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1. INTRODUCTION

In classical knot theory, we often use regar pltar projections of iots and links
in 3-space. Regular projections do not have triple points and the double points are
given 3-dimensional informations, that is, upper-lower informations. Therefore, we
can recover the original classical knot $hom$ the projection up to isotopy. $\bm{i}$ fact,
many knot invariants can be constructed through regular planar projections: for
example, crossing number, skein polynomials, Khovanov homology etc.

By asurface knot, we mean aclosed connected smoothly embedded surface in
$R^{4}$ . In surface knot theory, we often use generic projections into 3-space. By
putting 4-dimensional informations to the singularities of ageneric projection into
3-space, we get aso-called broken surface diagram [4]. Note that we $C\bm{t}$ recover
the original surface knot $hom$ its broken surface diagram. Ageneric projection into
3-space of asurface knot has double points, triple points, $\bm{t}d$ branch points as its
singularities. On abroken surface diagram the projection image is cut along its
double curves.

$\bm{i}$ this report, we use generic projections into the plte for studying surface
knots. Such planax projections were used, for example, in [2], [6], [7], [10]. Planax
projections of surface knots have fold points and cusps as their singularities. Cusps
appear as discrete points and fold points appear as 1-dimeoional submanifolds.
The set consisting of the cusps and the fold points in the surface is cafed the
singular set.

Given aplanar projection of asurface knot with no addItional information, we
cannot $rec^{\backslash }over$ the original surface knot. In this report, we introduce the notion
of abraids with aband and show that aplanar projection together with abtded
braid attached to the image of the singular set can recover the original surface knot.
Abanded braid is abraid in the usual sense in which one of. the strings is replaced
by a(possibly twisted) btd. The band part corresponds to aneighborhood of the
fold curve in the surface.

Finally we prove the Whitney congruence as an application. Whitney congruence
is the congruence concerning normal Euler number which is isotopy invanrirt of
surface knot. First, the congruence was showed by $Wl\dot{v}tney$ and he used the tool of
differential topology for showing the proof. However, the method was not geometric.
The latter, Caxter-Saito showed the congruence by using geometric method which
was generic projection into 3-space of surface knot. On the other hand, we $wiU$ show
the congruence by using generic pltar projection which is geometric method.

The report is organized as follows. In Section 2we introduce how to make the
braided diagram which is analogy of broken surface diagram $\bm{t}d$ we will show the
diagram is determined uniquely for asurface knot. In Section 3we give two explicit
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FIGURE 1. A banded braid

examples. In Section 4 we explain how to calculate the normal Euler number by
using a planar projection and prove the Whitney congruence as an application.

Throughout the report, we work in the smooth category.
The author has been supported by 21st century COE program “Development
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Kyushu University, Japan.

2. SURFACE KNOTS AND THEIR BRAIDED DIAGRAMS

In this section we introduce how to make braided diagram from planar projected
surface knot and show the braided diagram is determind uniquely for a surface
knot.

2.1. Braided diagram associated with a given $s$urface knot. Let us show
how to construct a planar projection with additional informations from a given
embedded surface in $R^{4}$ . For this, we introduce the notion of a banded braid.

Definition 2.1. We call an embedding $\varphi:I_{1}\cup\cdots\cup I_{r}\cup(J_{1}\cross J_{2})arrow R^{2}\cross(I=[0;1])$

(or $\varphi(I_{1}\cup\cdots\cup I_{r}\cup(J_{1}\cross J_{2}))$ ) a braid with a band if $\varphi$ satisfies following:
(i) $I_{1}=.$ . . $=I_{r}=[0,1],$ $J_{1}=J_{2}=[0,1]$ ,

(ii-l) $p\circ\varphi|_{I_{j}}$ : $I_{j}arrow I,j=1,2,$ $\cdots r$ , is the identity mapping, where $p:R^{2}\cross Iarrow$

