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Abstract

This note gives a proof of Ueda’s simultaneous linearization theorem with
real multipliers and its simple application to quadratic dynamics. This note is
based on my talk at RIMS on 5 October 2006, titled “A proof of simultaneous
linearization with a polylog estimate.”

1 Simultaneous linearization

Here we give an alternative proof of Ueda’s simultaneous linearization in a simplified
setting. For $R\geq 0$ , let $E_{R}$ denote the region $\{z\in \mathbb{C} : \mathrm{R}\epsilon z\geq R\}$ .

Theorem 1.1 (Simultaneous Linearization) For $\epsilon\in[0,1]$ , let $\{f_{\epsilon}\}$ be a family of
holomorp$hic$ maps on $\{|z|\geq R>0\}$ such that

$f_{\epsilon}(z)=\tau_{\epsilon}z+1+O(1/z)$

$arrow f_{0}(z)=z+1+O(1/z)$

uniformly as $\epsilonarrow 0$ where $\tau_{\epsilon}=1+\epsilon$ . If $R\gg \mathrm{O}$ , then for any $\epsilon\in[0,1]$ there exists $a$

holomorphic map $u_{\epsilon}$ : $E_{R}arrow\overline{\mathbb{C}}$ such that

$u_{\epsilon}(f_{\epsilon}(z))=\tau_{e}u_{\epsilon}(z)+1$

and $u_{\epsilon}arrow u_{0}$ unifornly on compact sets of $E_{R}$ .
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Indeed, a similar theorem holds for any radial ( $=\mathrm{n}\mathrm{o}\mathrm{n}$-tangential) convergence $\tau_{e}arrow$

$1$ outside the unit disk. See Ueda’s original proof ([Uel], [Ue2]). Moreover, the error
term $O(1/z)$ can be replaced by $O(|z|^{-\sigma})$ with $0<\sigma\leq 1$ . (See [Ka2].) Here we present
a simplified proof only for real $\tau_{\epsilon}arrow 1$ based on the argument of [Mi, Lemma 10.10].
The idea can be traced back at least to Leau’s work on the Abel equation [L]. We first
check:

Lemma 1.2 If $R\gg \mathrm{O}$, there exists $M>0$ such that $|f_{\epsilon}(z)-(\tau_{e}z+1)|\leq M/|z|$ on
$\{|z|\geq R\}$ and ${\rm Re} f_{e}(z)\geq{\rm Re} z+1/2$ on $E_{R}$ for any $\epsilon\in[0,1]$ .

Proof. The first inequality and the existence of $M$ is obvious. By replacing $R$ by
larger one, we have $|f_{e}(z)-(\tau_{e}z+1)|\leq M/R<1/2$ on $E_{R}$ . Then

$\mathrm{R}\epsilon f_{\epsilon}(z)\geq{\rm Re}(\tau_{\epsilon}z+1)-1/2\geq \mathrm{R}\epsilon z+1/2$ .
$\blacksquare$

Let us fix such an $R\gg \mathrm{O}$. Next we show:

Lemma 1.3 For any $\epsilon\in[0,1]$ and $z_{1},$ $z_{2}\in E_{2S}$ with $S>R$ , we have:

$| \frac{f_{e}(z_{1})f_{\epsilon}(z_{2})}{z_{1}z_{2}}=-\tau_{e}|\leq\frac{M}{S^{2}}$ .

Proof. Set $g_{\epsilon}(z):=f‘(z)-(\tau_{\epsilon}z+1)$ . For any $|z|\geq 2S$ and $w\in B(z, S)$ , we
have $|w|>S$ . This implies $|g_{\epsilon}(w)|\leq M/|w|<M/S$ and thus $g_{\epsilon}$ maps $B(z, S)$ into
$B(\mathrm{O}, M/S)$ . By the Cauchy integral formula or the Schwarz lemma, it follows that

1 $g_{\epsilon}’(z)|\leq(M/S)/S=M/S^{2}$ on $\{|z|\geq S\}$ . Now the inequality easily follows by:

$|g_{\epsilon}(z_{1})-g_{\epsilon}(z_{2})|=| \int_{[z_{2},z_{1}]}g_{\epsilon}’(z)dz|\leq\int_{[z_{2},z_{1}]}|g_{\epsilon}’(z)||dz|\leq\frac{M}{S^{2}}|z_{1}-z_{2}|$ .

