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1 The Rayleigh-Bénard problem

Consider a plane horizontal layer (see Figure 1) of an incompressible viscous fluid
heated from the bottom. At the lower boundary: z = 0 the layer of fluid is maintained

at temperature T + 6T and the temperature of the upper boundary (z = h) is T

Figure 1. Model of fluid layer

As well known, under the vanishing assumption in y-direction, the two-dimensional
(z-z) heat convection model can be described as the following Oberbeck-Boussinesq
approximations {1, 3J:

Uy + uUy + wu, = pz+ PAu,
wy + uWy +ww, = p,—- PRO+PAw, (1)
Uz +w, = 0,
O +w+ub, +wh, = A6.

Here, u and w are velocity in z and z, respectively, p, 8 are pressure and temper-
ature field reprensating deviation from the linear profile, *¢:=8/9¢(§ = z, 2,t), A =
0?2/0z% + 6%/022, R is Rayleigh number and P is Prandtl number.
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In previous results[8, 9], the authors considered the Rayleigh-Bénard problem (1)
and proposed an approach to prove the exsistence of the steady-state solutions based
on the infinite dimensional fixed-point theorem using Newton-like operator with the
spectral approximation and the constructive error estimates. For the given Prandtl
and Rayleigh numbers, several exact non-trivial solutions have been verified.

This paper will present a computer assisted proof of the existence for a symmetry-
breaking bifurcation point which is an important information to clarify the global

bifurcation structure.

2 Fixed-point formulation of problem

This section describes on a basic concept of our numerical verification method to
prove the exsistence of the steady-state solutions. Since we only consider the the
steady-state solutions, u;, w; and 6; vanish in (1). And also assume that all fluid

motion is confined to the rectangular region

Q:={0<z<21/a, 0<z< 7}

for a given wave number a > 0.

Let us impose periodic boundary condition (period 27w/a) in the horizontal direc-
tion, stress-free boundary conditions (u, = w = 0) for the velocity field and Dirichlet
boundary conditions (§ = 0) for the temperature field on the surfaces z = 0, 7, respec-

tively. Furthermore, we assume the following evenness and oddness conditions [2]:

u(z, 2) = —u(-2,2), w(z,2)=w(-z,2), 6(z,z)=6(-z,2z).

We use the stream function ¥ satisfying

u=-¥,, w=Yy,

so that u; + w, = 0. By some simple calculations in (1) with setting 8 := VPR,

we obtain

PAW = J/PRO,-T,AV, + ¥, AV,,
: (2)
-A8 = —V/PRVY,+¥,0,-7,0,.

From the boundary conditions, the functions ¥ and © can be assumed to have the

following double Fourier series:

¥ = i i Apmn sin(amz) sin(nz), ©= i i Bpmn cos(amz) sin(nz).  (3)

m=1n=1 m=0n=1
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We now define the following function spaces for integers k > 0:

{Z Z Amnsin(amz)sin(nz) | Amn € R, E E((am)% +n2k)A2

m=1n=1 m=1n=1

= {i i B cos(amz) sin(nz) | By, € R, Z Z ((@m)?* +n?*)B2 < oo}

m=0n=1 m=0n=1

In order to get the enclosure of the exact solutions for the problem (2), we need
some appropriate finite dimensional subspaces. For M;, N1, M3 > 1 and N3 > 0, we
set N := (Mj, N1, M3, N3) and define the finite dimensional approximate subspaces
by

M: Ny |
S(l) = {\IIN = Z Zﬁmn sin(amz) sin(nz) | Amn € R} )

m=1n=1

Mz N,
51(3) = { Z Zan cos(amz) sin(nz) | Bmn € R}

m=0n=1

SN = SI(\}) % SI(\?)'

Let denote an approximate solution of (2) by iy := (¥x,6x) € Sv. We now set
fi(¥,0) = VPRO, -V, AV, +¥T, AT,,
f2(\Ilae) = —-VPRVY,+V¥,0, —wxez,

where X X
U="Uy+uwD, 0 =06nN+uw®.

