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Simultaneous linearization and its application

Tomoki Kawahira (JII Y Z#)
Graduate School of Mathematics

Nagoya University

Abstract

This note gives a proof of Ueda’s simultaneous linearization theorem with
real multipliers and its simple application to quadratic dynamics. This note is
based on my talk at RIMS on 5 October 2006, titled “A proof of simultaneous
linearization with a polylog estimate.”

1 Simultaneous linearization

Here we give an alternative proof of Ueda’s simultaneous linearization in a simplified
setting. For R > 0, let Er denote the region {z € C: Rez > R}.

Theorem 1.1 (Simultaneous Linearization) For ¢ € [0,1], let {f.} be a family of
holomorphic maps on {|z| > R > 0} such that

f(2) = TEZ+1+O(1/Z)
— fo(z) = 2+14+0(1/2)

uniformly as € = 0 where 7. =1+ €. If R > 0, then for any € € [0,1] there exists a
holomorphic map u. : Egr — C such that

u(fe(2)) = Teue(2) +1

and u, — ug uniformly on compact sets of Er.
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Indeed, a similar theorem holds for any radial (= non-tangential) convergence 7, —
1 outside the unit disk. See Ueda’s original proof ([Uel], [Ue2]). Moreover, the error
term 0(1 /%) can be replaced by O(|z|~?) with 0 < 0 < 1. (See [Ka2].) Here we present
a simplified proof only for real 7. — 1 based on the argument of [Mi, Lemma 10.10].
The idea can be traced back at least to Leau’s work on the Abel equation [L]. We first
check:

Lemma 1.2 If R > 0, there exists M > 0 such that |f(2) — (1.2 + 1)| £ M/|2| on
{|z| 2 R} and Re f.(2) > Rez+1/2 on Epg for any € € [0, 1].

Proof. The first inequality and the existence of M is obvious. By replacing R by
larger one, we have |f(z) — (Tez+1)| < M/R < 1/2 on Eg. Then

Re f(z) > Re(tz+1)—1/2 > Rez+1/2.

Let us fix such an R > 0. Next we show:

Lemma 1.3 For any ¢ € [0,1] and 21, 2, € Ey5 with S > R, we have:

fe(z1) = fe(z2) M_

—_— < .
27—z | = 5
Proof. Set g.(2) := fe(z) - (rez +1). For any |z| > 25 and w € B(z,5), we
have |w| > S. This implies |ge(w)| < M/|w| < M/S and thus g. maps B(z, S) into
B(0,M/S). By the Cauchy integral formula or the Schwarz lemma, it follows that
|9(2)| < (M/S)/S = M/S? on {|z| > S}. Now the inequality easily follows by:

[ s
[22,21) . ,
(Note that the segment [z, z1] is contained in Eyg C {|z| > 2S5}.) [

|9¢(z1) — ge(z2)| =

’ M
< [ lgaldel < il
[22,21]

Proof of Theorem 1.1. Set 2, := f?*(2) for z € Eyp. Note that such z, satisfies

|za] > Rez, > Rez+g > 2R+g

by Lemma 1.2. Now we fix a € Eyg and define uy . = u, : E3g = C (n > 0) by
2p — Qg
™

un(2) =
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Then we have

u,,.,.l(z) -1 241 — Gn4l -1l = l ) fe(zn) - fe(an) _
un(z) Te(zn - an) Te Zn — Qg )
We apply Lemma 1.3 with 25 = 2R + n/2. Then
eitls) _ 1, € e < O
un(2) Te(R +n/4)? (n+1)2

where C' = 16M and we may assume R > 1/4. Set P := [],,,(1 + C/n?). Since
|un+1(2)/un(2)| <1+ C/(n +1)?, we have

Un(2) uy(2)
z)| = . z2)l € Plz—al.
|un(2)] @l ) lug(2)| < Plz—a]
Hence
_ _ |umn(2) | <GP _
@) = nle)| = |22 1| funta)] <€ =Ll -l
This implies that u, = up + (u; — ug) + - - - = limu,, converges uniformly on compact

subsets of Eyp and for all € € [0,1]. The univalence of u, is shown in the same way as
[Mi, Lemma 10.10].

Next we check that u.(f.(z)) = Teu.(2) + C with C. — 1 as € — 0. One can easily
check that u,(f.(z)) = Teun+1(2) + C, where

C, = St1=0n _ (T—lan  1+g(an)

n n
Ten' Te Te

When 7, = 1, C, tends to 1 since |ge(a,)| < M/|an| < M/(2R + n/2). When 7. > 1,
the last term of the equation above tends to 0. For n > 1, we have

n-1

an = en—l kQé(ak)
k=0
Thus
(e — 1)a, 4 g (a) ge(a 1
Tﬂ = ( Z k+1 - :r—f:'
€ ( k=1 6 €

Since |ge(ax)] < M/(2R + k/2) < 2M/k, we have

n-1
Y delen)
Th+1

k=1 €

IMEL 1 1
< —2M —2).
Te § ke — 2M log(1 Tc)



and this implies that the sums above converge as n — oo. Hence C, —» C. =1+
O(eloge).

Finally, by taking additional linear coordinate change by z — z/C., u, gives a
desired holomorphic map. [ ]

Notes.
e One can check that u.(z) = 2(C;* + 0o(1)) (Rez — o0).

e There is a quasiconformal version of linearization theorem by McMullen. [Me,

§8].

