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ABSTRACT. We summerize and extend some of our existing results about cobordisms of

fold maps. We establish a relation between fold maps and immersions and obtain geomet-

rical invariants of cobordism classes of fold maps in terms of immersions with prescribed

normal bundles. These invariants are complete invariants of the cobordism classes of

simple fold maps of oriented $(n+1)$ -dimensional manifolds into an n-dimensional man-

ifold and detect stable homotopy groups as direct summands of the cobordism group

of fold maps of $(n+q)arrow di\bm{m}ensional$ manifolds into n-dimensional manifolds. We give

a Pontryagin-Thom type construction for $-1$ codimensional fold maps, and also study

the cobordism classes of source man証 olds of fold maps giving estimations about the

cobordism classes of manifolds which have fold maps into stably parallelisable manifolds.

1. INTRODUCTION

Fold maps of $(n+q)$ -dimensional manifolds into n-dimensional manifolds have the

formula $f(x_{1)}\ldots , x_{n+q})=(x_{1}, \ldots,x_{n-1}, \pm x_{n}^{2}\pm\cdots\pm x_{n+q}^{2})$ as a local form around each

singular point, and the subset of the singular points in the source manifold is a $(q+1)-$

codimensional submanifold (for results about fold maps, see, for example, [1, 2, 3, 5, 6,

14, 27, 30]). If we restrict a fold map to the set of its singular points, then we obtain

a codimension one immersion into the target manifold of the fold map. This immersion
together with more detailed informations about the neighbourhood of the set of singular
points in the source manifold can be used as a geometrical invariant (see Section 3) of

fold cobordism classes (see Definition 2.1) of fold maps (for results about cobordisms of
singular maps, see, for example, [3, 4, 8, 9, 11, 12, 14, 16, 17, 21, 26] and the works of A.
Sz\’ucs in References). In this way we obtain a geometrical relation between fold maps and

immersions with prescribed normal bundles via cobordisms. In [15] we showed that these

invariants describe completely the cobordisms of simple fold maps of $(n+1)$ -dimensional
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manifolds into n-dimensional manifolds and in [14] we showed that these invariants detect
direct summands of the cobordism group of fold maps, namely stable homotopy groups
of spheres. In this paper we extend the results of [14] and show that these invariants also
detect stable homotopy groups of the classifying spaces $BO(k)$ .

The paper is organized as follows. In Section 2 we give basic notations and definitions,

in Section 3 we define cobordism invariants of fold maps and summerize our already

existing results concerning these invariants and study the cobordism classes of manifolds
which have fold maps into stably parallelisable manifolds. In Section 4 we extend the
results of [14].

1.1. Notations. In this paper the symbol $IJ$ ’ denotes the disjoint union, for any number
$x$ the symbol “

$\lfloor x\rfloor$ denotes the greatest integer $i$ such that $i\leq x,$ $\gamma^{1}$ denotes the
universal line bundle over $\mathbb{R}P^{\infty},$ $\epsilon_{X}^{1}$ (shortly $\epsilon^{1}$ ) denotes the trivial line bundle over the
space $X$ , and the symbols $\xi^{k},$ $\eta^{k}$ , etc. usually denote k-dimensional real vector bundles.
The symbols det $\xi^{k}$ and $T\xi^{k}$ denote the determinant line bundle and the Thom space of
the bundle $\xi^{k}$ , respectively. The symbol $Imm_{N}^{\xi^{k}}(n-k, k)$ denotes the cobordism group of
k-codimensional immersions into an n-dimensional manifold $N$ whose normal bundles can
be induced from $\xi^{k}$ (this group is isomorphic to the group $\{\dot{N}, T\xi^{k}\}$ , where $\dot{N}$ denotes the
one point compactification of the manifold $N$ and the symbol {X, $Y$ } denotes the group
of stable homotopy classes of continuous maps from the space $X$ to the spaoe Y. The
symbol $Imm^{\xi^{k}}(n-k, k)$ denotes the cobordism group of k-codimensional immersions into
$\mathbb{R}^{n}$ whose normal bundles can be induced from $\xi^{k}$ (this group is isomorphic to $\pi_{n}^{s}(T\xi^{k})$ ).

The symbol Imm$N(n-k, k)$ denotes the cobordism group $Imm_{N}^{\gamma^{k}}(n-k, k)$ where $\gamma^{k}$ is
the universal bundle for k-dimensional real vector bundles and $N$ is an n-dimensional
manifold. The symbol $\pi_{n}^{s}(X)(\pi_{n}^{s})$ denotes the $n$ th stable homotopy group of the space
$X$ (resp. spheres). The symbol “id $A$ denotes the identity map of the space $A$ . The
symbol $\epsilon$ denotes a small positive number. All manifolds and maps are smooth of class
$c\infty$ .

