Simultaneous linearization and its application

Tomoki Kawahira (川平 友規)

Graduate School of Mathematics

Nagoya University

Abstract

This note gives a proof of Ueda's simultaneous linearization theorem with real multipliers and its simple application to quadratic dynamics. This note is based on my talk at RIMS on 5 October 2006, titled "A proof of simultaneous linearization with a polylog estimate."

1 Simultaneous linearization

Here we give an alternative proof of Ueda's simultaneous linearization in a simplified setting. For $R \ge 0$, let E_R denote the region $\{z \in \mathbb{C} : \operatorname{Re} z \ge R\}$.

Theorem 1.1 (Simultaneous Linearization) For $\epsilon \in [0, 1]$, let $\{f_{\epsilon}\}$ be a family of holomorphic maps on $\{|z| \ge R > 0\}$ such that

$$f_{\epsilon}(z) = \tau_{\epsilon} z + 1 + O(1/z)$$
$$\longrightarrow f_0(z) = z + 1 + O(1/z)$$

uniformly as $\epsilon \to 0$ where $\tau_{\epsilon} = 1 + \epsilon$. If $R \gg 0$, then for any $\epsilon \in [0, 1]$ there exists a holomorphic map $u_{\epsilon} : E_R \to \overline{\mathbb{C}}$ such that

$$u_{\epsilon}(f_{\epsilon}(z)) = \tau_{\epsilon}u_{\epsilon}(z) + 1$$

and $u_{\epsilon} \rightarrow u_0$ uniformly on compact sets of E_R .

Indeed, a similar theorem holds for any radial (= non-tangential) convergence $\tau_{\epsilon} \rightarrow 1$ outside the unit disk. See Ueda's original proof ([Ue1], [Ue2]). Moreover, the error term O(1/z) can be replaced by $O(|z|^{-\sigma})$ with $0 < \sigma \leq 1$. (See [Ka2].) Here we present a simplified proof only for real $\tau_{\epsilon} \rightarrow 1$ based on the argument of [Mi, Lemma 10.10]. The idea can be traced back at least to Leau's work on the Abel equation [L]. We first check:

Lemma 1.2 If $R \gg 0$, there exists M > 0 such that $|f_{\epsilon}(z) - (\tau_{\epsilon}z + 1)| \leq M/|z|$ on $\{|z| \geq R\}$ and $\operatorname{Re} f_{\epsilon}(z) \geq \operatorname{Re} z + 1/2$ on E_R for any $\epsilon \in [0, 1]$.

Proof. The first inequality and the existence of M is obvious. By replacing R by larger one, we have $|f_{\epsilon}(z) - (\tau_{\epsilon}z + 1)| \leq M/R < 1/2$ on E_R . Then

$$\operatorname{Re} f_{\epsilon}(z) \geq \operatorname{Re} (\tau_{\epsilon} z + 1) - 1/2 \geq \operatorname{Re} z + 1/2.$$

Let us fix such an $R \gg 0$. Next we show:

Lemma 1.3 For any $\epsilon \in [0, 1]$ and $z_1, z_2 \in E_{2S}$ with S > R, we have:

$$\left|\frac{f_{\epsilon}(z_1)-f_{\epsilon}(z_2)}{z_1-z_2}-\tau_{\epsilon}\right| \leq \frac{M}{S^2}.$$

Proof. Set $g_{\epsilon}(z) := f_{\epsilon}(z) - (\tau_{\epsilon}z + 1)$. For any $|z| \ge 2S$ and $w \in B(z, S)$, we have |w| > S. This implies $|g_{\epsilon}(w)| \le M/|w| < M/S$ and thus g_{ϵ} maps B(z, S) into B(0, M/S). By the Cauchy integral formula or the Schwarz lemma, it follows that $|g'_{\epsilon}(z)| \le (M/S)/S = M/S^2$ on $\{|z| \ge S\}$. Now the inequality easily follows by:

$$|g_{\epsilon}(z_1) - g_{\epsilon}(z_2)| = \left| \int_{[z_2, z_1]} g'_{\epsilon}(z) dz \right| \leq \int_{[z_2, z_1]} |g'_{\epsilon}(z)| |dz| \leq \frac{M}{S^2} |z_1 - z_2|$$

(Note that the segment $[z_2, z_1]$ is contained in $E_{2S} \subset \{|z| \ge 2S\}$.)

