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COBORDISMS OF FOLD MAPS
BOLDIZSAR KALMAR

ABSTRACT. We summerize and extend some of our existing results about cobordisms of
fold maps. We establish a relation between fold maps and immersions and obtain geomet-
rical invariants of cobordism classes of fold maps in terms of immersions with prescribed
normal bundles. These invariants arev complete invariants of the cobordism classes of
simple fold maps of oriented (n + 1)-dimensional manifolds into an n-dimensional man-
ifold and detect stable homotopy groups as direct summands of the cobordism group
of fold maps of (n + g)-dimensional manifolds into n-dimensional manifolds. We give
a Pontryagin-Thom type construction for —1 codimensional fold maps, and also study
the cobordism classes of source manifolds of fold maps giving estimations about the

cobordism classes of manifolds which have fold maps into stably parallelisable manifolds.

1. INTRODUCTION

Fold maps of (n + q)-dimensional manifolds into n-dimensional manifolds have the
formula f(z1,...,%n4q) = (T1,...,Tn-1, %23 £ - £ 22, ) as a local form around each
singular point, and the subset of the singular points in the source manifold is a (g + 1)-
codimensional submanifold (for results about fold maps, see, for example, [1, 2, 3, 5, 6,
14, 27, 30]). If we restrict a fold map to the set of its singular points, then we obtain
a codimension one immersion into the target manifold of the fold map. This immersion
together with more detailed informations about the neighbourhood of the set of singular
points in the source manifold can be used as a geometrical invariant (see Section 3) of
fold cobordism classes (see Definition 2.1) of fold maps (for results about cobordisms of
singular maps, see, for example, (3, 4, 8, 9, 11, 12, 14, 16, 17, 21, 26] and the works of A.
Szfics in References). In this way we obtain a geometrical relation between fold maps and
immersions with prescribed normal bundles via cobordisms. In [15] we showed that these
invariants describe completely the cobordisms of simple fold maps of (n + 1)-dimensional

2000 Mathematics Subject Classification. Primary 57R45; Secondary 57R75, 57R42, 55Q45.
Key words and phrases. Fold singularity, fold map, immersion, cobordism, stable homotopy group.
The author is supported by Canon Foundation in Europe.



44

BOLDIZSAR KALMAR

manifolds into n-dimensional manifolds and in [14] we showed that these invariants detect
direct summands of the cobordism group of fold maps, namely stable homotopy groups
of spheres. In this paper we extend the results of [14] and show that these invariants also
detect stable homotopy groups of the classifying spaces BO(k).

The paper is organized as follows. In Section 2 we give basic notations and definitions,
in Section 3 we define cobordism invariants of fold maps and summerize our already
existing results concerning these invariants and study the cobordism classes of manifolds
which have fold maps into stably parallelisable manifolds. In Section 4 we extend the

results of [14].

1.1. Notations. In this paper the symbol “II” denotes the disjoint union, for any number
z the symbol “|z]” denotes the greatest integer ¢ such that i < z, 4! denotes the
universal line bundle over RP®, e}, (shortly €!) denotes the trivial line bundle over the
space X, and the symbols ¢*, n¥, etc. usually denote k-dimensional real vector bundles.
The symbols deté* and T¢* denote the determinant line bundle and the Thom space of
the bundle ¢*, respectively. The symbol Immi'; (n — k, k) denotes the cobordism group of
k-codimensional immersions into an n-dimensional manifold N whose normal bundles can
be induced from ¢* (this group is isomorphic to the group {NV,T¢*}, where N denotes the
one point compactification of the manifold N and the symbol {X,Y} denotes the group
of stable homotopy classes of continuous maps from the space X to the space Y. The
symbol Imm¢” (n—k, k) denotes the cobordism group of k-codimensional immersions into
R" whose normal bundies can be induced from ¢* (this group is isomorphic to 7 (7¢¥)).
The symbol Immpy(n — k, k) denotes the cobordism group Imm;’: (n - k, k) where v*
the universal bundle for k-dimensional real vector bundles and N is an n-dimensional
manifold. The symbol 73(X) (7 ) denotes the nth stable homotopy group of the space
X (resp. spheres). The symbol “id 47 denotes the identity map of the space A. The
symbol € denotes a small positive number. All manifolds and maps are smooth of class

C=.

is

2. PRELIMINARIES

2.1. Fold maps. Let n > 1 and ¢ > 0. Let @Q*"*? and N™ be smooth manifolds of
dimensions n + ¢ and n respectively. Let p € Q™7 be a singular point of a smooth map
f: Q"9 — N™. The smooth map f has a fold singularity of index X\ at the singular

point p if we can write f in some local coordinates around p and f(p) in the form

2 ’ 2
[y, Tnyg) = (T1,- -, Tne1, =T — -+~ —x,2,+A_1 +Znia +---+zﬁ+q)
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for some X (0 < A < g+1) (the index X is well-defined if we consider that A and g+1—A
represent the same index).

