minimal function
$m$ of $T$ does not vanish on $\mathrm{D}$ (for definitions and examples, see [1] or [2]). Then $C_{w}(A\tau)=$

$\sigma^{*}(T)=\emptyset$ .
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For completeness, we include here the following known result.

Proposition 3.11 (Cassier). Suppose $N$ is a normal operator in L(ltf) without point
spectrum such that $N^{*}\in A_{N}$ (which happens, of course, if $\sigma(N)^{\mathrm{o}}=\emptyset$ and $\sigma(N)$ doesn’t
separate the plane). Then $C_{w}(A_{N})=\sigma^{*}(N)=\emptyset$.

Finally, we close this note with some open problems. The one most pertinent to the
invariant subspace problem is the following.

Problem 3.12. If $T\in L(\mathcal{H})$ and $\sigma(T)$ contains a nonempty open set, must $C_{w}(A\tau)$ be
nonvoid?

Problem 3.13. If $T$ is a completely nonunitary contraction in $\mathcal{L}(\mathcal{H})$ and $\sigma(T)\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}\mathrm{S}$

a nonempty open set, must every $A\in A\tau$ such that $A\neq\lambda 1_{\mathcal{H}}$ satisfy $\sigma(A)^{\mathrm{o}}\neq\emptyset$? (In this
connection, using a transfinite induction argument, one sees that it is enough to show that
every $A\in A\tau$ which is a weak* limit of a sequence $\{p_{n}(T)\}_{n\in \mathrm{N}}$ of polynomials has this
property.)

Problem 3.14. For an operator $T$ in $L(\mathcal{H})$ with connected sPectrum and with $\sigma_{p}(T)\cup$

$\sigma_{\mathrm{p}}(T^{*})^{*}=\emptyset$ , is $\sigma^{*}(T)$ always either an open set or a closed set? Can $\sigma^{*}(T)$ of such a $T$ be a
circle? (With respect to the first question, we note that without the hypothesis that $\sigma(T)$ is
connected, the answer is obviously no by Corollary 3.2, Corollary 3.3.)
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