(Note that the segment $[z_{2},$ $z_{1}]$ is contained in $E_{2S}\subset\{|z|\geq 2S\}.$) $\blacksquare$

Proof of Theorem 1.1. Set $z_{n}:=f_{\epsilon}^{n}(z)$ for $z\in E_{2R}$ . Note that such $z_{n}$ satisfies

$|z_{n}| \geq{\rm Re} z_{n}\geq{\rm Re} z+\frac{n}{2}\geq 2R+\frac{n}{2}$

by Lemma 1.2. Now we fix $a\in E_{2R}$ and define $u_{n,\epsilon}=u_{n}$ : $E_{2R}arrow \mathbb{C}(n\geq 0)$ by

$\mathrm{u}_{n}(z):=\frac{z_{n}-a_{n}}{\tau^{\mathrm{n}}}‘$.
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Then we have

$| \frac{u_{n+1}(z)}{u_{n}(z)}-1|=|\frac{z_{n+1}-a_{n+1}}{\tau_{\epsilon}(z_{n}-a_{n})}-1|=\frac{1}{\tau_{\epsilon}}\cdot|\frac{f_{\epsilon}(z_{n})f_{\epsilon}(a_{n})}{z_{n}a_{n}}=-\tau_{\epsilon}|$.

We apply Lemma 1.3 with $2S=2R+n/2$. Then

$| \frac{u_{n+1}(z)}{u_{n}(z)}-1|\leq\frac{M}{\tau_{e}(R+n/4)^{2}}\leq\frac{C}{(n+1)^{2}}$ ,

where $C=16M$ and we may assume $R>1/4$ . Set $P:= \prod_{n\geq 1}(1+C/n^{2})$ . Since
$|u_{n+1}(z)/u_{n}(z)|\leq 1+C/(n+1)^{2}$ , we have

1 $u_{n}(z)|=| \frac{u_{n}(z)}{u_{n-1}(z)}|\cdots|\frac{u_{1}(z)}{u_{0}(z)}|\cdot|u_{0}(z)|\leq P|z-a|$ .

Hence

$|u_{n+1}(z)-u_{n}(z)|=| \frac{u_{\mathfrak{n}+1}(z)}{u_{n}(z)}-1|\cdot|u_{n}(z)|\leq\frac{CP}{(n+1)^{2}}\cdot|z-a|$ .

This implies that $u_{e}=u_{0}+(u_{1}-u_{0})+ \cdots=\lim u_{n}$ converges uniformly on compact
subsets of $E_{2R}$ and for $\mathrm{a}\mathrm{U}\epsilon\in[0,1]$ . The univalence of $\mathrm{u}_{\epsilon}$ is shown in the same way as
[Mi, Lemma 10.10].

Next we check that $u_{\epsilon}(f_{\epsilon}(z))=\tau‘ u_{\epsilon}(z)+C_{\epsilon}$ with $C_{\epsilon}arrow 1$ as $\epsilonarrow 0$ . One can easily
check that $\mathrm{u}_{n}(f_{\epsilon}(z))=\tau_{\epsilon}u_{n+1}(z)+C_{n}$ where

$C_{n}= \frac{a_{n+1}-a_{n}}{\tau_{e}^{n}}=\frac{(\tau_{\epsilon}-1)a_{n}}{\tau_{\epsilon}^{n}}+\frac{1+g_{e}(a_{n})}{\tau_{\epsilon}^{n}}$ .