A smooth .map f: Q"9 — N™ is called a fold map if f has only fold singularities.

A smooth map f: Q"*? — N™ has a definite fold singularity at a fold singularity
pe Q" if A =0 or A =g+ 1, otherwise f has an indefinite fold singularity of indez A
at the fold singularity p € Q"*9.

Let S)(f) denote the set of fold singularities of index A of f in Q™*?. Note that
Su(f) = Sg1-a(f). Let Sy denote the set {J, Sa(f)-

Note that the set S is an (n — 1)-dimensional submanifold of the manifold Q"*9.

Note that each connected component of the manifold S, has its own index X if we
consider that A and ¢ + 1 — X represent the same index.

Note that for a fold map f: Q"7 — R® and for an index A (0 < X < [(g—1)/2] or
g+1—|(g—-1)/2} £ A< g+1) the codimension one immersion f |g,(s): Sa(f) = R*
of the singular set of index A S)(f) has a canonical framing (i.e., trivialization of the
normal bundle) by identifying canonically the set of fold singularities of index A (0 <
A< (g=1)/2) or g+1—|(g—1)/2] <A< g+1) of the map f with the fold germ
(T1y- - Bntg) = (T1, - -, Tno1, —T2——T2 T2 5+ +TAh4,) (02 < L{g-1)/2))
(if we consider that A and g+ 1 — )\ represent the same index), see, for example, [22].

If f: Q"*9 —» N" is a fold map in general position, then the map f restricted to the
singular set S is a general positional codimension one immersion into the target manifold
N™.

Since every fold map is in general position after a small perturbation, and we study
maps under the equivalence relation cobordism (see Definition 2.1), in this paper we can
restrict ourselves to studying fold maps which are in general position. Without mentioning

we suppose that a fold map f is in general position.
2.2. Equivalence relations of fold maps.

Definition 2.1. (Cobordism) Two fold maps f;: Q7Y = N™ (i = 0,1) of closed (ori-

ented) (n + g)-dimensional manifolds Q7*? (¢ = 0,1) into an n-dimensional manifold

N™ are (oriented) cobordant if

a) there exists a fold map F': X"*t9t! — N™ x [0, 1] of a compact (oriented) (n+ g+ 1)-
dimensional manifold X™tet1,

b) axntatl — Q3+q I (_)Q;H-q and

¢) F |gntanpoey = foxidjoe) and F |gneay .y = fi Xid(_c,1), where Q5*? % [0,¢) and
Q319 x (1 —¢,1] are small collar neighbourhoods of 8X"+9+! with the identifications
Q6 =Qp x {0} and QT = Q" x {1}.

We call the map F' a cobordism between fy and f;.
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This clearly defines an equivalence relation on the set of fold maps of closed (oriented)
(n + q)-dimensional manifolds into an n-dimensional manifold N™.

We denote the set of fold (oriented) cobordism classes of fold maps of closed (oriented)
(n + g)-dimensional manifolds into an n-dimensional manifold N™ (into the Euclidean
space R™) by Cobg?’}(n + q,—q) (by Cob}o) (n + gq,—q)). We note that we can define
a commutative semigroup operation in the usual way on the set of cobordism classes
Cobs\?}(n + g, —q) by the disjoint union. In the case of N™ = R" this semigroup operation
is equal to the usual group operation, i.e., the far away disjoint union.

We can refine this equivalence relation by considering the singular fibers (see, for
example, {19, 28, 29, 41]) of a fold map.

Definition 2.2. Let T be a set of singular fibers. Two fold maps f;: Q19 — N™ (i =
0,1) with singular fibers in the set 7 of closed (oriented) (n + g)-dimensional manifolds
Q' (4 =0,1) into an n-dimensional manifold N™ are (oriented) T -cobordant if they are
(oriented) cobordant in the sense of Definition 2.1 by a fold map F: X"+ — N" x [0, 1]

whose singular fibers are in the set 7.