2. PRELIMINARIES

2.1. Fold maps. Let $n\geq 1$ and $q>0$ . Let $Q^{n+q}$ and $N^{n}$ be smooth manifolds of
dimensions $n+q$ and $n$ respectively. Let $p\in Q^{n+q}$ be a singular point of a smooth map
$f:Q^{n+q}arrow N^{n}$ . The smooth map $f$ has a fold singularity of index $\lambda$ at the singular
point $p$ if we can write $f$ in some local coordinates around $p$ and $f(p)$ in the form

$f(x_{1}, \ldots,x_{n+q})=(x_{1}, \ldots, x_{n-1}, -x_{n}^{2}-\cdots-x_{n+\lambda-1}^{2}+x_{n+\lambda}^{2}+\cdots+x_{n+q}^{2})$
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for some $\lambda(0\leq\lambda\leq q+1)$ (the index $\lambda$ is well-defined if we consider that $\lambda$ and $q+1-\lambda$

represent the same index).
A smooth map $f:Q^{n+q}arrow N^{n}$ is called a fold map if $f$ has only fold singularities.
A smooth map $f:Q^{n+q}arrow N^{n}$ has a definite fold singularity at a fold singularity

$p\in Q^{n+q}$ if $\lambda=0$ or $\lambda=q+1$ , otherwise $f$ has an indefinite fold singularity of index $\lambda$

at the fold singularIty $p\in Q^{n+q}$ .
Let $S_{\lambda}(f)$ denote the set of fold singularities of index $\lambda$ of $f$ in $Q^{\mathfrak{n}+q}$ . Note that

$S_{\lambda}(f)=S_{q+1-\lambda}(f)$ . Let $s_{f}$ denote the set $\bigcup_{\lambda}S_{\lambda}(f)$ .
Note that the set $s_{f}$ is an $(n-1)$ -dimensional submanifold of the manifold $Q^{n+q}$ .
Note that each connected component of the manifold $s_{f}$ has its own index $\lambda$ if we

consider that $\lambda$ and $q+1-\lambda$ represent the same index.
Note that for afold map $f:Q^{n+q}arrow \mathbb{R}^{n}$ and for an index $\lambda(0\leq\lambda\leq\lfloor(q-1)/2\rfloor$ or

$q+1-\lfloor(q-1)/2\rfloor\leq\lambda\leq q+1)$ the codimension one immersion $f|_{S_{\lambda}(J)}$ : $S_{\lambda}(f\rangle$ $arrow \mathbb{R}^{n}$

of the singular set of index $\lambda S_{\lambda}(f)$ has acanonical haming (i.e., trivialization of the

normal bundle) by identifying canonically the set of fotd singuIarities of index $\lambda(0\leq$

$\lambda\leq[(q-1)/2\rfloor$ or $q+1-\lfloor(q-1)/2\rfloor\leq\lambda\leq q+1)$ of the map $f$ with the fold germ
$(x_{1}, \ldots, x_{n+q})rightarrow(x_{1}, \ldots, x_{n-1}, -x_{n}^{2}-\cdots-x_{n+\lambda-1}^{2}+x_{n+\lambda}^{2}+\cdots+x_{n+q}^{2})(0\leq\lambda\leq\lfloor(q-1)/2\rfloor)$

(if we consider that $\lambda$ and $q+1-\lambda$ represent the same $index\rangle$ , see, for example, [22].

If $f:Q^{n+q}arrow N^{n}$ is afold map in general position, then the map $f$ restricted to the

singular set $s_{f}$ is ageneral positional codimension one $im\iota nersion$ into the target mtifold
$N^{n}$ .

Since every fold map is in general position after a small perturbation, and we study

maps under the equivalence relation cobordism (see Definition 2.1), in this paper we can
restrict ourselves to studying fold maps which are in general position. Without mentioning
we suppose that a fold map $f$ is in general position.

2.2. Equivalence relations of fold maps.

Definition 2.1. (Cobordism) Two fold maps $f_{i}$ : $Q_{i}^{n+q}arrow N^{n}(i=0,1)$ of closed (ori-

ented) $(n+q)$ -dimensional manifolds $Q_{i}^{n+q}(i=0,1)$ into an n-dimensional manifold
$N^{\mathfrak{n}}$ are (oriented) cobordant if

a) there exists a fold map $F:X^{n+q+1}arrow N^{n}\cross[0,1]$ of a compact (oriented) $(n+q+1)-$

dimensional manifold $X^{n+q+1}$ ,
b) $\partial X^{n+q+1}=Q_{0}^{n+q}\coprod(-)Q_{1}^{n+q}$ and
c) $F|_{Q_{0}^{n+q}x[0,\epsilon)}=f_{0}\cross id_{[0,\epsilon)}$ and $F|_{Q_{1}^{n+q}x(1-\epsilon,1]}=f_{1}\cross id_{(1-\epsilon,1]}$ , where $Q_{0}^{n+q}\cross[0, \epsilon$) and

$Q_{1}^{n+q}\cross(1-\epsilon, 1]$ are small collar neighbourhoods of $\partial X^{n+q+1}$ with the identifications
$Q_{0}^{n+q}=Q_{0}^{n+q}\cross\{0\}$ and $Q_{1}^{n+q}=Q_{1}^{n+q}\cross\{1\}$ .