Proof of Theorem 1.1. Set $z_n := f_{\epsilon}^n(z)$ for $z \in E_{2R}$. Note that such z_n satisfies

$$|z_n| \geq \operatorname{Re} z_n \geq \operatorname{Re} z + \frac{n}{2} \geq 2R + \frac{n}{2}$$

by Lemma 1.2. Now we fix $a \in E_{2R}$ and define $u_{n,\epsilon} = u_n : E_{2R} \to \mathbb{C}$ $(n \ge 0)$ by

$$u_n(z) := \frac{z_n - a_n}{\tau_{\epsilon}^n}$$

Then we have

$$\left|\frac{u_{n+1}(z)}{u_n(z)}-1\right| = \left|\frac{z_{n+1}-a_{n+1}}{\tau_{\epsilon}(z_n-a_n)}-1\right| = \frac{1}{\tau_{\epsilon}} \cdot \left|\frac{f_{\epsilon}(z_n)-f_{\epsilon}(a_n)}{z_n-a_n}-\tau_{\epsilon}\right|.$$

We apply Lemma 1.3 with 2S = 2R + n/2. Then

$$\frac{u_{n+1}(z)}{u_n(z)} - 1 \bigg| \leq \frac{M}{\tau_{\epsilon}(R+n/4)^2} \leq \frac{C}{(n+1)^2},$$

where C = 16M and we may assume R > 1/4. Set $P := \prod_{n \ge 1} (1 + C/n^2)$. Since $|u_{n+1}(z)/u_n(z)| \le 1 + C/(n+1)^2$, we have

$$|u_n(z)| = \left|\frac{u_n(z)}{u_{n-1}(z)}\right| \cdots \left|\frac{u_1(z)}{u_0(z)}\right| \cdot |u_0(z)| \leq P|z-a|$$

Hence

$$|u_{n+1}(z) - u_n(z)| = \left| \frac{u_{n+1}(z)}{u_n(z)} - 1 \right| \cdot |u_n(z)| \leq \frac{CP}{(n+1)^2} \cdot |z-a|.$$

This implies that $u_{\epsilon} = u_0 + (u_1 - u_0) + \cdots = \lim u_n$ converges uniformly on compact subsets of E_{2R} and for all $\epsilon \in [0, 1]$. The univalence of u_{ϵ} is shown in the same way as [Mi, Lemma 10.10].

Next we check that $u_{\epsilon}(f_{\epsilon}(z)) = \tau_{\epsilon}u_{\epsilon}(z) + C_{\epsilon}$ with $C_{\epsilon} \to 1$ as $\epsilon \to 0$. One can easily check that $u_n(f_{\epsilon}(z)) = \tau_{\epsilon}u_{n+1}(z) + C_n$ where

$$C_n = \frac{a_{n+1}-a_n}{\tau_{\epsilon}^n} = \frac{(\tau_{\epsilon}-1)a_n}{\tau_{\epsilon}^n} + \frac{1+g_{\epsilon}(a_n)}{\tau_{\epsilon}^n}.$$

When $\tau_{\epsilon} = 1$, C_n tends to 1 since $|g_{\epsilon}(a_n)| \leq M/|a_n| \leq M/(2R + n/2)$. When $\tau_{\epsilon} > 1$, the last term of the equation above tends to 0. For $n \geq 1$, we have

$$a_n = \tau_{\epsilon}^n a + \frac{\tau_{\epsilon}^n - 1}{\tau_{\epsilon} - 1} + \sum_{k=0}^{n-1} \tau_{\epsilon}^{n-1-k} g_{\epsilon}(a_k).$$

Thus

$$\frac{(\tau_{\epsilon}-1)a_n}{\tau_{\epsilon}^n} = (\tau_{\epsilon}-1)\left(a+\frac{g_{\epsilon}(a)}{\tau_{\epsilon}}+\sum_{k=1}^{n-1}\frac{g_{\epsilon}(a_k)}{\tau_{\epsilon}^{k+1}}\right)+1-\frac{1}{\tau_{\epsilon}^n}.$$

Since $|g_{\epsilon}(a_k)| \leq M/(2R + k/2) \leq 2M/k$, we have

$$\left|\sum_{k=1}^{n-1} \frac{g_{\epsilon}(a_k)}{\tau_{\epsilon}^{k+1}}\right| \leq \left|\frac{2M}{\tau_{\epsilon}}\sum_{k=1}^{n-1} \frac{1}{k\tau_{\epsilon}^k}\right| \leq \left|-2M\log(1-\frac{1}{\tau_{\epsilon}})\right|.$$

and this implies that the sums above converge as $n \to \infty$. Hence $C_n \to C_{\epsilon} = 1 + O(\epsilon \log \epsilon)$.

Finally, by taking additional linear coordinate change by $z \mapsto z/C_{\epsilon}$, u_{ϵ} gives a desired holomorphic map.

Notes.

- One can check that $u_{\epsilon}(z) = z(C_{\epsilon}^{-1} + o(1)) \quad (\operatorname{Re} z \to \infty).$
- There is a quasiconformal version of linearization theorem by McMullen. [Mc, §8].

2 Applications.

This section is devoted for a worked out example to explain my personal motivation to consider the simultaneous linearization theorem.