$I$ is the projection to the second factor,
(ti-2) $p\circ\varphi|_{J_{1}xJ_{2}}arrow I$ is the projection to the first factor,
(iii-l) for $0\in I_{j}$ , we have $\varphi(0)\in(R\cross\{0\})\cross\{0\},$ $j=1,2,$ $\cdots r$ ,
(iii-2) for $0\in J_{1}$ , we have $\varphi(0\cross J_{2})\subset(R\cross\{0\})\cross\{0\}$ ,
(iii-3) for $1\in I_{j}$ , we have $\varphi(1)\in(R\cross\{0\})\cross\{1\},$ $j=1,2,$ $\cdots r$ ,
(iii-4) for $1\in J_{1}$ , we have $\varphi(1\cross J_{2})\subset(R\cross\{0\})\cross\{1\}$ .
For example, see Fig. 1.
In the following, two banded braids are considered to be the same if they are

isotopic through banded braids.
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Let us prepare several notions from singularity theory.

Definition 2.2. Let $F$ be a closed connected surface. Denote by $C^{\infty}(F, R^{2})$ the
set of all smooth mappings from $F$ to $R^{2}$ , endowed with the Whitney $0\infty$ topology
[5]. Let $g$ and $h$ be elements of $C^{\infty}(F, R^{2})$ . Then $g$ is equivalent to $h$ if there exist
diffeomorphisms $p:Farrow F$ and $q:R^{2}arrow R^{2}$ such that $q\circ g=h\circ p$ .

Definition 2.3. Let $g$ be an element of $C^{\infty}(F, R^{2})$ . Then $g$ is said to be $C^{\infty}$

stable if there exists a neighborhood $N_{g}$ of $g$ in $C^{\infty}(F, R^{2})$ such that each $h$ in $N_{g}$

is equivalent to $g$ .
Definition 2.4. Let $g:Farrow R^{2}$ be a smooth mapping from $F$ to $R^{2}$ . Then $q\in F$

is called a fold point if we can choose local coordinates $(x, y)$ centered at $q$ and
$(U, V)$ centered at $g(q)$ such that $g$ , in a neighborhood of $q$ , is of the form:

$U=x,$ $V=y^{2}$ .
Moreover, $q\in F$ is called a cusp if we can choose local coordinates $(x, y)$ centered

at $q$ and $(U, V)$ centered at $g(q)$ such that $g$ , in a neighborhood of $q$ , is of the form:

$U=x,$ $V=xy+y^{3}$ .
We denote by $S_{1}(g)$ the set of fold points and cusps, and by $S_{1}^{2}(g)$ the set of

cusps.
Note that $S_{1}(g)$ is a regular l-dimensional submanifold of $F$ and $S_{1}^{2}(g)$ is a

discrete set.
Recall the following well-known characterization of $c\infty$ stable mappings in $C^{\infty}(F$,

$R^{2})$ .
Proposition 2.5. Let $g:Farrow R^{2}$ be a smooth mapping from a closed connected
surface $F$ to $R^{2}$ . Then $g$ is $C^{\infty}$ stable if and only if $g$ has only fold points and
cusps as its singularities, its restriction to the set of fold points is an immersion
utth normal $cros8ings$, and for each cusp $q$ , we have:

$g^{-1}(g(q))\cap S_{1}(g)=\{q\}$ .
Let $F$ be a closed connected surface. For a smooth map $g:Farrow R^{2}$ , we set.

$S(g)=$ {$x\in F|$ rank $dg_{x}<2$ },

which is called the singular point set of $g$ . If $g$ is $c\infty$ stable, then we clearly have
$S_{1}(g)=S(g)$ .
Deflnition 2.6. Let $f:Farrow R^{4}$ be an embedding of a closed connected surface.
Let $\pi:R^{4}arrow R^{2}$ be an orthogonal projection. Then we say that $\pi$ is $gener\dot{\tau}c$ with
respect to $f$ (or with respect to $f(F)$ ) if $\pi\circ f$ is $C^{\infty}$ stable.

Definition 2.7. Let $f:Farrow R^{4}$ be an embedding of a closed connected surface
and $\pi:R^{4}arrow R^{2}$ an orthogonal projection which is generic with respect to $f$ . For
$x\in S(\pi\circ f)$ , the l-dimensional subspace $df_{x}(Ker(d(\pi\circ f)_{x} : T_{x}Farrow T_{\pi\circ f(x)}R^{2}))$

of $df_{x}(T_{x}F)$ is called the kemel line at $f(x)\in f(F)$ .
We often regard the kernel line as included in $\pi^{-1}(\pi\circ f(x))\cong R^{2}$ .