We call the map $F$ a cobordism between $f_{0}$ and $f_{1}$ .
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This clearly defines an equivalence relation on the set of fold maps of closed (oriented)

$(n+q)$ -dimensional manifolds into an n-dimensional manifold $N^{n}$ .

We denote the set of fold (oriented) cobordism classes of fold maps of closed (oriented)

$(n+q)$ -dimensional manifolds into an n-dimensional manifold $N^{n}$ (into the Eucl\’idean

space $\mathbb{R}^{n}$ ) by $Cob_{N,\int}^{(O)}(n+q, -q)$ (by $Cob_{f}^{(O)}(n+q,$ $-q)$ ). We note that we can define

a commutative semigroup operation in the usual way on the set of cobordism classes
$Cob_{N,f}^{(O)}(n+q, -q)$ by the disjoint union. In the case of $N^{n}=\mathbb{R}^{n}$ this semigroup operation

is equal to the usual group operation, i.e., the far away disjoint union.

We can refine this equivalence relation by considering the singular fibers (see, for

example, [19, 28, 29, 41]) of a fold map.

Definition 2.2. Let $\tau$ be a set of singular fibers. Two fold maps $f_{i}$ : $Q_{i}^{n+q}arrow N^{n}(i=$

$0,1)$ with singular fibers in the set $\tau$ of closed (oriented) ($n+q\rangle$ -dimensional manifolds
$Q_{i}^{n+q}(i=0,1)$ into an n-dimensional manifold $N^{n}$ are (onented) $\tau$ -cobordant if they are
(oriented) cobordant in the sense of Definition 2.1 by a fold map $F:X^{\mathfrak{n}+q+1}arrow N^{n}\cross[0,1]$

whose singular fibers are in the set $\tau$ .

In this way we can obtain the notion of simple fold cobordism of simple fold maps,

i.e., let $\tau$ be the set all the singular fibers which have at most one singular point in each of

their connected components. We denote the set of simple fold cobordism classes of simple

fold maps of closed (oriented) $(n+q)$ -dimensional manifolds $Q^{n+q}$ into an n-dimensional
manifold $N^{\mathfrak{n}}$ by $Cob_{N,s}(n+q)^{-q)}$ For results about simple fold maps, see, for example,

[15, 22, 23, 24, 25, 31, 42].

Definition 2.3. (Bordism) Two fold maps $f_{i}$ : $Q_{i}^{n+q}arrow N_{i}^{n}(i=0,1)$ from closed (ori-

ented) $(n+q)$ -dimensional manifolds $Q_{i}^{n+1}(i=0,1)$ into closed oriented n-dimensional
manifolds $N_{i}^{n}(i=0,1)$ are (oriented) bordant if

a) there exists a fold map $F:X^{n+q+1}arrow Y^{\mathfrak{n}+1}$ of a compact (oriented) $(n+q+1)-$

dimensional manifold $X^{n+q+1}$ to a compact oriented $(n+1)$ -dimensional manifold
$Y^{n+1}$ ,

b) $\partial X^{n+q+1}=Q_{0}^{n+q}$ 垣 $(-)Q_{1}^{n+q},$ $\partial Y^{n+1}=N_{0}^{n+1}\coprod-N_{1}^{n+1}$ and
c) $F|_{Q_{0}^{n+9}x[0,\epsilon)}=f_{0}xid_{[0,\epsilon)}$ and $F|_{Q_{1}^{n+r}x(1-\epsilon,1]}=f_{1}\cross id_{(1-\epsilon,1]}$ , where $Q_{0}^{n+q}\cross[0,\overline{\circ}$) and

$Q_{1}^{n+q}\cross(1-c-, 1]$ are small collar neighbourhoods of $\partial X^{n+q+1}$ with the identifications
$Q_{0}^{n+q}=Q_{0}^{n+q}\cross\{0\},$ $Q_{1}^{n+q}=Q_{1}^{n+q}\cross\{1\}$ .

We call the map $F$ a bordism between $f_{0}$ and $f_{1}$ .

We can define a commutative group operation on the set of bordism classes by $[f_{0}]+$

$[f_{1}]=f_{()}\coprod f_{1}$ : $Q_{0}^{n+q}nQ_{1}^{n+q}arrow N_{0}^{n}$ IJ $1V_{1}^{r\iota}$ in the usual way.
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Remark 2.4. Our results can be easily adapted to bordisms and bordism groups of fold

maps even though we do not state them explicitly. In most of the cases if we replace

the notion “cobordism” by “bordism”, then we obtain the correspcnding result about

bordisms of fold maps.

3. COBORDISM INVARIANTS OF FOLD MAPS

3.1. Fold germs and bundles of germs. Let us define the fold germ $g_{\lambda,q}$ : $(\mathbb{R}^{q+1},0)arrow$

$(\mathbb{R}, 0)$ by
$g_{\lambda,q}(x_{1}, \ldots, x_{q+1})=(-x_{1}^{2}-\cdots-x_{\lambda}^{2}+x_{1+\lambda}^{2}+\cdots+x_{1+q}^{2}\rangle$

for some $q\geq 1$ and $0\leq\lambda\leq\lfloor(q+1)/2\rfloor$ .