When $\tau_{\epsilon}=1,$ $C_{n}$ tends to 1 since I $g_{\epsilon}(a_{\mathrm{n}})|\leq M/|a_{n}|\leq M/(2R+n/2)$ . When $\tau_{\epsilon}>1$ ,
the last term of the equation above tends to $0$ . For $n\geq 1$ , we have

$a_{n}= \tau_{\epsilon}^{n}a+\frac{\tau_{\epsilon}^{n}-1}{\tau_{\epsilon}-1}+\sum_{k=0}^{n-1}\tau_{\epsilon}^{n-1-k}g_{\epsilon}(a_{k})$ .

Thus

$\frac{(\tau_{e}-1)a_{n}}{\tau_{\epsilon}^{n}}=(\tau_{\epsilon}-1)(a+\frac{g_{\epsilon}(a)}{\tau_{\epsilon}}+\sum_{k=1}^{n-1}\frac{g_{\epsilon}(a_{k})}{\tau_{\epsilon}^{k+1}})+1-\frac{1}{\tau_{\epsilon}^{n}}$.

Since $|g‘(a_{k})|\leq M/(2R+k/2)\leq 2M/k$ , we have

$| \sum_{k=1}^{n-1}\frac{g_{e}(a_{k})}{\tau_{e}^{k+1}}|\leq\frac{2M}{\tau_{\epsilon}}\sum_{k=1}^{n-1}\frac{1}{k\tau_{e}^{k}}\leq$ $-2M \log(1-\frac{1}{\tau_{\epsilon}})$ .
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and this implies that the sums above converge as $narrow\infty$ . Hence $C_{n}arrow C_{\epsilon}=1+$

$O(\epsilon\log\epsilon)$ .
Finaily, by taking additional linear coordinate change by $z\mapsto z/C_{\epsilon},$ $u_{\epsilon}$ gives a

desired holomorphic map. $\blacksquare$

Notes.

$\bullet$ One can check that $u_{\epsilon}(z)=z(C_{\epsilon}^{-1}+o(1))({\rm Re} zarrow\infty)$ .
$\bullet$ There is a quasiconformal version of linearization theorem by $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$. [Mc,

\S 8].

2 Applications.

This section is devoted for a worked out example to explain my personal motivation
to consider the simultaneous linearization theorem.

Cauliflower. In the family of quadratic maps, the simplest parabolic fixed point is
given by $g(z)=z+z^{2}$ . Now we consider its perturbation of the form $f(z)=\lambda z+z^{2}$

with $\lambda\nearrow 1$ . According to [Mi, \S 8 and \S 10], we have the following fact:

Proposition 2.1 $\langle$K\"onigs and Fatou coordinates) Let $K_{f}$ and $K_{g}$ be the filled Ju-
$lia$ sets of $f$ and $g$ . Then we have the following.$\cdot$

1. There nisk a unique holomorphic branched covering map $\phi_{f}$ : $K_{f}^{\mathrm{o}}arrow \mathbb{C}$ satisfying
the Schr\"oder equation $\phi_{f}(f(z))=\lambda\phi_{f}(z)$ and $\phi_{f}(0)=\phi_{f}(-\lambda/2)-1=0$ . $\phi_{f}$ is
univalent near $z=0$ .

2. There nists a unique $holomo\eta hic$ branched covering map dig : $K_{\mathit{9}}^{\mathrm{o}}arrow \mathbb{C}$ saMMng
the Abel equation $\phi_{g}(g(z))=\phi_{g}(z)+1$ and $\phi_{g}(-1/2)=0$ . $\phi_{g}$ is univalent on a
disk $|z+r|<r$ with small $r>0$ .

Note $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\lambda/2\mathrm{a}\mathrm{n}\mathrm{d}-1/2$ are the critical points of $f$ and $g$ respectively.

