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1 Introduction

This note is a survey of our recent researches on the action of the quasiconformal
mapping class group on the Teichmiiller space and on the asymptotic Teichmiil-
ler space.

We say that two quasiconformal homeomorphisms f; and f; on R are equiv-
alent if there exists a conformal homeomorphism A : fi(R) — f2(R) such that
f3Yoho f; is homotopic to the identity. All homotopies are consider to be
relative to the ideal boundary at infinity. The Teichmiiller space T(R) of a
Riemann surface R is the set of all equivalence classes [f] of quasiconformal
homeomorphisms f on R. A distance between two points [f;] and [f2] in T'(R)
is defined by d([f1], {f2]) = (1/2)log K(f), where f is an extremal quasiconfor-
mal homeomorphism in the sense that its maximal dilatation K(f) is minimal
in the homotopy class of f20 f;"1. Then d is a complete distance on T'(R) which
is called the Teichmiiller distance.

We say that a quasiconformal homeomorphism f on R is asymptotically con-
formal if for every € > 0, there exists a compact subset V' of R such that the
maximal dilatation K(f|g—v) of the restriction of f to R~V is less than 1 +e.
We say that two quasiconformal homeomorphisms f; and f; on R are asymp-
totically equivalent if there exists an asymptotically conformal homeomorphism
h : fi(R) — f2(R) such that f;! o ho f; is homotopic to the identity. The
asymptotic Teichmiiller space AT(R) of a Riemann surface R is the set of all
asymptotic equivalence classes [[f]] of quasiconformal homeomorphisms f on
R. Since a conformal homeomorphism is asymptotically conformal, there is a
natural projection 7 : T(R) — AT(R) that maps each Teichmiiller equivalence
class [f] € T(R) to the asymptotic Teichmiiller equivalence class [[f]] € AT(R).
For a quasiconformal homeomorphism f of R, the boundary dilatation of f is
defined by H*(f) = inf K(f|gr-v), where the infimum is taken over all compact
subsets V' of R. Furthermore, for a Teichmiiller equivalence class [f] € T(R),
the boundary dilatation of [f] is defined by H([f]) = inf H*(g), where the in-
fimum is taken over all elements g € [f]. A distance between two points [[fi]]
and [[fo]] in AT(R) is defined by da([[£]], [[fa]]) = (1/2)log H([fa0 f{""]), where
[f2 0 f{'] is a Teichmiiller equivalence class of fz o f{'! in T(f1(R)). Then da



is a complete distance on AT'(R), which is called the asymptotic Teichmiiller
distance. For every point [[f]] € AT(R), there exists an asymptotically extremal
element fy € [[f]] in the sense that H([f]) = H*(fo).

The gquasiconformal mapping class is the homotopy equivalence class [g] of
quasiconformal automorphisms g of a Riemann surface, and the quasiconformal
mapping class group MCG(R) of R is the group of all quasiconformal mapping
classes on R. Every element [g] € MCG(R) induces a biholomorphic automor-
phism [g]. of T(R) by [f] — [f o g~!] and a biholomorphic automorphism [g] .«
of AT(R) by [[f]] — [[fog7!]])- Let Aut(T'(R)) and Aut(AT(R)) be the groups
of all biholomorphic automorphisms of T'(R) and AT (R) respectively. Then we
have a homomorphism ‘

L : MCG(R) — Aut(T'(R))
given by [g] — [g]« and a homomorphism
ta : MCG(R) — Aut(AT(R))
given by [g] — [g]«s. We define the Teichmiiller modular group
Mod(R) := «(MCG(R))

and the asymptotic Teichmiiller modular group (the geometric automorphism

group)
Mod4(R) := ts(MCG(R)).

2 Characterization of the asymptotically trivial
mapping class group

To observe the dynamics of the action of Mod(R) on T(R) and Mod4(R) on
AT(R), first we have to investigate properties of the homomorphisms ¢ and ¢4.
It is known that the homomorphism ¢ is injective (faithful) for all Riemann sur-
faces R of non-exceptional type. Here we say that a Riemann surface R is of
ezceptional type if R has finite hyperbolic area and satisfies 2g + n < 4, where
g is the genus of R and n is the number of punctures of R. Furthermore, the
homomorphism ¢ is also surjective for all Riemann surfaces R of non-exceptional
type. Thus we may identify Mod(R) with MCG(R). However, the homomor-
phism ¢4 is not injective, namely Kertsq # {[id]}, unless R is either the unit
disc or a once-punctured disc. We give a geometric characterization of quasi-
conformal mapping classes belonging to Kert4. To state our result, we define
two subgroups of the quasiconformal mapping class group.

Definition 2.1 The pure mapping class group P(R) is the group of all [g] €
MCG(R) such that g fixes all non-cuspidal ends of R. The eventually trivial
mapping class group E(R) is the group of all eventually trivial mapping classes.
Here [g] € MCG(R) is said to be eventually trivial if there exists a compact
subsurface V; of R such that, for each connected component W of R — V, that
is not a cusp neighborhood, the restriction glw : W — R is homotopic to the
inclusion map id|w : W — R.
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Then we have the following.
Proposition 2.2 ({3]) The inclusion relation E(R) C Kerta C P(R) holds.

Each inclusion in Proposition 2.2 is proper, in general. However, under
a certain condition on hyperbolic geometry of Riemann surfaces, we have a
characterization of Ker¢ 4.

Definition 2.3 We say that a Riemann surface R satisfies the bounded geom-
etry condition if R satisfies the following three conditions:

(i) the lower bound condition: the injectivity radius at any point of R except
cusp neighborhoods are uniformly bounded away from zero.