We say that a pair of diffeomorphism germs $(\alpha:(\mathbb{R}^{q+1},0)arrow(\mathbb{R}^{+1},0\rangle$ , $\beta:(\mathbb{R}, 0)arrow$

$(\mathbb{R}, 0))$ is an automorphism of a fold germ $g_{\lambda,q}$ : $(\mathbb{R}^{q+1},0)arrow(\mathbb{R}, 0)$ if the equation $g_{\lambda,q}\circ\alpha=$

$\beta\circ g_{\lambda,q}$ holds. We will work with bundles whose fibers and structure groups are germs

and groups of automorphisms of germs, respectively.

If we have a fold map $f:Q^{n+q}arrow N^{n}$ , then for each $\lambda(0\leq\lambda\leq\lfloor(q+1)/2\rfloor)$ we

have a fold germ bundle $\xi_{\lambda}(f):E(\xi_{\lambda}(f))arrow S_{\lambda}(f)$ over the singular set of index $\lambda S_{\lambda}(f)$ ,

i.e., the fiber of $\xi_{\lambda}(f)$ is the fold germ $g_{\lambda,q}$ , and over the singular set $S_{\lambda}(f)$ we have an
$(\mathbb{R}^{q-\vdash 1} , 0)$ bundle denoted by $\xi_{\lambda}^{q+1}(f):E(\xi_{\lambda}^{q+1}(f))arrow S_{\lambda}(f)$ and an $(\mathbb{R}, 0)$ bundle denoted

by $\eta_{\lambda}^{1}(f):E(\eta_{\lambda}^{1}(f))arrow S_{\lambda}(f)$ together with a fiberwise map $E(\xi_{\lambda}(f)):E(\xi_{\lambda}^{q+1}(f))arrow$

$E(7l_{\lambda(f))}^{1}$ which is equivalent on each fiber to the fold germ $g_{\lambda,q}$ . The base spaoe of the

fold germ bundle $\xi_{\lambda}(f\rangle$ is the singular set of index $\lambda S_{\lambda}(f)$ and the total space of this

bundle $\xi_{\lambda}(f)$ is the fiberwise map $E(\xi_{\lambda}(f)):E(\xi_{\lambda}^{q+1}(f))arrow E(\eta_{\lambda}^{1}(f))$ between the total

spaces of the bundles $\xi_{\lambda}^{q+1}(f)$ and $\eta_{\lambda}^{1}(f)$ . We call the bundle $\eta_{\lambda}^{1}(f)$ the target of the fold
germ bundle $\xi_{\lambda}(f)$ .

By [10, 34, 39] this bundle $\xi_{\lambda}(f)$ is a locally trivial bundle in a sense with a fiber

$g_{\lambda,q}$ and an appropriate group of automorphisms $(\alpha:(\mathbb{R}^{q+1},0)arrow(\mathbb{R}^{q+1},0),$ $\beta:(\mathbb{R}, 0)arrow$

$(\mathbb{R}, 0))$ as structure group. By $[10, 39]$ this structure group can be reduced to a maximal

compact subgroup, namely to the group $O(\lambda\rangle$ $\cross O(q+1-\lambda)$ in the case of $0\leq\lambda<(q+1)/2$

and the group generated by the group $o(\lambda\rangle$ $\cross O(\lambda)$ and the transformation $T=(\begin{array}{ll}0 I_{\lambda}I_{\lambda} 0\end{array})$

in the case of $\lambda=(q+1)/2$ , see, for example, [22]. We denote this latter group by
$(O(\lambda)\cross O(\lambda),T\rangle$ .

It follows that the targets of the universal fold germ bundles of index $\lambda(0\leq\lambda\leq$

$\lfloor(q+1\}/2\rfloor)$ are the trivial line bundles $\uparrow l_{\lambda,q}^{1}:\sim r^{1}arrow B(O(\lambda)\cross O(q+1-\lambda))$ for $\lambda\neq(q+1)/2$

and the appropriate line bundle $\eta_{(q+1)/2,q}^{1}$ : $l^{1}arrow B(O(\lambda)\cross O(\lambda),T\rangle$ for $q$ odd.
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3.2. Immersions with prescribed normal bundles. We can construct homomor-
phisms

$\xi_{\lambda,q}^{N}$ : $Cob_{N,\int}(n+q, -q)arrow Imm_{N}^{\epsilon_{B(O(\lambda)xO(9+1-\lambda))}^{1}}(n-1,1)$

for $0\leq\lambda<(q+1)/2$ and

$\xi_{(q+1)/2,q}^{N}$ : $Cob_{N,\int}(n+q, -q)arrow Imm_{N}^{l^{1}}(n-1,1\rangle$

for $q$ odd by mapping a cobordism class of a fold map $\beta$ into the cobordism class of the
immersion of its fold singular set of index $\lambda S_{\lambda}(f)$ with normal bundle induced from the
target of the universal fold germ bundle of index $\lambda$ .