In this way we can obtain the notion of simple fold cobordism of simple fold maps,
i.e., let 7 be the set all the singular fibers which have at most one singular point in each of
their connected components. We denote the set of simple fold cobordism classes of simple
fold maps of closed (oriented) (n + g)-dimensional manifolds Q™*9 into an n-dimensional
manifold N™ by Cobn s(n + ¢, —q). For results about simple fold maps, see, for example,
(15, 22, 23, 24, 25, 31, 42].

Definition 2.3. (Bordism) Two fold maps f;: Q"¢ — NI (i = 0,1) from closed (ori-
ented) (n + g)-dimensional manifolds Q¥ (¢ = 0,1) into closed oriented n-dimensional
manifolds N (i = 0,1) are (oriented) bordant if _

a) there exists a fold map F: X"+9+1 — ¥+l of a compact (oriented) (n + ¢ + 1)-
dimensional manifold X"t9*1 to a compact oriented (n + 1)-dimensional manifold
yn+l , _

b) OX™Me+l = QPHIII (-)QTHY, aY ™! = NP I~ NP and

c) F |Qg+qx[0’€) = fo X idjg ¢y and F IQ’;*“'x(l-s,I] = f1 X idy_¢3), where Q319 % [0,¢) and
Q77 x (1 — ¢,1] are small collar neighbourhoods of X™*9+!1 with the identifications
Qot = Q% x {0}, @177 = Q1T x {1}.

We call the map F a bordism between fo and f;.

We can define'a commutative group operation on the set of bordism classes by [fo] +
[l = foll fi: QpTILIQTYY — NJ ILNT in the usuval way.
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Remark 2.4. Our results can be easily adapted to bordisms and bordism groups of fold
maps even though we do not state them explicitly. In most of the cases if we replace
the notion ”cobordism” by "bordism”, then we obtain the correspcnding result about

bordisms of fold maps.

3. COBORDISM INVARIANTS OF FOLD MAPS

3.1. Fold germs and bundles of germs. Let us define the fold germ g 4: (RIH1,0) —
(R,0) by - ,
Ig(T1,- - Tgq1) = (—zf—-.. - z2 +z%+)& 4. +1’¥+q)

for some ¢ >1 and 0 < A < [(¢+1)/2].

We say that a pair of diffeomorphism germs (a: (R?t1,0) — (Ret1,0),8: (R,0) —
(R, 0)) is an automorphism of a fold germ gy 4: (R7t1,0) — (R, 0) if the equation g) o =
B o gxg holds. We will work with bundles whose fibers and structure groups are germs
and groups of automorphisms of germs, respectively. |

If we have a fold map f: Q"9 — N™, then for each A (0 < X < (g +1)/2]) we
have a fold germ bundle £,(f): E(€x(f)) = Sa(f) over the singular set of index A Sx(f),
i.e., the fiber of £,(f) is the fold germ gy 4, and over the singular set Sx(f) we have an
(R?+},0) bundle denoted by £771(f): E(¢21 (f)) = Si(f) and an (R,0) bundle denoted
by ni(f): E(mi(f)) = Sa(f) together with a fiberwise map E({\(f)): E(ETH(S)) —
E(n3(f)) which is equivalent on each fiber to the fold germ gy 4. The base space of the
fold germ bundle £,(f) is the singular set of index A S)(f) and the total space of this
bundle £,(f) is the fiberwise map E(£x(f)): E'(Ef{“(f)) — E(nl(f)) between the total
spaces of the bundles 53\“( f) and ni(f). We call the bundle 7} (f) the target of the fold
germ bundle £,(f).

By [10, 34, 39] this bundle £,(f) is a locally trivial bundle in a sense with a fiber
gxq and an appropriate group of automorphisms (a: (R¥*',0) — (Rt 0),8: (R,0) —
(R,0)) as structure group. By [10, 39] this structure group can be reduced to a maximal

compact subgroup, namely to the group O(A)x O(g+1—2) inthe case of 0 < A < (g+1)/2
0 Iy

I, O
in the case of A = (g + 1)/2, see, for example, [22]. We denote this latter group by
(O(A\) x O(N),T).