2 Applications.

This section is devoted for a worked out example to explain my personal motivation
to consider the simultaneous linearization theorem.

Cauliflower. In the family of quadratic maps, the simplest parabolic fixed point is
given by g(z) = z + 2%. Now we consider its perturbation of the form f(2) = Az + 22
with A /' 1. According to [Mi, §8 and §10], we have the following fact:

Proposition 2.1 (Ko6nigs and Fatou coordinates) Let K; and K, be the filled Ju-
lia sets of f and g. Then we have the following:

1. There ezists a unique holomorphic branched covering map ¢; : K; — C satisfying
the Schroder equation ¢¢(f(2)) = Ads(2) and ¢5(0) = ¢s(—A/2) —1=0. ¢5 is
univalent near z = 0.

2. There exists a unique holomorphic branched covering map ¢y : Kg — C satisfying
the Abel equation ¢,(g(z)) = ¢,(2) + 1 and ¢o(—1/2) = 0. ¢, is univalent on a
disk |z + 7| < r with small T > 0.

Note that —A\/2 and —1/2 are the critical points of f and g respectively.

Observation. Set w = ¢(2). Now the proposition above asserts that the action
of fIK; is semiconjugated to w — Aw by ¢;. Let us consider a Mobius map W =
S§(W) = AMw - 1)/(X — 1)w that sends {0, 1, A} to {00, 0,1} respectively. By taking
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the conjugation by Sy, the action of w — Aw is viewed as W — W/A + 1. Let us set
W = ®¢(z) := Sy o ¢s(z). Now we have

B(f(2) = ®y(z)/A+1 and B;(-)/2) = 0.

On the other hand, by setting W = ®,(2) := ¢,(z), we can view the action of g|x; as
W — W + 1. Thus we have

®y(g(2)) = Py(2z)+1 and P,(-1/2) = 0.

If A tends to 1, that is, f — g, the semiconjugated action in W-coordinate converges
uniformly on compact sets. However, as one can see by referring the proof of the
proposition in [Mi, §8 and §10], ¢; and ¢, are given in completely different ways thus
we cannot conclude the convergence ®; — @, a priori.

M
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A
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W W/A+1 We=W+1
Figure 1: Semiconjugation inside the filled Julia sets

But there is another evidence that support this observation. Figure 1 shows the
equipotential curves of ¢; and ¢, in the filled Julia sets. Obviously similar patterns
appear and it seems one converges to the other. ‘

Actually, we have the following fact:



Proposition 2.2 For any compact set E C K,
(1) E C K3} for all f ~ g; and
(2) ‘¢f — &, uniformly on E as f — g.

Here f ~ g means that f is sufficiently close to g, equivalently, A sufficiently close to
1. See [Kal, Theorem 5.5] for more general version of this proposition, which is one
of the key result to show the continuity of tessellation and pinching semiconjugacies
constructed in [Kal).

Proof. Let us take a general expression fy(z) = Az+2? with 0 < A < 1 (thus f; = g).
By looking at the action of f) through a new coordinate w = xx(2) = —A?/z, we have

320 fro X5 (W) = w/A+1+0(1/w)

near co. Now we can set 7. ;= 1/A =1+ € and f. := xx 0 fo 0 x5! to have the same
setting as Theorem 1.1. We consider that f and g are parameterized by A or e. (It is
convenient to use both parameterization.)

Let us show (1): For any compact E C K and small r > 0, there exists N >> 0 such
that g¥(E) C P, = {|z + r| < r}. (For instance, one can show this fact by existence of
the Fatou coordinate.) By uniform convergence, we have f¥(E) C P, for all f ~ g. To
show E C K3, it is enough to show that f(P,) C P, for all f =~ g. Since x»(P,) = Eg
for some R >> 0, Lemma 1.2 implies that Eg C f.(Er) independently of e. This is
equivalent to fi(P.) C P, in a different coordinate. Thus we have (1).

Next let us check (2): Set ®. := ®; and &y := $;. Then we have d.(fr(2)) =
TP (2) + 1. On the other hand, by simultaneous linearization, we have a uniform
convergence u, — ug on Eg that satisfies u.(fe(w)) = 7eu(w) + 1. By setting ¥ (z) :=
ue © Xa(z), we have ¥, — ¥y compact uniformly on P,, and ¥(fi(2)) = 7.¥(z) + 1.

We need to adjust the images of critical orbits mapped by ®, and ¥,. Since
g"(—1/2) — 0 along the real axis, there is an M >> 0 such that g™ (—1/2) =: aq € P..
By uniform convergence, we also have f¥(—)/2) =: a. € P. and a, — ag as € — 0.
Set be := ¥.(a.) and c. := P(ac) for all ¢ > 0. Set also £(W) = 7.W + 1, then we
have ¢ = 4(0)=7M1+...+7+1landcc > co=Mase — 0. When e > 0, we
take an affine map T, that fixes 1/(1 — 7.) and sends b, to ¢c.. When ¢ = 0, we take
an affine map Tp that is the translation by by — co. Then one can check that T, — T
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compact uniformly on the plane and &, := T. o ¥, satisfies . — $, on any compact
sets of P,. Moreover, . still satisfies ®.(fi(z)) = 7®(2) + 1 and the images of the
critical orbit by ®, and &, agree. Finally by uniqueness of ¢; and ¢, one can easily
check that &, = &, on P..
Since
Bs(2) = &N 0B (fN(2) — LN o do(gV(2)) = Dy(2)
uniformly on E, we have (2). |
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