The kernel line at a fold point and that at a cusp are depicted in Figs. 2 and 3
respectively.
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FIGURE 2. The kernel line at a fold point

FIGURE 3. The kernel line at a cusp

We construct abraided diagram $hom$ agiven embedded surface in $R^{4}$ like follows.
Let $f:Farrow R^{4}$ be an embedding of aclosed connected surface and $\pi:R^{4}arrow R^{2}$

an orthogonal projection which is generic with respect to $f$ T.he $C^{\infty}$ stable map
$\pi of$ has fold points and cusps as its singularities. Let $q\in R^{2}$ be afold crossing
which is normal crossing of restriction of $\pi\circ f$ to fold points set. Then we can
regard $\pi^{-1}(q)$ as aplane. Note that $\pi^{-1}(q)\cong R^{2}$ contains exactly two fold points.
Moreover, by isotoping $f$ if necessary, we $\cdot$may aesume that the points $\pi^{-1}(q)\cap f(F)$

$\bm{t}d$ the kernel lines at the fold points all lie in $R\cross\{0\}\subset R^{2}=.\pi^{-1}(q)$ as depicted
in Fig. 4for all fold crossings $q$ . Furthermore, for the image $q\in R^{2}$ of each cusp,
we arrange $f(F)$ by isotopy so that the points $\pi^{-1}(q)\cap f(F)_{\bm{t}}d$ the kernel line at
the cusp point all lie in $R\cross\{0\}\subset R^{2}=\pi^{-1}(q)$ . See Fig. 5.

Let $R$ be abounded region of $R^{2}\backslash \pi\circ f(S(\pi\circ f))$ . If $R$ is an open disk, then we
do $noth\dot{i}g$ for R. If $R$ is not an open disk, then we take disjointly embedded arcs
$a_{1},a_{2},$ $\cdots a_{k}$ in $\tilde{R}=R\cup(\pi\circ f(S(\pi\circ f)))$ such that $(a_{1}\cup a_{2}\cup\cdots\cup a_{k})\cap(\pi of(S(\pi 0$

$f)))=\partial(a_{1}\cup a_{2}\cup\cdots\cup a_{k})$ and each component of $R\backslash (a_{1}\cup\cdots\cup a_{k})$ is $\bm{t}$ open
disk (see Fig. 6). Furthermore, we take the arcs $a_{1},$ $a_{2},$ $\cdots$ $a_{k}$ so that their end
points are not fold crossing nor.the image of cusps. We call the arcs $a_{1},$ $a_{2},$ $\cdots a_{k}$

additional arcs. For eai non-disk region of $R^{2}\backslash \pi\circ f(S(\pi of))$ we take additional
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FIGURE 4. Arranging $\pi^{-1}(q)\cap f(F)$

FIGURE 5. Arranging $\pi^{-1}(q)\cap f(F)$

arcs so that each bounded region of $R^{2}\backslash ((\pi\circ f(S(\pi\circ f)))\cup A$ is an open disk,
where $A$ is the union of all the additional arcs.

By above similar argument, we can fix terminals of additional arcs like follow.
Let $y$ be one of intersection between $\pi\circ f(S(\pi\circ f))$ and a additional arc. Then we
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FIGURE 6. Additional arcs in a non-disk region

FIGURE 7. Arranging $\pi^{-1}(y)\cap f(F)$

arrange $f(F)$ by isotopy so that the points $\pi^{-1}(y)\cap f(F)$ and the kernel line at the
fold point all lie in $R\cross\{0\}\subset R^{2}=\pi^{-1}(y)$ as depicted in Fig. 7.