It follows that the targets of the universal fold germ bundles of index A (0 < A <
l(g+1)/2]) are the trivial line bundles 7} ,: ! = B(O(A)xO(q+1-A)) for X # (g+1)/2
- and the appropriate line bundle n(lq +1)/20° I' = B{O()) x O(N),T) for g odd.

and the group generated by the group O()) x O(A) and the transformation T =
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3.2. Immersions with prescribed normal bundles. We can construct homomor-
phisms

: 1
{f\\{q: Cobn s(n+4q,—q) = Imm‘;f(o(*)xof°+1'k))(n -1,1)

for 0 <A< (g+1)/2 and
€N 1)1 CobN,f(n +g,~g) — Immiy(n — 1,1)

for ¢ odd by mapping a cobordism class of a fold map f into the cobordism class of the
immersion of its fold singular set of index A S)(f) with normal bundle induced from the

target of the universal fold germ bundle of index A.
Since the cobordism group of k-codimensional immersions into a manifold N™ with

normal bundle induced from a vector bundle £* is isomorphic to the group of stable
homotopy classes {N,T¢¥} [40], the homomorphisms §§f g for A # (g+1)/2 and 5(1;7 +1)/2.4
for ¢ odd can be considered as homomorphisms into the groups {N , TEIB(O( A)xO(g+1— )\))}
and {N,TI'}, respectively. Without mentioning we identify the cobordism group of k-
codimensional immersions into a manifold N® with normal bundle induced from a vector
bundle £¢*¥ with the group of stable homotopy classes {N,Te+y}.

We remark that the group {N, TEIB(O(A)xO(q-}-l—-A))}' is equal to the group {N,S!vV
SB(O(A) x O(g+1-=X)} = {N,5'} @ {N,SB(O()\) x O(q +1 - A))}. Therefore the
homomorphisms £V, (A # (g +1)/2) can be written in the forms

ERa1 @ Exga: Cobr,s(n+4,-9) = {N, 5} @ {N,SB(O(N) x Olg +1- )}

obviously. Note that the homomorphism £ 5’\V g1 maps the fold cobordism class of a fold
map [ into the cobordism class of the framed immersion of the singular set of index A of

the fold map f (0 < A< (g+1)/2).

Note that B(O(\) x O(g+ 1 — X)) = BO()) x BO(g+ 1 — A) and there exists a
composition of bundle maps 5,1 1-3) ~ EBOM)xO(e+1-2)) ~* EBO(g+1-1) Which is the
identity map. Therefore the group {IV,SBO(g+1—\)} is a direct summand of the group
{N,SB(O()) x O{g+ 1 — )} .

Let of Immjé’(om"o("“'m (n—1,1) = Imm;\;so“’“'”(n —1,1) denote the natural

forgetting homomorphism. Then we have weaker cobordism invariants
Ong ©Exg: CobN,f(n+q,—q) = {N,S'} & {N,SBO(g+ 1 - \)}

(0< A< (g+1)/2).
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Let éN : Immf\l, (rn—1,1) - Immpy(n—1,1) be the natural forgetting homomorphism,
where n(q +1)/29° ! ' — B(O(X\) x O()),T) is the target of the universal fold germ bundle

of index (g +1)/2 for ¢ odd.
A result about these invariants, that we obtain similarly to [14], is the following.

Theorem 3.1. For n > 1, an n-dimensional mantfold N™ and q¢ > O the cobordism
semigroup Cobg\(,?}(n + q,—q) of fold maps of (oriented) (n + q)-dimensional manifolds
into N™ contains the direct sum @,L\(__?gl)/ 2 {N,S'} as a direct summand. This direct sum
@k(igl)/zj{N, S1} is detected by the homomorphisms {f\\fq’l: Cob(;,::}(n +q,—q) = {N, 51}
(A=0,...,l(g-1)/2)).

Theorem 3.2. For n > 1, an n-dimensional manifold N*, ¢ >0, k>1 and g=2k-1
the cobordism semigroup Coby r(n+q,—q) of fold maps of unoriented (n+ q)-dimensional
manifolds into N™ contains the direct sum Immpy(n — 1,1) & @L(q"l)/ 2) {N,S'} as a
direct summand. The direct summand Immy(n — 1,1) is detected by the homomorphism
éév °§(IZ+1)/2,q: Cobn f(n + q,—q) — Immy(n — 1,1), where 5?’ o f&’_‘_l)/z’q maps a fold
cobordism class [f] to the cobordism class of the immersion of the singular set of indez k
of the fold map f.

Remark 3.3. For ¢q even, in Theorems 3.1 and 3.2 we could also chose the indeces A =
1,...,|(¢g + 1)/2] for the homomorphisms {f\‘fq,l instead of the indeces A = 0,...,[(g —
1)/2]. The proof is similar to that of [14], details are left to the reader.