Then the problem (2) is rewritten as the following system of equations with respect
to (w®,w@) € X4 x Y? satisfying

PA2WD = fi(Iy +uw®, 6y +w®) - PAZY,

" - N 4
—aw® = fy(ly +w®, 6y + w®) + ABy, @

which is so-called a residual form. Setting

w = (w(l),w(2)),
hi(w) = fi(¥y+w®, 6y +uw®)-PA2Ty,
ho(w) = fo(Tn +w®, 65 +w?) 4+ Aby,

h(’U)) = (hl(w)vh2(w))a
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by virtue of the Sobolev embbeding theorem and the definition of f; and f3, h is a
bounded continuous map from X3 x Y! to X x Y. Moreover, it is easily shown that
for all (g1,92) € X% x YO, the linear problem:
A2@ = G0,
5 _ ()
-46 = g

has a unique solution (¥,8) € X* x Y2. We denote this mapping by ¥ = (A2)~1g,
and © = (—A)~1g,, then the operator:

K= (PHAY) ™, (~A) ™) : XOx Y0 — X3 x V!

is a compact map because of the compactness of the imbedding X* — X% and
Y? < Y and the boundedness of (A%)~1: X% — X4 (—~A)~!:Y? — Y2, Thus, (4)
is rewritten by a fixed-point equation: ‘

w= Fuw (6)

for the compact operator F := K o h on X3 x Y. Therefore, by the Schauder fixed-
point theorem, if we find a nonempty, closed, bounded and convex set W ¢ X3 x Y1,

satisfying
FWcw (7

then there exists a solution of (6) in W. The set W in (7) is referred as a candidate
set of solutions.

The candidate set W is usually constructed by computer as a direct sum of the
finite dimensional subset

WI\/C.S’I(\,I)x.E”I(\})CX:’xY1

and its orthogonal complement W5 in the space X2 x Y!. By using an appropriate
projection Py : X3 xY! — X3 x Y3, the decomposed form Py FW C Wy and (I —
Pn)FW C Wi are numerically verified instead of (7), which implies the verification
of a sufficient condition for (7). Here, the former condition is verified by direct
computation in the computer, and the latter criterion can be proved by the effective
use of the constructive error estimates for the projection. In the present case, the
projection Py can be taken as the finite trunction operator of solutions to (5)[8].
Furthermore, in general, a kind of Newton-type formulation is utilized so that the

concerning operator has the retraction property in a neighborhood of the solution(see,
e.g., [6, 8] for details).
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By using the Newton-like procedure [6], we succeeded to verify various kinds of
bifurcating solutions as shown in Figure 2. Here, R¢ implies the critical Rayleigh
number which equals 6.75. The vertical axis stands for the absolute value of the
coefficient of the approximate solution for ©. And each dot in Figure 2 means that

the existence of an exact solution corresponding to the point was numerically verified.
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Figure 2. Verified bifurcating solutions

3 Existence of bifurcation point

From the observation of Figure 2, particularly the behaviour around the part en-
closed by the circle, we expected that there should exists a secondary bifurcation
point. Namely, near “the bifurcation-like point” we found the following two different

kinds of approximate solutions. For approximate solutions of the form

M, N Ms N
Uy = z:l Z:l Apmn sin(amz) sin(nz), On = ZOZ Bumn cos(amz) sin(nz),
m=ln= m=0n=1

we have following two solutions satisfying

Amn =Bmn=0, m=13,57,...with R =32

and
Amn #0, Bpn #0, m=1,3,57,...with R = 33.

These approximate results strongly suggest that there should exist a symmetry-
breaking bifurcation point between 32 < R < 33.
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In order to obtain the enclosure of the bifurcation point, we set and an operator
S:X"xY%— X%x YO by

Su=S8(¥,0) =(9Y,5,0)
= (¥(z +7/a,z),8(zx+7/a,z)),

then using this “symmetric” operator S, X* and Y'* can be decomposed as

XtF=XfoXt, YFE=YFov}

where
XF={Vex*|50="¥}, X:i={UeX*|s5U=-¥)}

Y/={8eY*|%0=0}, Yi={0ev*|S0=-6)

Also, setting
Z=X3xY!, G:=I-F

SGw = GSw holds and Z is decomposed as

=292,

where Z; = {w € Z; Sw = w} and Z, = {w € Z;Sw = ~w}.
Next, considering R as a variable, let G be a map on Z, x Z, x R defined by
G(w,R) )

G(w,v,R) := ( D,,Glw, Rjv
L(v) - 1.

(8)

Here £ is an appropriate functional on Z,. Then the following Lemma presented by
Kawanago [4] can be applied.

Lemma 1 (wo,Ro) € Z, x R is a symmetry-breaking bifurcation point of G(w, R) =
0 if

1. Extended system G(w,v,R) = 0 has an isolated solution (wo,vo,Ro) € Z, X
Z, xR.
2. DyGlwo, Ro]lxsxyz : X$ x Y2 — X2 x Y2 is bijective.