Since the cobordism group of k-codimensional immersions into a manifold $N^{n}$ with
normal bundle induced from a vector bundle $\xi^{k}$ is isomorphic to the group of stable
homotopy classes $\{\dot{N}, T\xi^{k}\}[40]$ , the homomorphisms $\xi_{\lambda,q}^{N}$ for $\lambda\neq(q+1)/2$ and $\xi_{(q+1)/2,q}^{N}$

for $q$ odd can be considered as homomorphisms into the groups $\{\dot{N}, T\epsilon_{B(O(\lambda)xO(q+1-\lambda))}^{1}\}$

and $\{\dot{N}, Tl^{1}\}$ , respectively. Without mentioning we identify the cobordism group of k-
codimensional immersions into a manifold $N^{n}$ with normal bundle induced from a vector
bundle $\xi^{k}$ with the group of stable homotopy classes $\{\dot{N}, T\xi^{k}\}$ .

We remark that the group $\{\dot{N}, T\epsilon_{B(O(\lambda\rangle xO(q+1-\lambda))}^{1}\}$ is equal to the group $\{\dot{N}$ , $S^{1}\vee$

$SB(O(\lambda)\cross O(q+1-\lambda))\}\cong\{\dot{N}, S^{f}\}\oplus\{N, SB(O(\lambda)\cross O(q+1-\lambda))\}$. Therefore the
homomorphisms $\xi_{\lambda,q}^{N}(\lambda\neq(q+1)/2)$ can be written in the forms

$\xi_{\lambda,q,1}^{N}\oplus\xi_{\lambda,q2}^{N}$:) $Cob_{N,\int}(n+q, -q)arrow\{1\dot{V}, S^{1}\}\oplus\{\dot{N}, SB(O(\lambda)\cross O(q+1-\lambda))\}$

obviously. Note that the homomorphism $\xi_{\lambda q,1}^{N}$

)

maps the fold cobordism class of a fold
map $f$ into the cobordism class of the framed immersion of the singular set of index $\lambda$ of
the fold map $f(0\leq\lambda<(q+1)/2)$ .

Note that $B(O(\lambda)\cross O(q+1-\lambda))=BO(\lambda)\cross BO(q+1-\lambda)$ and there exists a
composItlon of bundle maps $\epsilon_{BO(q+1-\lambda)}^{1}arrow\epsilon_{B(O(\lambda)xO(q+1-\lambda))}^{1}arrow\epsilon_{BO(q+1-\lambda\rangle}^{1}$ which is the
identity map. Therefore the group $\{N, SBO(q+1-\lambda)\}$ is a direct summand of the group
$\{\dot{N}, SB(O(\lambda)\cross O(q+1-\lambda))\}$ .

Let $\rho_{\lambda,q}^{N}$ : $Imm_{N}^{\epsilon_{B\langle O(\lambda)xO\langle q+1-\lambda\rangle\rangle}^{1}}(n-l, 1)arrow Imm_{N}^{\epsilon_{BO(9+1-\lambda)}^{1}}(n-1,1)$ denote the natural
forgetting homomorphism. Then we have weaker cobordism invariants

$\rho_{\lambda,q}^{N}\circ\xi_{\lambda,q}^{N}$ : $Cob_{N,\int}(n+q, -q)arrow\{\dot{A}^{r}, S^{1}\}\oplus\{\dot{N}, SBO(q+1-\lambda)\}$

$(0\leq\lambda<(q+1)/2)$ .

48



COBORDISMS OF FOLD MAPS

Let $\overline{\theta}_{q}^{N}$ : Imm$Nl^{1}(n-1,1)arrow Imm_{N}(n-1,1)$ be the natural forgetting homomorphism,
where $\eta_{(q+1)/2,.q}^{1}$ : $l^{1}arrow B\langle O(\lambda)\cross O(\lambda),$ $T$) is the target of the universal fold germ bundle
of index $(q+1)/2$ for $q$ odd.

A result about these invariants, that we obtain similarly to [14], is the following.

Theorem 3.1. For $n\geq 1$ , an n-dimensional manifold $N^{n}$ and $q>0$ the cobordism
semigroup $Cob_{N,[}^{(O)}(n+q, -q)$ of fold maps of (oriented) $(n+q)$ -dimensional manifolds
into $N^{n}$ contains the direct $sum\oplus_{\lambda=0}^{\lfloor(q-1)/2\rfloor}\{\dot{N}, S^{1}\}$ as a direct summand. This direct sum
$\oplus_{\lambda=0}^{[(q-1)/2\rfloor}\{\dot{N}, S^{1}\}$ is detected by the homomorphisms $\xi_{\lambda,q,1}^{N}$ : $Cob_{N,\int}^{(O)}(n+q, -q)arrow\{\dot{N}, S^{1}\}$

$(\lambda=0, \ldots, [(q-1)/2\rfloor)$ .