(ii) the upper bound condition: there exists a subdomain R of R such that the
injectivity radius at any point of R is uniformly bounded from above and
that the simple closed curves in R carry the fundamental group of R.

(iii) R has no ideal boundary at infinity, namely the Fuchsian model of R is of
the first kind.

We state our result.

Theorem 2.4 ([5]) Let R be a Riemann surface satisfying the bounded geom-
etry condition. Then E(R) = Kerva.

Remark 2.5 If R satisfies the bounded geometry condition, then Ker:4 is a
proper subset of MCG(R). Namely, the action of MCG(R) on AT(R) is non-
trivial. See [2, Corollary 3.5]. However, there exists a Riemann surface R that
does not satisfy the bounded geometry condition and that E(R) = Kerts =
MCG(R). See [7]. '

3 Discontinuity of mapping class group on Teich-
miiller space

We say that a subgroup G C MCG(R) acts at a point p € T'(R) discontinuously
if there exists a neighborhood U of p such that the number of elements g €
G satisfying g.(U) N U # @ is finite, namely if the orbit {g.(p) | g € G} is
discrete and the stabilizer subgroup Stabg(p) = {9 € G | g«(p) = p} is finite.
We consider the discontinuity of the pure and eventually trivial mapping class
groups on the Teichmiiller space. It was proved in [6] that, for a special planar
Riemann surface, the pure mapping class group acts on the Teichmiiller space
discontinuously. We generalize this result in the following form.

Theorem 3.1 ([3]) Let R be a Riemann surface satisfying the bounded geom-
etry condition and having more than two non-cuspidal ends. Then the pure
mapping class group P(R) acts on the Teichmiiller space T(R) discontinuously.

For Riemann surfaces the number of whose non-cuspidal ends are at most
two, Theorem 3.1 is not true. However, concerning the action of E(R), we
always have the following.
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Theorem 3.2 ([3]) Let R be a Riemann surface satisfying the bounded geom-
etry condition. Then the eventually trivial mapping class group E(R) acts on
T(R) discontinuously.

By Theorems 2.4 and 3.2, we have the following corollary immediately.

Corollary 3.3 Let R be a Riemann surface satisfying the bounded geometry
condition. Then Kerty acts on T(R) discontinuously.

We apply Corollary 3.3 in the next section.

4 Dynamics of mapping class group on asymp-
totic Teichmiiller space

For the Teichmiiller modular group Mod(R), we define the limit set A(Mod(R))
on T(R) as the set of points p € T(R) such that v,(p) — p (n — oo) for a se-
quence of distinct elements v, € Mod(R). Then for every point p € A(Mod(R)),
the action of MCG(R) at p is not discontinuous. Also, for the asymptotic Teich-
miiller modular group Mod 4(R), we define the limit set A(Mod4(R)) on AT(R)
as the set of points p € AT(R) such that 4,(p) — p (n — oo) for a sequence of
distinct elements 4, € Mod4(R). The following theorem says that the actions
of the quasiconformal mapping class group on T(R) and on AT(R) are quite
different.

Proposition 4.1 ([2]) There ezists a Riemann surface R satisfying the bounded
geometry condition such that A(Mod(R)) = 0 and A(Mod4(R)) # 0.

On the other hand, if a Riemann surface has a certain property, then the
dynamics of the actions of the quasiconformal mapping class group on T'(R)
and on AT(R) are same.

Proposition 4.2 ([2]) Let R be a Riemann surface that does not satisfy the
lower bound condition. Then A(Mod(R)) = T(R) and A(Moda(R)) = AT(R).

We consider the problem whether m(A(Mod(R))) C A(Moda(R)) for all
Riemann surfaces R. Proposition 4.2 gives a partial answer to this problem.
Furthermore, we have proved in [4] that this problem is also true for the limit
sets of the subgroups of Mod(R) and Mod 4 (R) induced by a cyclic group ([g]) C
MCG(R), where g is a conformal automorphism of infinite order of a Riemann
surface R. By Corollary 3.3, we have the following general statement.

Corollary 4.3 ([8]) Let R be a Riemann surface satisfying the bounded geom-
etry condition. Then m(A(Mod(R))) C A(Moda(R)).

Proof. We take a limit point p € A(Mod(R)) arbitrarily. Then there exists
a sequence [gn] of distinct elements of MCG(R) such that d([gn].«(p),p) — 0
as n — 00. Then d4([gn]«s(p),p) — O for the projection p = m(p). We will
show that {[gn]«x}nez C Moda(R) contains infinitely many elements. Then
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we conclude that p € A(Mod4(R)). Suppose to the contrary that {{gn]ss }nez
is a finite set {[g1]ux,...,[gk]«x} for some k& > 1. Then there exists an integer
i (1 < i < k), say 1, such that [gn)ux = [g1]ss for infinitely many n. Let
T = gn © g7 Then [r] € Ker t4 and d{[ala(91(2)), 7) = d([gn]+(p),p) — 0.
This means that the point p € T(R) is a limit point for the subgroup Kert4.
This contradicts Corollary 3.3. Thus we conclude that {[gn].«x }nez contains
infinitely many elements. [ ]

We have already proved in [1] that A(Mod(R)) G T(R) for a Riemann surface
R with the bounded geometry condition. A similar statement is true also for
the limit set on the asymptotic Teichmiiller space.

Theorem 4.4 ([5]) Let R be a Riemann surface satisfying the bounded geom-
etry condition. Then A(Moda(R)) G AT(R).
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