First, we tried to prove that the extended system G(w,v,R) = 0 has an isolated
solution (wp,vp,Ro) € Zs X Z, x R by a computer-assisted approach using our ver-
ification principle in the section 2. The equation G(w,v,R) = 0 means the problem

to find out
V,0,E,T,Rl€Z,xZ, xR



satisfying
PA%Y — V/PRO, — J(V,AT)
~-A® +VPRY, + J(¥,0)
PA?E —VPRY, — J(¥,AE) - J(E,AVD)
~AY +VPRE, + J(¥,T) + J(E,6)
Lv)-1

(9)

-

[
coocoo

o

Setting the functional £ by

- = — 2a ) 2a )
Lw)=(8,Z0)2+ (Y, Yo)2, Zp:= - sin(az)sin(z), Yo := 2 cos(az) sin(z),
denoting a fixed approximate solution of (9) by [¥n,On,En, T~, Ry] and using the
residual variables defined by

¥="Uy+ud, 8=0N+u?, E==y+u®, T=Ty+u®, R=Ry+u®,

equation (9) can be rewritten as

PA%WD = /PRy +u®)(Bn +u@), + J(Tn +u®, A(Tx +uD)) - PA2DY,
-Au? —VP(En +u®) (Ty +u®)), — J(Tn +uV), B5 +u?) + ABy,

PAZB) = /PRy +u®) (Ty +u@®), + J(Tx +u®, AEN +u®))
+J(EN + U(S), A(\I’N + u(l))) - PA2EN,

-Au® = — /PRy +u®)(EN+u®), — J(Tx +u®, Tn +u®)
—-J(EN + u(3), On + u(z)) + ATy,
u® = —(ENn +u(3),Eo)L2—(TN+u(4),To)L2+1+u(5).

(10)

We now define the nonlinear function of u := (u(}),u®, 43 4@ y4)) by

hi(u) := \/P(Ry + u®) (On + u®), + J(Tn + vV, A(Tx + uV)) = PAZDy,
ha(u) := —/P(RNn +u®) (T +uM), = J(Tx +uP,0n +u?) + ABy,
ha(u) := \/P(Ry +u®) (T + u®), + J(Uy +uD, AEN + 1))

+JEN +uB® ATy +uM))) - PA2E,

h4(u) = —\/P(RN—{—'U,(E’)) (EN + u(3))x — J(\IIN + u(l)’ Ty + u(4))

- JEN +u®, 0y +u®) + ATy,
hs(u) i= —(Ex +u® g )2 — (Tw +u®, To)r2 + B+ u®,

and set h(u) = (hl (u)v h2(u): hs(U), h4(ll), h5(u))
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Furthermore, defining
K:= P 1aY) L, (-A)"L P H(AY) L (-A)L ),
H := Kh,
the equation (10) can be represented as the fixed equation:

u=Hu

on Z, x Z, x R. We applied a numerical verification method based on Banach’s
fixed-point theorem[7, 10] incorporated with the interval arithmetic on Sun ONE
Studio 7 Compiler Collection Fortran 95 on FUJITSU PRIMEPOWERS50 (CPU:
SPARC64V 1.35GHz, OS: Solaris8), and proved that there exists an isolated solution
of G(wo, vo, Ro) = 0. Here

Ro € 32.04265510708193 + [—2.910, 2.910] x 1071,

Figure 5-8 shows the shape of approximate solutions for extended system
G(w,v,R) = 0 such that

wz(\I’N,eN), ’U%(EN,TN).
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Figure 6. Shape of Oy and contour field of
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Therefore, from the bifurcation theorem, it implies that there exists an actual bi-
furcation point in this interval if D,,G[wo, Ro) is invertible on Z;.
On the other hand, from the Fredholm alternative, the invertibility of D,,G[wo, Ro]
is assured when ‘

PA%E — /PRo X, — J(¥y, AE) — J(E,A¥y) = O,
~AY +VPRoE; + J(¥, X))+ J(E,00) =

has a unique trivial solution [E, Y] = [0,0] in Z,, where wg = [¥o, B¢]. We actually
succeeded in the verification of the invertibility by using a method similar to that an
eigenvalue excluding technique [5]. Thus, it was numerically proved that there exists

a symmetry-breaking bifurcation point in the above interval.
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