Theorem 3.2. For $n\geq 1_{f}$ an n-dimensional manifold $N^{n},$ $q>0,$ $k\geq 1$ and $q=2k-1$
the cobordism semigroup $Cob_{N,\int}(n+q, -q)$ offold maps of unoriented ($n+q\rangle$ -dimensional

manifolds into $N^{n}$ contains the direct sum $Imm_{N}(n-1,1)\oplus\oplus_{\lambda=0}^{\lfloor(q-1)/2\rfloor}\{\dot{N}, S^{1}\}$ as a
direct summand. The direct summand $Imm_{N}(n-1,1)$ is detected by the homomorphism

$\tilde{\theta}_{q}^{N}\circ\xi_{(q+1)/2,q}^{N}$ : $Cob_{N,f}(n+q, -q)arrow Imm_{N}(n-1,1)$ , where $\tilde{\theta}_{q}^{N}\circ\xi_{(q+1)/2,q}^{N}$ maps a fold
cobordism class $[f]$ to the cobordism class of the immersion of the singular set of index $k$

of the fold map $f$ .

Remark 3.3. For $q$ even, in Theorems 3.1 and 3.2 we could also chose the indeces $\lambda=$

$1,$
$\ldots,$

$\lfloor(q+1)/2\rfloor$ for the homomorphisms $\xi_{\lambda,q,1}^{N}$ instead of the lndeces $\lambda=0,$ $\ldots$ , $\lfloor(q-$

$1)/2\rfloor$ . The proof is similar to that of [14], details are left to the reader.

Another application of our invariants is the following result about simple fold maps,
which we obtained in [15].

Let

$\gamma_{n}^{N}$ : $Imm_{N}^{\epsilon^{1}}(n-1,1)\oplus Imm_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)arrow Imm_{N}(n-1,1)\oplus Imm_{N}^{\gamma^{1}x\gamma^{1}}(n-2,2)$

denote the natural forgetting homomorphism, $\phi_{n}^{N}$ : $Cob_{N,s}^{O}(n+1, -1)arrow Cob_{N,\int}^{O}(n+1, -1)$

denote the natural homomorphism which maps a simple fold cobordism class into its fold
cobordism class.

Let $q=1$ and let $N^{n}$ be an n-dimensional oriented manifold. In $[1\check{a}]$ we defined a
semigroup homomorphism

$\mathcal{I}_{N}$ ; $Cob_{N,s}^{O}(n+1, -1)arrow{\rm Im}\iota n_{N}^{\epsilon^{1}}(n-1,1)\oplus Imm_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)$,

which is just an adaptation of our invariant $\xi_{1,1}^{N}$ to the case of simple fold maps of oriented
manifolds into oriented manifolds and their oriented simple fold cobordisms.

In [15] we showed that the target of the universal fold germ bundle of index 1 when
the source and target manifolds are oriented, is the line bundle $\eta_{1,1}^{1}$ : det $(\gamma^{1}\cross\gamma^{1})arrow$
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Iier $\infty\cross \mathbb{R}P^{\infty}$ , there exists a homomorphism

$\theta_{n}^{N}$ : $Imm_{N}^{\det(\gamma^{1}x\gamma^{1})}(n-1,1)arrow Imm_{N}(n-1,1)\oplus Imm_{N}^{\gamma^{1}x\gamma^{1}}(n-2,2)$

such that the diagram

(3.1)
$c_{ob_{N,s_{l^{\phi_{\mathfrak{n}}^{N}}}}^{o_{(n+1,-1)}}}$

$arrow^{\mathcal{I}_{N}}$

$Imm_{N}^{\epsilon^{1}}(n-1,1)\bigoplus_{\gamma_{\mathfrak{n}}^{N}\iota^{Imm_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)}}$

$Cob_{N,\int}^{O}(n+1, -I)arrow^{\theta_{n}^{N}0\xi_{1,1}^{N}}Imm_{N}(n-1,1)\oplus Imm_{N}^{\gamma^{1}x\gamma^{1}}(n-2,2)$.

commutes and we obtained the following.

Theorem 3.4. Let $N^{n}$ be an oriented manifold. Then, the semigroup homomorphism $\mathcal{I}_{N}$

is a semigroup isomorphism between the cobordism semigroup $Cobo_{s}(n+1, -1)$ of simple

fold maps and the group $Imm_{N}^{\epsilon^{1}}(n-1,1)\oplus Imm_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)$ .

Let
$\gamma_{n,1}^{N}$ : $Imm_{N}^{\epsilon^{1}}(n-1,1)arrow Imm_{N}(n-1,1)$

and
$\gamma_{n,2}^{N}$ : $Imm_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)arrow Imm_{N}^{\gamma^{1}x\gamma^{1}}(n-2,2)$.

denote the natural forgetting homomorphisms.

Let $\pi_{n_{1}2}^{N}$ : $Cob_{N_{\backslash }}^{O},(n+1, -1)arrow Imm_{\Lambda^{\gamma}}^{\epsilon^{1}\cross\gamma^{1}}(n-2,2)$ denote the projection to the second

factor where we identify the semlgroup $Cob_{N,s}^{O}(n+1, -1)$ with the group $Imm_{N}^{\epsilon^{1}}(n-1,1\rangle$ $\ominus$

${\rm Im}\ln_{N}^{\epsilon^{1}x\gamma^{1}}(n-2,2)$ by the isomorphism $\mathcal{I}_{N}$ .