Cauliflower. In the family of quadratic maps, the simplest parabolic fixed point is given by $g(z) = z + z^2$. Now we consider its perturbation of the form $f(z) = \lambda z + z^2$ with $\lambda \nearrow 1$. According to [Mi, §8 and §10], we have the following fact:

Proposition 2.1 (Königs and Fatou coordinates) Let K_f and K_g be the filled Julia sets of f and g. Then we have the following:

- 1. There exists a unique holomorphic branched covering map $\phi_f : K_f^\circ \to \mathbb{C}$ satisfying the Schröder equation $\phi_f(f(z)) = \lambda \phi_f(z)$ and $\phi_f(0) = \phi_f(-\lambda/2) - 1 = 0$. ϕ_f is univalent near z = 0.
- 2. There exists a unique holomorphic branched covering map $\phi_g : K_g^{\circ} \to \mathbb{C}$ satisfying the Abel equation $\phi_g(g(z)) = \phi_g(z) + 1$ and $\phi_g(-1/2) = 0$. ϕ_g is univalent on a disk |z+r| < r with small r > 0.

Note that $-\lambda/2$ and -1/2 are the critical points of f and g respectively.

Observation. Set $w = \phi_f(z)$. Now the proposition above asserts that the action of $f|_{K_f^2}$ is semiconjugated to $w \mapsto \lambda w$ by ϕ_f . Let us consider a Möbius map $W = S_f(W) = \lambda(w-1)/(\lambda-1)w$ that sends $\{0,1,\lambda\}$ to $\{\infty,0,1\}$ respectively. By taking the conjugation by S_f , the action of $w \mapsto \lambda w$ is viewed as $W \mapsto W/\lambda + 1$. Let us set $W = \Phi_f(z) := S_f \circ \phi_f(z)$. Now we have

$$\Phi_f(f(z)) = \Phi_f(z)/\lambda + 1$$
 and $\Phi_f(-\lambda/2) = 0$.

On the other hand, by setting $W = \Phi_g(z) := \phi_g(z)$, we can view the action of $g|_{K_g^\circ}$ as $W \mapsto W + 1$. Thus we have

$$\Phi_g(g(z)) = \Phi_g(z) + 1$$
 and $\Phi_g(-1/2) = 0$.

If λ tends to 1, that is, $f \to g$, the semiconjugated action in W-coordinate converges uniformly on compact sets. However, as one can see by referring the proof of the proposition in [Mi, §8 and §10], ϕ_f and ϕ_g are given in completely different ways thus we cannot conclude the convergence $\Phi_f \to \Phi_g$ a priori.

Figure 1: Semiconjugation inside the filled Julia sets

But there is another evidence that support this observation. Figure 1 shows the equipotential curves of ϕ_f and ϕ_g in the filled Julia sets. Obviously similar patterns appear and it seems one converges to the other.

Actually, we have the following fact:

Proposition 2.2 For any compact set $E \subset K_a^\circ$,

(1) $E \subset K_f^\circ$ for all $f \approx g$; and

(2) $\Phi_f \to \Phi_g$ uniformly on E as $f \to g$.

Here $f \approx g$ means that f is sufficiently close to g, equivalently, λ sufficiently close to 1. See [Ka1, Theorem 5.5] for more general version of this proposition, which is one of the key result to show the continuity of tessellation and pinching semiconjugacies constructed in [Ka1].

Proof. Let us take a general expression $f_{\lambda}(z) = \lambda z + z^2$ with $0 < \lambda \leq 1$ (thus $f_1 = g$). By looking at the action of f_{λ} through a new coordinate $w = \chi_{\lambda}(z) = -\lambda^2/z$, we have

$$\chi_{\lambda} \circ f_{\lambda} \circ \chi_{\lambda}^{-1}(w) = w/\lambda + 1 + O(1/w)$$

near ∞ . Now we can set $\tau_{\epsilon} := 1/\lambda = 1 + \epsilon$ and $f_{\epsilon} := \chi_{\lambda} \circ f_{\lambda} \circ \chi_{\lambda}^{-1}$ to have the same setting as Theorem 1.1. We consider that f and g are parameterized by λ or ϵ . (It is convenient to use both parameterization.)

Let us show (1): For any compact $E \subset K_g^{\circ}$ and small r > 0, there exists $N \gg 0$ such that $g^N(E) \subset P_r = \{|z+r| < r\}$. (For instance, one can show this fact by existence of the Fatou coordinate.) By uniform convergence, we have $f^N(E) \subset P_r$ for all $f \approx g$. To show $E \subset K_f^{\circ}$, it is enough to show that $f(P_r) \subset P_r$ for all $f \approx g$. Since $\chi_{\lambda}(P_r) = E_R$ for some $R \gg 0$, Lemma 1.2 implies that $E_R \subset f_{\epsilon}(E_R)$ independently of ϵ . This is equivalent to $f_{\lambda}(P_r) \subset P_r$ in a different coordinate. Thus we have (1).