Therefore we can regard $(\pi\circ f(S(\pi\circ f)))\cup A$ as a oriented graph which is oriented
by method that the the number of pre-image of left of fold curve is larger than one
of right. The vertices are fold crossings, the images of cusps, and the end points
of additional arcs. Then, to every edge $e$ of $\pi\circ f(S(\pi\circ f))$ we associate a banded
braid as follows. Let $e$

’

be edge which is a little smaller than $e$ along the $e$ . The
pre-image of $e$ consist of a braid of odd strings. The odd strings contai strings for
fold curve. Then we make the width the string by using the kernel line segment.
Therefore, we associate the banded braid to $e$ . Furthermore, to each additional arc
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FIGURE 8. A banded braid associated with an edge

$a$ we associate a braid in the usual sense as follows. The pre-image of $a$ consist of
a braid of odd strings. Therefore, we associate the braid in the usual sense to $a$ .
For example, let $e$ be an edge of $\pi\circ f(S(\pi\circ f))$ with end points $x_{0}$ and $x_{1}$ . Then
$\pi^{-1}(e)$ is as depicted in Fig. 8. In particular, if $e$ do not have end points, we see it
is circle and we can not associate banded braid to $e$ . Then we only attach a label
which is the number of pre-image of inter of the circle, for, the inter of the circle is
open disk and the banded braid associated to $e$ is trivial closed braid. Therefore,
we can define braided diagram as following.

Deflnition 2.8. Let $(\pi of(S(\pi\circ f)))\cup A$ be $0$riented graph defined as above and
we associate banded braid or braid in the usual sense to edge of the graph. Then we
call the oriented graph with the informations (banded braid or braid in the usual
sense etc) braided diagram of surface knot.

2.2. Recovering embedded surface from braided diagram. We will show.
recover a local embedding of surface in $R^{4}hom$ braided diagram is unique.

Definition 2.9. Let $F_{0,n}R^{2}$ denote the subspace

$F_{0,n}R^{2}=\{(p_{1}, \ldots,p_{n})\in R^{2}\cross\ldots xR^{2}|p_{i}\neq p_{j}(i\neq j)\}$.

Let $Q_{m}=\{q_{1}, \ldots, q_{m}\}$ be a set of fixed distinguished points of $R^{2}$ . Then we define
the configuration space $F_{m,n}$ of $R^{2}$ to be the space $F_{0,n}(R^{2}\backslash Q_{m})$ .

Given braided diagram of surface knot, fold crossings, cusps, edges can be lift
in $R^{4}$ which is unique. However, disk regions constructed the image of singular set
may not lift which is unique. To show it, we consider whether it can extend loop
in configuration space which it construct $n$ points in $R^{2}$ to disk. In fact, following
proposition [1] say it can extend to disk which is unique.
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FIGURE 9. The image of singular set with three cusps

Proposition 2.10. If $\pi_{2}(R^{2}\backslash Q_{m})=\pi_{3}(R^{2}\backslash Q_{m})=0$ for each $m\geq 0$ , then
$\pi_{2}F_{0,n}R^{2}=0$ .

3. EXAMPLES OF RECOVERING

In this section we introduce an example of recovering of surface knot via planar
projection. We give a local orientation to edge by method which local width (see
[7]) of left of the edge is larger than the one of right. First, we consider embedding
$RP^{2}$ in $R^{4}$ with the image of singular set as in Fig. 9. The existence of this
embedding have been showed as in [10]. $m$ is an additional arc which is not image
of singular set. Then we can reconstruct original surface knot as in Fig. 10, 11. In
these figure, the direction of fold $l_{1},$ $l_{2}$ etc correspond direction from top to bottom
in this report. Moreover the normal Euler number of this embedding is 2 or $-2$

since the total of twist of band is 2 half twist (see next section).

4. NORMAL EULER NUMBER AND WHITNEY CONGRUENCE

In this section we introduce how to calculate the normal Euler number and as
an application we prove the Whitney congruence.