Theorem 3.5. If two simple fold cobordism classes $[f]$ and $[g]$ in $Cob_{N,s}^{O}(n+1,$ $-1\rangle$ are
mapped into distinct elements by the natural homomorphism $-f_{n,2^{\circ\pi_{n_{\backslash }2}^{N}}}^{N}$ , then $[f]$ and $[g]$

are not fold cobordant. If $\gamma_{n,2}^{N}$ is injective, then so is $\phi_{n}^{N}$ .
If there $e$ vzsts a fold map from $a$ not null-cobordant $(n+1)$ -dimensional manifold into

$N_{j}^{n}$ then $\phi_{n}^{N}$ is not surjective.

3.3. Pontryagin-Thom type construction. In [16] among others we show the follow-
ing, which is a negative codimensional analogue of the Pontryagin-Thom type construction
for singular maps in positive codimension [21, 32, 33, 35, 36, 37].

Theorem 3.6. There is a Pontryagin-Thom type construction for $-1$ codimensional fold
maps, $i.e$ .,
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(1) there exists a universal fold map $\xi_{-1}$ : $U_{-1}arrow\Gamma_{-1}$ such that for every $-1$ codi-

mensional fold map $f:Q^{n+1}arrow N^{n}$ there exists a commutative diagram

$Q^{q}arrow U_{-1}$

$f\downarrow$ $\xi_{-1}\downarrow$

$N^{n}x;’\underline{\iota}r_{-1}$

(2) for every positive integer $n$ and n-dimensional manifold $N^{n}$ there is a naturd

bijection
$\chi_{*}^{N}$ : $Cob_{N^{n},\int}(n+1, -1)arrow[\dot{N}^{n},\Gamma_{-1}]$

between the set offold cobordism classes $Cob_{N^{n},f}(n+1, -1)$ and the set of homotopy

classes $[\dot{N}^{n},\Gamma_{-1}]$ . The map $\chi_{*}^{N}$ maps a fold cobordism class $[f]$ into the homotopy

class of the inducing map $x_{f}$ : $\dot{N}^{n}arrow\Gamma_{-1}$ .

By Theorem 3.6 we have a bijective cobordism invariant $\chi_{*}^{N}$ : $Cob_{N^{n},\int}(n+1, -1)arrow$

$[\dot{N}^{n}, \Gamma_{-1}]$ which is a group isomorphism $\chi_{*}^{\mathbb{R}^{n}}$ : $Cob_{f}(n+1, -1)arrow\pi_{n}(\Gamma_{-1})$ in the case of
$N^{n}=\mathbb{R}^{n}$ .

By defining the singular sets of index $0$ and 1 of the universal fold map $\xi_{-1}$ : $U_{-1}arrow$

$\Gamma_{-1}$ in the obvious way and by inducing the immersions of these singular sets into

the space $\Gamma_{-1}$ we get two representatives of two stable homotopy classes in the groups
$\{\Gamma_{-1},T\epsilon_{BO(2)}^{1}\}$ and $\{\Gamma_{-1},Tl^{1}\}$ , respectively, i.e., a map $\sigma_{0}$ : $S^{K}\Gamma_{-1}arrow S^{K}T\epsilon_{BO(2)}^{1}$ and

a map $\sigma_{1}$ : $S^{K}\Gamma_{-1}arrow S^{K}Tl^{1}$ , respectively, where $K$ is a big integer.

If we have a fold map $f:Q^{n+1}arrow N^{n}$ , then we have the stable homotopy class $x_{f}^{s}$ of

the inducing map $\chi_{f}$ : $1\backslash ^{r}\prime narrow\Gamma_{-1}$ in the group $\{\dot{N}^{n}, \Gamma_{-1}\}$ . Hence we have the elements
$\sigma_{0}\circ\chi_{[}^{s}$ and $\sigma_{1}\circ\chi_{f}^{\theta}$ in the groups $\{\dot{N}^{n}, T\epsilon_{BO(2)}^{1}\}$ and $\{\dot{N}_{7}^{n}Tl^{1}\}$ , respectively, which

correspond to the elements $\xi_{0,1}^{N}([f])$ and $\xi_{1,1}^{N}([f])$ , respectively.

Therefore we have the following.

Proposition 3.7. The cobordism invariants $\xi_{0,1}^{N}$ and $\xi_{1_{\backslash }1}^{N}$ can be induced from the stable

homotopy classes $\sigma 0$ and $\sigma_{1}$ .

3.4. Cobordism class of the source manifold of a fold map. We have a natural
homomorphism $\sigma_{N,q}^{O}$ : $Cob_{N,\int}^{O}(n+q, -q)arrow\Omega_{n+q}$ which assigns to a class of a fold map
$f:Q^{n+q}arrow N^{n}$ the cobordism class $[Q^{n+q}]$ of the source manifold $Q^{n+q}$ .

It is an easy fact $tl$} $at\sigma_{\mathbb{R},q}^{O}$ is surjective and the image of $\sigma_{R^{2},q}^{O}$ consists of the cobor-

dism classes of $(2+q)$ -dimensional manifolds with even Euler characteristic [18].