Another application of our invariants is the following result about simple fold maps,
which we obtained in [15].
Let

Y. Imm§(n -1, I)EBImmN” (n-2,2) = Immp(n —1,1) ® Imm}, >(’yl(n -2,2)

denote the natural forgetting homomorphism, ¢f : Cobg ,(n+1,—1) - Cob§ ,(n+1,-1)
denote the natural homomorphism which maps a sxmple fold cobordism class into its fold

cobordism class.
Let ¢ = 1 and let N™ be an n-dimensional oriented manifold. In [15] we defined a

semigroup homomorphism
In: Cobg’s(n +1,-1) = Imm% (n — 1,1) @ Immi\;xﬂ (n —2,2),

which is just an adaptation of our invariant 5{:’1 to the case of simple fold maps of oriented
manifolds into oriented manifolds and their oriented simple fold cobordisms.

In [15] we showed that the target of the universal fold germ bundle of index 1 when
the source and target manifolds are oriented, is the line bundle nq: det(y! x 41) =
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RP>® x RP®, there exists a homomorphism
6N : Imm® ") _ 1,1) - Immy(n - 1,1) ® Imm, ¥ (n - 2,2
n - N ’ n(n—1,1}@Immy "7 (n-2,2)
such that the diagram

Cobf\),’s(n +1,-1) v, Immf\;(n -1,1)® Immf\;’WI (n-2,2)

(3.1) o | W |

9,]:’05{\{1

CobG ;(n+1,-1) = Immy(n ~1,1) @ Imm} *" (n - 2,2).

commutes and we obtained the following.

Theorem 3.4. Let N™ be an oriented manifold. Then, the semigroup homomorphism Iy
is a semigroup tsomorphism between the cobordism semigroup Cob,?,,s (n+1,-1) of simple

fold maps and the group Imm(n —1,1) & Imm‘;'\;"71 (n—2,2).

Let » v
’7111\:1’ Immi;(n -1,1) -5 Immy(n - 1, 1)

and

vy T X" (n = 2,2) - Imm), X7 (n - 2,2).

denote the natural forgetting homomorphisms.

Let “rIX 9t Cobf\),,s (n+1,-1) = Immf\:x'71 (n—2,2) denote the projection to the second
factor where we identify the semigroup Cob]?,,s (n+1,—1) with the group I_mmi; (n—1,1)®
' Immﬁ\:.""1 (n - 2,2) by the isomorphism Zy .

Theorem 3.5. If two simple fold cobordism classes [f] and [g] in Cobg-,s(n +1,-1) are
mapped into distinct elements by the natural homomorphism vy 0 7hy, then [f] and [g]
are not fold cobordant. If 'y,’l‘f , 5 injective, then so is ¢N .

If there exists a fold map from a not null-cobordant (n+ 1) -dimensional manifold into

N, then ¢f;’ is not surjective.

3.3. Pontryagin-Thom type construction. In [16] among others we show the follow-
ing, which is a negative codimensional analogue of the Pontryagin-Thom type construction

for singular maps in positive codimension [21, 32, 33, 35, 36, 37].

Theorem 3.6. There is a Pontryagin- Thom type construction for —1 codimensional fold

maps, t.e.,
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(1) there erists a universal fold map £_;: U_y = Ty such that for every —1 codi-
mensional fold map f: Q™! — N™ there exists a commutative diagram

QI — U

| -

N -—XL—> P_.l

(2) for every positive integer n and n-dimensional manifold N™ there is a natural
bijection : '

xN: Cobyn f(n+1,-1) = [N",T_4]

between the set of fold cobordism classes Cobyn f(n+1, —1) and the set of homotopy

classes [N®,T_1]. The map xX¥ maps a fold cobordism class [f] into the homotopy

class of the inducing map xy: N® 5 T_;.

By Theorem 3.6 we have a bijective cobordism invariant xN: Cobyn. f(n +1,-1) >
[N™,T_;] which is a group isomorphism xX": Coby(n + 1, ~1) = m,(C-1) in the case of
N® =R".

By defining the singular sets of index 0 and 1 of the universal fold map £_;: U-; —
I'_; in the obvious way and by inducing the immersions of these singular sets into
the space I'_; we get two representatives of two stable homotopy classes in the groups
{I‘_1,TsBO(2)} and {T'_;,TI'}, respectively, i.e., a map op: SKI_; — S¥ TEBO(Z) and
amap o;: SKI'_; = SKTI!, respectively, where K is a big integer.