Observation. Set $w=\phi_{f}(z)$ . Now the proposition above asserts that the action
of $f|_{K_{f}^{\mathrm{o}}}$ is semiconjugated to $wrightarrow\lambda w$ by $\phi_{f}$ . Let us consider a M\"obius map $W=$

$S_{f}(W)=\lambda(w-1)/(\lambda-1)w$ that sends $\{0,1, \lambda\}$ to $\{\infty,0,1\}$ respectively. By taking
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the conjugation by $S_{f}$ , the action of $w\mapsto\lambda w$ is viewed as $W\mapsto W/\lambda+1$ . Let us set
$W=\Phi_{f}(z):=S_{f}\circ\phi_{f}(z)$ . Now we have

$\Phi_{f}(f(z))=\Phi_{f}(z)/\lambda+1$ and $\Phi_{f}(-\lambda/2)=0$ .

On the other hand, by setting $W=\Phi_{g}(z):=\phi_{g}(z)$ , we can view the action of $g|K_{\mathit{9}}^{\mathrm{o}}$ as
$Wrightarrow W+1$ . Thus we have

$\Phi_{g}(g(z))=\Phi_{g}(z)+1$ and $\Phi_{g}(-1/2)=0$ .

If $\lambda$ tends to 1, that is, $farrow g$ , the semiconjugated action in $W$-coordinate converges
uniformly on compact sets. However, as one can see by referring the proof of the
proposition in [Mi, \S 8 and \S 10], $\phi_{f}$ and dig are given in completely different ways thus
we cannot conclude the convergence $\Phi_{f}arrow\Phi_{g}$ a priori.

$\Phi_{f}\downarrow$ $\Phi_{g}\downarrow$

$W\}arrow W/\lambda+1$ W ト\rightarrow W+1

Figure 1: Semiconjugation inside the filled Julia sets

But there is another evidence that support this observation. Figure 1 shows the
equipotential curves of $\phi_{f}$ and $\phi_{g}$ in the filled Julia sets. Obviously similar pattems
appear and it seems one converges to the other.

Actually, we have the following fact:
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Proposition 2.2 For any compact set $E\subset K_{g}^{\mathrm{o}}$ ,

(1) $E\subset K_{f}^{\mathrm{o}}$ for all $f\approx gj$ and

(2) $\Phi_{f}arrow\Phi_{\mathit{9}}$ uniformly on $E$ as $farrow \mathit{9}$ .

Here $f\approx g$ means that $f$ is sufficiently close to $g$ , equivalently, $\lambda$ sufficiently close to
1. See [Kal, Theorem 5.5] for more general version of this proposition, which is one
of the key result to show the continuity of tevsellation and pinching semiconjugacies
constructed in [Kal].

Proof. Let us take a general expression $f_{\lambda}(z)=\lambda z+z^{2}$ with $0<\lambda\leq 1$ (thus $f_{1}=g$).
By looking at the action of $f_{\lambda}$ through a new coordinate $w=\chi_{\lambda}(z)=-\lambda^{2}/z$ , we have

$\chi_{\lambda}\mathrm{o}f_{\lambda}\circ\chi_{\lambda}^{-1}(w)=w/\lambda+1+O(1/w)$

near $\infty$ . Now we can set $\tau_{\epsilon}:=1/\lambda=1+\epsilon$ and $f_{\epsilon}:=\chi_{\lambda}\circ f_{\lambda}\circ\chi_{\lambda}^{-1}$ to have the same
setting as Theorem 1.1. We consider that $f$ and $g$ are parameterized by $\lambda$ or $\epsilon$ . (It is
convenient to use both parameterization.)

Let us show (1): For any compact $E\subset K_{\mathit{9}}^{\mathrm{o}}$ and small $r>0$ , there exists $N\gg \mathrm{O}$ such
that $g^{N}(E)\subset P_{r}=\{|z+r|<r\}$ . (For instance, one can show this fact by existence of
the Fatou coordinate.) By uniform convergence, we have $f^{N}(E)\subset P_{f}$ for all $f\approx g$ . To
show $E\subset K_{f}^{\mathrm{o}}$ , it is enough to show that $f(P_{f})\subset P_{f}$ for all $f\approx g$ . Since $\chi_{\lambda}(P_{f})=E_{R}$

for some $R\gg 0$ , Lemma 1.2 implies that $E_{R}\subset f_{\epsilon}(E_{R})$ independently of $\epsilon$ . This is
equivalent to $f_{\lambda}(P_{r})\subset P_{r}$ in a different coordinate. Thus we have (1).