Proposition 3.8. Let $-:\backslash rr\iota$ be a stably parallelisable n-di,merbsionaI manifold, where $n$ is

even. Let $f:Q^{n+1}arrow N$“ be a fold map of an $oriental\prime le$ manifold $Q^{\mathfrak{n}+1}$ such that its
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singular set $s_{f}$ is orientable. Then, the oriented cobordism class of the source manifold
$Q^{n+1}$ is zero.

Remark 3.9. Proposition 3.8 generalizes the analogous result about simple fold maps [15,

22].

Proposition 3.10. Let. $q$ be even and let $N^{n}$ be a stably parallelisable manifold. Then,

the rank of the image of $\sigma_{N,q}^{O}$ is less than or equal to the number of partitions of $(n+q)/4$

where each number in a partition is less than or equal to $(q+1)/2$ . In other words, if
$n>q+2$ , then the homomorphism

$\sigma_{N,q}^{O}\otimes \mathbb{Q}:Cob_{N,f}^{O}(n+q, -q)\otimes \mathbb{Q}arrow\Omega_{n+q}\otimes \mathbb{Q}$

is not surjective.

Corollary 3.11. Let $N^{n}$ be a stably parallelisable manifold.
(1) The orientable $(n+2)$ -dimensional manifolds which have fold map into $N^{n}$ gener-

ate a subgroup with rank at most 1 of the cobordism group of $(n+2)$ -dimensiond

manifolds.
(2) Let $n=4k-2$ . Let $M^{4k}$ be a $(4k)$ -dimensional oriented manifold which has

a fold map into the stably parallelisable manifold $N^{4k-2}$ . Then, the signature
$\sigma(M^{4k})$ of $M^{4k}$ is equal $to\Leftrightarrow^{2^{2k}B}2k!(-1)^{k+1}\langle p_{1}^{k}(\lambda f^{4k}), [M^{4k}]\rangle$ , where $B_{k}$ denotes the
$k$ th Bernoulli number.

(3) Let $n=4k-1$ . If $M^{4k}$ has a fold map into $N^{4k-1}$ such that the singular set $s_{f}$

$is$ onentable, then the same holds for the signature of $M^{4k}$ as above.

For other results about the signatures of source manifolds of fold maps, see, for
example, [27, 29, 30].

4. SUBGROUPS OF THE COBORDISM GROUP OF FOLD MAPS

In this section we extend the results of Theorems 3.1 and 3.2.
Let $O(1, k)$ denote the subgroup of the orthogonal group $O(k+1)$ whose elements

are of the form $(\begin{array}{ll}1 00 41f\end{array})$ where $A\cdot f$ is an element of the group $o(k)$ .

Theorem 4.1. For $q>1$ , the cobordism semigroup $Cob_{N,\int}(n+q, -q)$ contains the direct
sum

$\{\dot{N}, S^{1}\}\oplus\{\dot{N}, SB(O(1\rangle\cross O(q))\}\ominus$ $\oplus$ $\{\dot{N}, S^{1}\}\oplus\{\dot{N}, SDO(q+1-\lambda)\}$

$2\leq\lambda<(q+1)/2$

as a direct summand.
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Remark 4.2. It follows that the composition

$\xi_{j,q}^{N}\circ\alpha_{j,q}^{N}$ : $Imm_{1V}^{\epsilon_{B(O(1,j-1)xO(q+1-j))}^{1}}(n-1,1)arrow Imm_{N}^{\epsilon_{B(O(j)xO(q+1arrow j\rangle)}^{1}}(n-1,1)$

is equal to the natural homomorphism

$\beta_{j,*}:$
$\{\dot{N}, S^{1}\}\oplus\{\dot{N}, SB(O(1,j-1)\cross O(q+1-j))\}arrow\{\dot{N}, S^{1}\}\oplus\{\dot{N}, SB(O(j)\cross O(q+1-j))\}$

induced by the map $\beta_{j}$ : $BO(1,j-1)arrow BO(j)(2\leq j<(q+1)/2)$ . Therefore if the

map $\beta_{j,*}$ is injective or an isomorphism, then the cobordism semigroup $Cob_{N,[}(n+q, -q)$

contains the group $\{\dot{N}, SB(O(1,j-1)\cross O(q+1-j))\}$ as a subgroup or as a direct

summand, respectively.
For example, when $n=2$ and $N^{2}=\mathbb{R}^{2}$ , we have that the cobordism group $Cob_{J}(n+$

$q,$ $-q$ ) contains the direct sum

$\bigoplus_{1\leq j<(q+1)/2}\pi_{1}^{s}\oplus\pi_{1}^{s}(B(O(1,j-1)xO(q+1-j)))=\{\begin{array}{ll}\mathbb{Z}_{2}^{3q/2} ( q even)\mathbb{Z}_{2}^{3(q-1)/2} ( q odd)\end{array}$

as a direct summand, where $O(1,0)$ denotes the orthogonal group 0(1).
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