If we have a fold map f: Q™! — N™, then we have the stable homotopy class x} of
the inducing map x;: N™ — I'_; in the group {N",I'_1}. Hence we have the elements
o9 o X} and o1 0 X% in the groups {N",Te%o(z)} and {N" TI'}, respectively, which
correspond to the elements £0;([f]) and £, ([f]), respectively.

Therefore we have the following.

Proposition 3.7. ‘The cobordism invariants fé‘,’l and £} can be induced from the stable

homotopy classes ap and oy .

3.4. Cobordism class of the source manifold of a fold map. We have a natural
homomorphism of; ,: Cob% ;(n + ¢, —g) = Qnyq Which assigns to a class of a fold map
f: Q"9 - N™ the cobordism class [Q"*+9] of the source manifold Q™¥9.

It is an easy fact that ag ¢ is surjective and the image of ag.z ¢ consists of the cobor-
dism classes of (2 + ¢)-dimensional manifolds with even Euler characteristic {18].

Proposition 3.8. Let N be a stably parallelisable n-dimensional manifold, where n is
even. Let f: Q™' — N™ be a fold map of an orientable manifold Q™' such that its
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singular set Sy is orientable. Then, the oriented cobordism class of the source manifold

Q™! is zero.

Remark 3.9. Proposition 3.8 generalizes the analogous result about simple fold maps (15,
22)].

Proposition 3.10. Let g be even and let N™ be a stably parallelisable manifold. Then,
the rank of the image of o-,?,’q is less than or equal to the number of partitions of (n+¢q)/4
where each number in a partition is less than or equal to (q + 1)/2. In other words, if

n > g+ 2, then the homomorphism
U]Q’,q ®Q: Cobg’,’f(n +¢,-9)®Q > 2,,,0Q

s not surjective.

Corollary 3.11. Let N™ be a stably parallelisable manifold.

(1) The orientable (n+2)-dimensional manifolds which have fold map into N™ gener-
ate a subgroup with rank at most 1 of the cobordism group of (n + 2) -dimensional

manifolds.
(2) Let n = 4k — 2. Let M** be a (4k)-dimensional oriented manifold which has

a fold map into the stably parallelisable manifold N4%=2_ Then, the signature
o(M**) of M* is equal to z(22%‘)’%’1(—]L)’”’1(p’f(M‘“‘:),[M“‘]), where By, denotes the
kth Bernoulli number. ’

(8) Let n =4k — 1. If M* has a fold map into N4*~1 such that the singular set S;

is orientable, then the same holds for the signature of M*F as above.

For other results about the signatures of source manifolds of fold maps, see, for
example, [27, 29, 30].
4. SUBGROUPS OF THE COBORDISM GROUP OF FOLD MAPS

In this section we extend the results of Theorems 3.1 and 3.2.
Let O(1,k) denote the subgroup of the orthogonal group O(k + 1) whose elements

1 0
are of the form W) where M is an element of the group O(k).
1

Theorem 4.1. For g > 1, the cobordism semigroup Coby,j(n+ g, —q) contains the direct

sum

{N,S'}@ {N,SB(O(1) x0(@)}e &P {N,5"}@{N,SBO(g+1- 1)}
2<A<(g+1)/2

as a direct summand.
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Remark 4.2. It follows that the composition

1 1
N N B(0(1.j-1)xO(g+1-1)) : EB(OG)XO(g+1-3N () _
€jig © Qs Tmmy =D (p — 1,1) — Immy (n—1,1)

is equal to the natural homomorphism
Bin: {N,SI@{N,SB(O(1,j-1)xO(g+1-7))} —~ {N,S'}&{N, SB(0(j)xO(a+1-5))}

induced by the map B;: BO(1,j ~1) = BO(j3) (2 <j < (g+1)/2). Therefore if the
map B, is injective or an isomorphism, then the cobordism semigroup Cobn s(n+q,—q)
contains the group {N,SB(O(1,7 — 1) x O(g + 1 — j))} as a subgroup or as a direct
summand, respectively. :

For example, when n = 2 and N? = R?, we have that the cobordism group Cobs(n +

g, —q) contains the direct sum

qu/ 2 (qeven)

P meri(BO1j-1)x0@G+1-j))= { 23 V% (g 0dd)

1<5<(g+1)/2

as a direct summand, where O(1,0) denotes the orthogonal group O(1).
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