Next let us check (2): Set $\Phi_{\epsilon}:=\Phi_{f}$ and $\Phi_{0}:=\Phi_{g}$ . Then we have $\Phi_{e}(f_{\lambda}(z))=$

$\tau_{\epsilon}\Phi_{\epsilon}(z)+1$ . On the other hand, by simultaneous linearization, we have a uniform
convergence $u_{\epsilon}arrow \mathrm{u}_{0}$ on $E_{R}$ that satisfies $u_{\epsilon}(f_{\epsilon}(w))=\tau_{\epsilon}u_{\epsilon}(w)+1$ . By setting $\Psi_{\epsilon}(z)$ $:=$

$u_{\epsilon}\mathrm{o}\chi_{\lambda}(z)$ , we have $\Psi_{\epsilon}arrow\Psi_{0}$ compact uniformly on $P_{f}$ , and $\Psi_{\epsilon}(f_{\lambda}(z))=\tau_{\epsilon}\Psi_{\epsilon}(z)+1$ .
We need to adjust the images of critical orbits mapped by $\Phi_{\epsilon}$ and $\Psi_{\epsilon}$ . Since

$g^{n}(-1/2)arrow 0$ along the real axis, there is an $M\gg \mathrm{O}$ such that $g^{M}(-1/2)=:a_{0}\in P_{r}$ .
By uniform convergence, we also have $f^{M}(-\lambda/2)=:a_{\epsilon}\in P_{f}$ and $a_{\epsilon}arrow a_{0}$ as $\epsilonarrow 0$ .
Set $b_{e}:=\Psi_{\epsilon}(a_{e})$ and $c_{e}:=\Phi_{\epsilon}(a_{\epsilon})$ for all $\epsilon\geq 0$ . Set also $\ell_{e}(W)=\tau_{\epsilon}W+1$ , then we
have $c_{\epsilon}=\ell_{\epsilon}^{M}(0)=\tau^{M-1}‘+\cdots+\tau_{\epsilon}+1$ and $c_{\epsilon}arrow c_{0}=M$ as $\epsilonarrow 0$ . When $\epsilon>0$ , we
take an affine map $T_{\epsilon}$ that fixes $1/(1-\tau_{e})$ and sends $b_{\epsilon}$ to $c_{\epsilon}$ . When $\epsilon=0$ , we take
an affine map $T_{0}$ that is the translation by $\mathrm{b}-\otimes\cdot$ Then one can check that $T_{\epsilon}arrow T_{0}$
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compact uniformly on the plane and $\overline{\Phi}_{\epsilon}:=T_{\epsilon}\circ\Psi_{\epsilon}$ satisfies $\overline{\Phi}_{\epsilon}arrow\tilde{\Phi}_{0}$ on any compact
sets of $P_{r}$ . Moreover, $\overline{\Phi}_{\epsilon}$ still satisfies $\tilde{\Phi}_{\epsilon}(f_{\lambda}(z))=\tau_{\epsilon}\tilde{\Phi}_{\epsilon}(z)+1$ and the images of the
critical orbit by $\Phi_{\epsilon}$ and $\overline{\Phi}_{\epsilon}$ agree. Finally by uniqueness of $\phi_{f}$ and $\phi_{g}$ , one can easily
check that $\Phi_{\epsilon}=\tilde{\Phi}_{\epsilon}$ on $P_{r}$ .

Since
$\Phi_{f}(z)=\ell_{\epsilon}^{-N}\circ\tilde{\Phi}_{e}(f^{N}(z))arrow\ell_{0}^{-N}0\tilde{\Phi}_{0}(g^{N}(z))=\Phi_{g}(z)$

uniformly on $E$ , we have (2). $\blacksquare$
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