Next let us check (2): Set $\Phi_{\epsilon} := \Phi_f$ and $\Phi_0 := \Phi_g$. Then we have $\Phi_{\epsilon}(f_{\lambda}(z)) = \tau_{\epsilon}\Phi_{\epsilon}(z) + 1$. On the other hand, by simultaneous linearization, we have a uniform convergence $u_{\epsilon} \to u_0$ on E_R that satisfies $u_{\epsilon}(f_{\epsilon}(w)) = \tau_{\epsilon}u_{\epsilon}(w) + 1$. By setting $\Psi_{\epsilon}(z) := u_{\epsilon} \circ \chi_{\lambda}(z)$, we have $\Psi_{\epsilon} \to \Psi_0$ compact uniformly on P_r , and $\Psi_{\epsilon}(f_{\lambda}(z)) = \tau_{\epsilon}\Psi_{\epsilon}(z) + 1$.

We need to adjust the images of critical orbits mapped by Φ_{ϵ} and Ψ_{ϵ} . Since $g^n(-1/2) \to 0$ along the real axis, there is an $M \gg 0$ such that $g^M(-1/2) =: a_0 \in P_r$. By uniform convergence, we also have $f^M(-\lambda/2) =: a_{\epsilon} \in P_r$ and $a_{\epsilon} \to a_0$ as $\epsilon \to 0$. Set $b_{\epsilon} := \Psi_{\epsilon}(a_{\epsilon})$ and $c_{\epsilon} := \Phi_{\epsilon}(a_{\epsilon})$ for all $\epsilon \geq 0$. Set also $\ell_{\epsilon}(W) = \tau_{\epsilon}W + 1$, then we have $c_{\epsilon} = \ell_{\epsilon}^M(0) = \tau_{\epsilon}^{M-1} + \cdots + \tau_{\epsilon} + 1$ and $c_{\epsilon} \to c_0 = M$ as $\epsilon \to 0$. When $\epsilon > 0$, we take an affine map T_{ϵ} that fixes $1/(1 - \tau_{\epsilon})$ and sends b_{ϵ} to c_{ϵ} . When $\epsilon = 0$, we take an affine map T_0 that is the translation by $b_0 - c_0$. Then one can check that $T_{\epsilon} \to T_0$ compact uniformly on the plane and $\tilde{\Phi}_{\epsilon} := T_{\epsilon} \circ \Psi_{\epsilon}$ satisfies $\tilde{\Phi}_{\epsilon} \to \tilde{\Phi}_{0}$ on any compact sets of P_{r} . Moreover, $\tilde{\Phi}_{\epsilon}$ still satisfies $\tilde{\Phi}_{\epsilon}(f_{\lambda}(z)) = \tau_{\epsilon}\tilde{\Phi}_{\epsilon}(z) + 1$ and the images of the critical orbit by Φ_{ϵ} and $\tilde{\Phi}_{\epsilon}$ agree. Finally by uniqueness of ϕ_{f} and ϕ_{g} , one can easily check that $\Phi_{\epsilon} = \tilde{\Phi}_{\epsilon}$ on P_{r} .

Since

$$\Phi_f(z) = \ell_{\epsilon}^{-N} \circ \tilde{\Phi}_{\epsilon}(f^N(z)) \longrightarrow \ell_0^{-N} \circ \tilde{\Phi}_0(g^N(z)) = \Phi_g(z)$$

uniformly on E, we have (2).

Acknowledgement. I would like to thank T.Ueda for correspondence. This research is partially supported by Inamori Foundation and JSPS.

References

- [Ka1] T.Kawahira. Tessellation and Lyubich-Minsky laminations associated with quadratic maps I: Pinching semiconjugacies. Preprint, 2006. (arXiv:math.DS/0609280)
- [Ka2] T.Kawahira. A proof of simultaneous linearization with a polylog estimate. To appear in Bull. Polish Acad. Sci. Math. (arXiv:math.DS/0609165)
- [L] L.Leau. Étude sur les equations fonctionelles à une ou plusieurs variables. Ann. Fac. Sci. Toulouse 11(1897), E.1-E.110.
- [Mc] C.McMullen. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comm. Math. Helv. 75(2000), no.4, 535-593
- [Mi] J.Milnor. Dynamics in one complex variable (3rd edition). Annals of Math Studies 160, Princeton University Press, 2006.
- [Ue1] T.Ueda. Schröder equation and Abel equation. Preprint.
- [Ue2] T.Ueda. Simultaneous linearization of hyperbolic and parabolic fixed points. RIMS Kokyuroku 1494, 1-8.