4.1. The calculation of normal Euler number. Let $F\subset R^{4}$ be surface knot
with planar diagram. We consider edges with banded braids. Then the normal
Euler number is calculated like follows. Perturb $F$ (we will call $F’$ ) by isotopy as
depicted in Fig. 12. Then strings (braids) of the banded braid in $F\cap F’$ does not
intersect each other since strings in $F\cap F’$ are parallel. $arrow In$ particular, additional
arcs does not also intersect each other. However, band part of banded braid only
intersect each other. Furthermore, the number of half-twist of the band correspond
the number of the intersection. Therefore, the normal Euler number is the number
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FIGURE 10. The reconstructing of region $l_{1}l_{2}l_{3}l_{4}$

of the half-twist of the band. Let $e$ be edge (without additional arc) $\bm{t}dx_{0},$ $x_{1}$

the terminal’s vertexes. See Fig. 12.
We give aorientation to disk regions on graph made the image of singular set

how it is induced from the orientation of $R^{2}$ . Moreover, we give aorientation $t\dot{o}$

boundaries of disk regions how it is induced&om the orientation of the disk regions
(it is different Rom aorientation $concer\iota ling$ the local width).

For every region which is constructed by the image of singular set, the boundary
of the region is associated by trivial braid. Every two adjacent strings of the trivial
braid $t^{(}w$ist $0$ times. Therefore the sum of twist of every two adjacent strings for
total regions is also $0$ . In this sum we consider the kind of half-twist of two adjacent
strings.

In general, fold curve is associated by banded braid. The strings of banded
braid is divided by braid part and band part. Let $R_{1}$ be aleft region of fold curve
and $R_{2}$ aright region of fold curve. Then the half-twist of braid part is canceled
each other since the orientation of $\partial R_{1}$ and $\partial R_{2}$ are reverse direction each other.
Therefore non-cancel part are the half-twist of between boundaries of band part
and the strings in braid part. The former contribute normal Euler number. The
latter correspond twice of the sum of twists of between core of band and the strings
in braid part.

On the other hand in neighborhood of additional arc we can cancel the strings
because there is no band. In neighborhood of cusps twist of banded braid is $0$ times.
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a $b$

a $b$

FIGURE 11. The constructing of region $ml_{4}l_{1}l_{2}l_{3}m^{-1}l_{5}^{-1}$

In neighborhood of fold crossing twist of banded braid also is $0$ times. Therefore
we can see the following Theorem.

Theorem 4.1. We consider generic planar projection of a surface knot. Then fold
curve is associated by banded braid. Let $e$ be normal Euler number of surface knots
and $D$ be the sum of half-twist of between the core of band in banded braid and the
other strings in banded braid for all regions. Then

$e=-2D$ .
By above theorem we can see that normal Euler number is even.

4.2. Proof of Whitney congruence. Whitney [9] showed relation of between
normal Euler number and Euler characteristic (we call it Whitney congruence).

However Carter-Saito [3] gived the diagrammatic proof of Whitney congruence.
They showed it by using generic projections into 3-space.

On the other hand we will show it by using generic planar projections. Whitney
congruence is following theorem.
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FIGURE 12. Perturbation of $F$

Theorem 4.2. Let $F$ be embedding surface into $R^{4}$ and $e(F)$ be normal Euler
number of $F$ and $\chi(F)$ be Euler chamcteristic of F. Then

$(1/2)e(F)\equiv\chi(F)$ $(mod 2)$ .
The following theorem is also well-known [8].

Theorem 4.3. Let $F$ be a closed 2-dimensional manifold, $N$ an $07\dot{v}entable$ surface,
$f:Farrow N$ a stable map and $C(f)$ the set of the cusp singularities of $f$ . Then

$|C(f)|\equiv\chi(M)$ $(mod 2)$ .

Therefore by Theorem 4.1, 4.3 we may show the $fo\mathfrak{U}ow\dot{m}g$ theorem.

Theorem 4.4. Let Let $f$ be embedding surface into $R^{4}$ and $\pi:R^{4}arrow R^{2}$ be
orthogonal projection and $D$ be $D$ in Theorem 4.1 and $|C(\pi of)|$ be the number of
cusps. Then

$D\equiv|C(\pi\circ f)|$ $(mod 2)$ .

Any way, we have a problem, which is to prove the Whitney conjecture by using
pure geometric method. Whitney conjecture was showed by Massey but the proof
was not geometric. We want to prove the Whitney conjecture by using generic
projection. If we use the generic planar projection, we may prove the conjecture.
That is the open problem.
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